Journal Home > Volume 14 , Issue 6

Two-dimensional (2D) transition metal dichalcogenide (TMDC) semiconductors not only hold great promises for the development of ultra-thin optoelectronic devices with low-energy consumption, but also provide ideal platforms to explore and tailor light-matter interaction, e.g., the exciton-photon interaction, at the atomic level, due to their atomic thickness, large exciton binding energy, and unique valley properties. In recent years, the exciton-photon interactions in TMDC semiconductor microcavities, including the strong exciton-photon coupling and lasing, have drawn increasing attention, which may open up new application prospects for transparent, on-chip coherent, and quantum light sources. Herein, we review the research progresses of strong exciton-photon interaction and lasing of TMDC semiconductors. First, we introduce the electronic structure, exciton, and emission properties of semiconducting TMDCs in the weak exciton-photon coupling regime. Next, the progresses on strong exciton-photon interaction and exciton-polaritons of these TMDCs are discussed from the aspects of photophysics, materials and fabrications, spectroscopies, and controls. Further, the progresses on TMDC lasers are introduced in the aspects of cavity types and materials, and finally, the challenges and prospects for these fields are discussed.


menu
Abstract
Full text
Outline
About this article

Strong exciton-photon interaction and lasing of two-dimensional transition metal dichalcogenide semiconductors

Show Author's information Liyun Zhao§Qiuyu Shang§Meili LiYin LiangChun LiQing Zhang( )
Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China

§Liyun Zhao and Qiuyu Shang contributed equally to this work.

Abstract

Two-dimensional (2D) transition metal dichalcogenide (TMDC) semiconductors not only hold great promises for the development of ultra-thin optoelectronic devices with low-energy consumption, but also provide ideal platforms to explore and tailor light-matter interaction, e.g., the exciton-photon interaction, at the atomic level, due to their atomic thickness, large exciton binding energy, and unique valley properties. In recent years, the exciton-photon interactions in TMDC semiconductor microcavities, including the strong exciton-photon coupling and lasing, have drawn increasing attention, which may open up new application prospects for transparent, on-chip coherent, and quantum light sources. Herein, we review the research progresses of strong exciton-photon interaction and lasing of TMDC semiconductors. First, we introduce the electronic structure, exciton, and emission properties of semiconducting TMDCs in the weak exciton-photon coupling regime. Next, the progresses on strong exciton-photon interaction and exciton-polaritons of these TMDCs are discussed from the aspects of photophysics, materials and fabrications, spectroscopies, and controls. Further, the progresses on TMDC lasers are introduced in the aspects of cavity types and materials, and finally, the challenges and prospects for these fields are discussed.

Keywords: lasing, transition metal dichalcogenides, light-matter interaction, strong exciton-photon interaction

References(166)

