AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultrathin flexible InGaZnO transistor for implementing multiple functions with a very small circuit footprint

Chaoqi Dai1,2,§Peiqin Chen2,§Shaocheng Qi2,§Yongbin Hu2,§Zhitang Song3,4( )Mingzhi Dai2,3( )
College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Shanghai Microsystem and Information Technology Institute, Chinese Academy of Sciences, Shanghai 200433, China

§ Chaoqi Dai, Peiqin Chen, Shaocheng Qi, and Yongbin Hu contributed equally to this work.

Show Author Information
An erratum to this article is available online at:

Graphical Abstract

Abstract

There is a continuous demand to reduce the size of the devices that form a unit circuit, such as logic gates and memory, to reduce their footprint and increase device integration. In order to achieve a highly efficient circuit architecture, optimizations need to be made in terms of device processing. However, the time involved in the current reduction of device sizes according to Moore's Law has slowed down. Here, we propose a flexible transistor with ultra-thin IGZO (InGaZnO, indium-gallium-zinc-oxide) as the channel material, which not only scales down the footprints of multi-transistor logic gates but also combines the functions of the logic gates, memory, and sensors into a single cell. The transistor proposed here has an ultrathin semiconductor layer and can implement the typical functions of logic gates that conventionally have 2-6 transistors. Furthermore, it demonstrates the memory effect with a programming time as low as 5 ns. This design can also display various artificial synaptic behaviors. This new device design and structure can be adopted for the development of next-generation flexible electronics that require higher integration.

Electronic Supplementary Material

Download File(s)
12274_2020_3074_MOESM1_ESM.pdf (1.3 MB)

References

[1]
T. P. Ma, Making silicon nitride film a viable gate dielectric. IEEE Trans. Electron Dev. 1998, 45, 680-690.
[2]
Y. K. Choi,; K. Asano,; N. Lindert,; V. Subramanian,; T. J. King,; J. Bokor,; C. M. Hu, Ultrathin-body SOI MOSFET for deep-sub-tenth micron era. IEEE Electron Dev. Lett. 2000, 21, 254-255.
[3]
Y. S. Chauhan,; D. D. Lu,; S. Vanugopalan,; S. Khandelwal,; J. P. Duarte,; N. Paydavosi,; A. Niknejad,; C. M. Hu, FinFET Modeling for IC Simulation and Design Using the BSIM-CMG Standard; Academic Press: London, 2015.
[4]
S. C. Qi,; J. Cunha,; T. L. Guo,; P. Q. Chen,; R. P. Zaccaria,; M. Dai, Bottom-gate approach for all basic logic gates implementation by a single-type IGZO-based MOS transistor with reduced footprint. Adv. Sci. 2020, 7, 1901224.
[5]
Q. H. Huang, International technology roadmap for semiconductors (2013 Edition). China Integrated Circuit 2014, 23, 25-45.
[6]
H. S. Lee,; K. Choi,; J. S. Kim,; S. Yu,; K. R. Ko,; S. Im, Coupling two-dimensional MoTe2 and InGaZnO thin-film materials for hybrid PN junction and CMOS inverters. ACS Appl. Mater. Interfaces 2017, 9, 15592-15598.
[7]
M. Z. Dai,; N. Dai, Logic circuit function realization by one transistor. Nano Lett. 2012, 12, 5954-5956.
[8]
N. K. Upadhyay,; H. Jiang,; Z. R. Wang,; S. Asapu,; Q. F. Xia,; J. J. Yang, Emerging memory devices for neuromorphic computing. Adv. Mater. Technol. 2019, 4, 1800589.
[9]
M. M. Shulaker,; G. Hills,; N. Patil,; H. Wei,; H. Y. Chen,; H. S. P. Wong,; S. Mitra, Carbon nanotube computer. Nature 2013, 501, 526-530.
[10]
J. S. Heo,; T. Kim,; S. G. Ban,; D. Kim,; J. H. Lee,; J. S. Jur,; M. G. Kim,; Y. H. Kim,; Y. Hong,; S. K. Park, Thread-like CMOS logic circuits enabled by reel-processed single-walled carbon nanotube transistors via selective doping. Adv. Mater. 2017, 29, 1701822.
[11]
A. G. Shulga,; V. Derenskyi,; J. M. Salazar-Rios,; D. N. Dirin,; M. Fritsch,; M. V. Kovalenko,; U. Scherf,; M. A. Loi, An all-solution-based hybrid CMOS-like quantum dot/carbon nanotube inverter. Adv. Mater. 2017, 29, 1701764.
[12]
J. S. Tang,; Q. Cao,; G. Tulevski,; K. A. Jenkins,; L. Nela,; D. B. Farmer,; S. J. Han, Flexible CMOS integrated circuits based on carbon nanotubes with sub-10 ns stage delays. Nat. Electron. 2018, 1, 191-196.
[13]
J. P. Zou,; K. Zhang,; W. F. Cai,; T. P. Chen,; A. Nathan,; Q. Zhang, Optical-reconfigurable carbon nanotube and indium-tin-oxide complementary thin-film transistor logic gates. Nanoscale 2018, 10, 13122-13129.
[14]
C. S. Liu,; H. W. Chen,; X. Hou,; H. Zhang,; J. Han,; Y. G. Jiang,; X. Y. Zeng,; D. W. Zhang,; P. Zhou, Small footprint transistor architecture for photoswitching logic and in situ memory. Nat. Nanotechnol. 2019, 14, 662-667.
[15]
M. Chhowalla,; D. Jena,; H. Zhang, Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.
[16]
F. Horst,; A. Farokhnejad,; Q. T. Zhao,; B. Iñíguez,; A. Kloes, 2-D physics-based compact DC modeling of double-gate tunnel-FETs. IEEE Trans. Electron Dev. 2019, 66, 132-138.
[17]
G. Y. Gao,; B. S. Wan,; X. Q. Liu,; Q. J. Sun,; X. N. Yang,; L. F. Wang,; C. F. Pan,; Z. L. Wang, Tunable tribotronic dual-gate logic devices based on 2D MoS2 and black phosphorus. Adv. Mater. 2018, 30, 1705088.
[18]
Y. Gao,; F. W. Zhuge,; M. Li,; Y. H. He,; L. Li,; L. Lv,; Q. F. Zhang,; F. K. Wang,; J. W. Su,; W. Han, et al. Multifunctional mixed-dimensional MoS2-CuO Junction field-effect transistor for logic operation and phototransistor. Adv. Electron. Mater. 2019, 5, 1800976.
[19]
N. Ofek,; A. Petrenko,; R. Heeres,; P. Reinhold,; Z. Leghtas,; B. Vlastakis,; Y. H. Liu,; L. Frunzio,; S. M. Girvin,; L. Jiang, et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 2016, 536, 441-445.
[20]
T. R. Tan,; J. P. Gaebler,; Y. Lin,; Y. Wan,; R. Bowler,; D. Leibfried,; D. J. Wineland, Multi-element logic gates for trapped-ion qubits. Nature 2015, 528, 380-383.
[21]
M. Veldhorst,; C. H. Yang,; J. C. C. Hwang,; W. Huang,; J. P. Dehollain,; J. T. Muhonen,; S. Simmons,; A. Laucht,; F. E. Hudson,; K. M. Itoh, et al. A two-qubit logic gate in silicon. Nature 2015, 526, 410-414.
[22]
C. J. Ballance,; T. P. Harty,; N. M. Linke,; M. A. Sepiol,; D. M. Lucas, High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett. 2016, 117, 060504.
[23]
S. Weidt,; J. Randall,; S. C. Webster,; K. Lake,; A. E. Webb,; I. Cohen,; T. Navickas,; B. Lekitsch,; A. Retzker,; W. K. Hensinger, Trapped-ion quantum logic with global radiation fields. Phys. Rev. Lett. 2016, 117, 220501.
[24]
K. K. Ni,; T. Rosenband,; D. D. Grimes, Dipolar exchange quantum logic gate with polar molecules. Chem. Sci. 2018, 9, 6830-6838.
[25]
V. M. Schäfer,; C. J. Ballance,; K. Thirumalai,; L. J. Stephenson,; T. G. Ballance,; A. M. Steane,; D. M. Lucas, Fast quantum logic gates with trapped-ion qubits. Nature 2018, 555, 75-78.
[26]
A. J. Genot,; A. Baccouche,; R. Sieskind,; N. Aubert-Kato,; N. Bredeche,; J. F. Bartolo,; V. Taly,; T. Fujii,; Y. Rondelez, High-resolution mapping of bifurcations in nonlinear biochemical circuits. Nat. Chem. 2016, 8, 760-767.
[27]
P. Siuti,; J. Yazbek,; T. K. Lu, Synthetic circuits integrating logic and memory in living cells. Nat. Biotechnol. 2013, 31, 448-452.
[28]
T. S. Moon,; C. B. Lou,; A. Tamsir,; B. C. Stanton,; C. A. Voigt, Genetic programs constructed from layered logic gates in single cells. Nature 2012, 491, 249-253.
[29]
J. S. Meena,; S. M. Sze,; U. Chand,; T. Y. Tseng, Overview of emerging nonvolatile memory technologies. Nanoscale Res. Lett. 2014, 9, 526.
[30]
R. Martins,; P. Barquinha,; L. Pereira,; N. Correia,; G. Gonçalves,; I. Ferreira,; E. Fortunato, Write-erase and read paper memory transistor. Appl. Phys. Lett. 2008, 93, 203501.
[31]
R. Martins,; P. Barquinha,; L. Pereira,; N. Correia,; G. Gonçalves,; I. Ferreira,; E. Fortunato, Selective floating gate non-volatile paper memory transistor. Phys. Status Solidi RRL 2009, 3, 308-310.
[32]
E. Fortunato,; P. Barquinha,; R. Martins, Oxide semiconductor thin-film transistors: A review of recent advances. Adv. Mater. 2012, 24, 2945-2986.
[33]
B. Linares-Barranco, Memristors fire away. Nat. Electron. 2018, 1, 100-101.
[34]
C. S. Liu,; X. Yan,; X. F. Song,; S. J. Ding,; D. W. Zhang,; P. Zhou, A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat. Nanotechnol. 2018, 13, 404-410.
[35]
R. H. Dennard, Field-Effect Transistor Memory. U.S. Patent 3387286, Jun 4, 1968.
[36]
C. Navarro,; M. Duan,; M. S. Parihar,; F. Adamu-Lema,; S. Coseman,; J. Lacord,; K. Lee,; C. Sampedro,; B. J. Cheng,; H. El Dirani, et al. Z2-FET as capacitor-less eDRAM cell for high-density integration. IEEE Trans. Electron Dev. 2017, 64, 4904-4909.
[37]
C. Navarro,; S. Karg,; C. Marquez,; S. Navarro,; C. Convertino,; C. Zota,; L. Czornomaz,; F. Gamiz, Capacitor-less dynamic random access memory based on a III-V transistor with a gate length of 14 nm. Nat. Electron. 2019, 2, 412-419.
[38]
R. Tetzlaff, Memristors and Memristive Systems; Springer: New York, 2014.
[39]
S. Pi,; C. Li,; H. Jiang,; W. W. Xia,; H. L. Xin,; J. J. Yang,; Q. F. Xia, Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension. Nat. Nanotechnol. 2019, 14, 35-39.
[40]
E. H. Sargent, Colloidal quantum dot solar cells. Nat. Photonics 2012, 6, 133-135.
[41]
M. Z. Dai,; W. W. Yang,; M. Li,; L. Zhang,; C. H. Huo,; Y. M. Dong,; T. J. Webster, One-transistor memory compatible with Si-based technology with multilevel applications. Adv. Electron. Mater. 2019, 5, 1900262.
[42]
M. Z. Dai,; W. L. Wang,; P. J. Wang,; M. Z. Iqbal,; N. Annabi,; N. Amin, Realization of tunable artificial synapse and memory based on amorphous oxide semiconductor transistor. Sci. Rep. 2017, 7, 10997.
[43]
Z. Q. Wang,; H. Y. Xu,; X. H. Li,; H. Yu,; Y. C. Liu,; X. J. Zhu, Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv. Funct. Mater. 2012, 22, 2759-2765.
[44]
L. X. Hu,; S. Fu,; Y. H. Chen,; H. T. Cao,; L. Y. Liang,; H. L. Zhang,; J. H. Gao,; J. R. Wang,; F. Zhuge, Ultrasensitive memristive synapses based on lightly oxidized sulfide films. Adv. Mater. 2017, 29, 1606927.
[45]
J. T. Yang,; C. Ge,; J. Y. Du,; H. Y. Huang,; M. He,; C. Wang,; H. B. Lu,; G. Z. Yang,; K. J. Jin, Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Adv. Mater. 2018, 30, 1801548.
[46]
S. S. Yao,; P. Swetha,; Y. Zhu, Nanomaterial-enabled wearable sensors for healthcare. Adv. Healthc. Mater. 2018, 7, 1700889.
[47]
Y. Khan,; A. E. Ostfeld,; C. M. Lochner,; A. Pierre,; A. C. Arias, Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 2016, 28, 4373-4395.
[48]
S. H. Wang,; J. Xu,; W. C. Wang,; G. J. N. Wang,; R. Rastak,; F. Molina-Lopez,; J. W. Chung,; S. M. Niu,; V. R. Feig,; J. Lopez, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 2018, 555, 83-88.
[49]
T. Q. Trung,; S. Ramasundaram,; B. U. Hwang,; N. E. Lee An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 2016, 28, 502-509.
[50]
J. Q. Hu,; R. Li,; Y. Liu,; Y. W. Su, An overview of healthcare monitoring by flexible electronics. Sci. China: Phys., Mech. Astron. 2018, 61, 94601.
[51]
M. Zhu,; J. P. Cao,; X. Y. Wei,; Y. W. He,; A. Y. Li,; X. R. Xu,; M. U. Ali,; L. J. Yan,; H. Meng Self-supported hysteresis-free flexible organic thermal transistor based on commercial graphite paper. Appl. Phys. Lett. 2018, 112, 253301.
Nano Research
Pages 232-238
Cite this article:
Dai C, Chen P, Qi S, et al. Ultrathin flexible InGaZnO transistor for implementing multiple functions with a very small circuit footprint. Nano Research, 2021, 14(1): 232-238. https://doi.org/10.1007/s12274-020-3074-4
Topics:

761

Views

9

Crossref

0

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 29 June 2020
Revised: 23 August 2020
Accepted: 24 August 2020
Published: 05 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return