[1]
C. Z. Ning, Semiconductor nanolasers and the size-energy-efficiency challenge: A review. Adv. Photon. 2019, 1, 014002.
[2]
D. A. B. Miller, Device requirements for optical interconnects to silicon chips. Proc. IEEE 2009, 97, 1166-1185.
[3]
M. Khajavikhan,; A. Simic,; M. Katz,; J. H. Lee,; B. Slutsky,; A. Mizrahi,; V. Lomakin,; Y. Fainman, Thresholdless nanoscale coaxial lasers. Nature 2012, 482, 204-207.
[4]
S. Manzeli,; D. Ovchinnikov,; D. Pasquier,; O. V. Yazyev,; A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.
[5]
Y. Liu,; N. O. Weiss,; X. D. Duan,; H. C. Cheng,; Y. Huang,; X. F. Duan, van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.
[6]
K. F. Mak,; J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 2016, 10, 216-226.
[7]
K. S. Novoselov,; A. Mishchenko,; A. Carvalho,; A. H. Castro Neto, 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.
[8]
J. Pu,; T. Takenobu, Monolayer transition metal dichalcogenides as light sources. Adv. Mater. 2018, 30, 1707627.
[9]
W. H. Zheng,; Y. Jiang,; X. L. Hu,; H. L. Li,; Z. X. S. Zeng,; X. Wang,; A. L. Pan, Light emission properties of 2D transition metal dichalcogenides: Fundamentals and applications. Adv. Opt. Mater. 2018, 6, 1800420.
[10]
K. F. Mak,; C. Lee,; J. Hone,; J. Shan,; T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
[11]
Z. W. Fang,; Q. Y. Xing,; D. Fernandez,; X. Zhang,; G. H. Yu, A mini review on two-dimensional nanomaterial assembly. Nano Res. 2020, 13, 1179-1190.
[12]
P. F. Yang,; X. L. Zou,; Z. P. Zhang,; M. Hong,; J. P. Shi,; S. L. Chen,; J. P. Shu,; L. Y. Zhao,; S. L. Jiang,; X. B. Zhou, et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 2018, 9, 979.
[13]
H. Yu,; M. Z. Liao,; W. J. Zhao,; G. D. Liu,; X. J. Zhou,; Z. Wei,; X. Z. Xu,; K. H. Liu,; Z. H. Hu,; K. Deng, et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano 2017, 11, 12001-12007.
[14]
D. Erben,; A. Steinhoff,; C. Gies,; G. Schönhoff,; T. O. Wehling,; F. Jahnke, Excitation-induced transition to indirect band gaps in atomically thin transition-metal dichalcogenide semiconductors. Phys. Rev. B 2018, 98, 035434.
[15]
L. Liu,; H. Z. Yao,; H. Li,; Z. C. Wang,; Y. M. Shi, Recent advances of low-dimensional materials in lasing applications. FlatChem 2018, 10, 22-38.
[16]
G. Berghäuser,; I. Bernal-Villamil,; R. Schmidt,; R. Schneider,; I. Niehues,; P. Erhart,; S. Michaelis de Vasconcellos,; R. Bratschitsch,; A. Knorr,; E. Malic, Inverted valley polarization in optically excited transition metal dichalcogenides. Nat. Commun. 2018, 9, 971.
[17]
K. F. Mak,; K. L. He,; J. Shan,; T. F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494-498.
[18]
J. R. Schaibley,; H. Y. Yu,; G. Clark,; P. Rivera,; J. S. Ross,; K. L. Seyler,; W. Yao,; X. D. Xu, Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 16055.
[19]
X. D. Xu,; W. Yao,; D. Xiao,; T. F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343-350.
[20]
Y. P. Liu,; Y. J. Gao,; S. Zhang,; J. He,; J. Yu,; Z. Liu, Valleytronics in transition metal dichalcogenides materials. Nano Res. 2019, 12, 2695-2711.
[21]
A. Krasnok,; S. Lepeshov,; A. Alú, Nanophotonics with 2D transition metal dichalcogenides [Invited]. Opt. Express 2018, 26, 15972-15994.
[22]
M. Lindemann,; G. F. Xu,; T. Pusch,; R. Michalzik,; M. R. Hofmann,; I. Žutić,; N. C. Gerhardt, Ultrafast spin-lasers. Nature 2019, 568, 212-215.
[23]
F. R. Hu,; Z. Fei, Recent progress on exciton polaritons in layered transition-metal dichalcogenides. Adv. Opt. Mater. 2020, 8, 1901003.
[24]
S. Latini,; E. Ronca,; U. De Giovannini,; H. Hübener,; A. Rubio, Cavity control of excitons in two-dimensional materials. Nano Lett. 2019, 19, 3473-3479.
[25]
Q. H. Wang,; K. Kalantar-Zadeh,; A. Kis,; J. N. Coleman,; M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[26]
M. Koperski,; K. Nogajewski,; A. Arora,; V. Cherkez,; P. Mallet,; J. Y. Veuillen,; J. Marcus,; P. Kossacki,; M. Potemski, Single photon emitters in exfoliated WSe2 structures. Nat Nanotechnol. 2015, 10, 503-506.
[27]
J. Shi,; P. Yu,; F. C. Liu,; P. He,; R. Wang,; L. Qin,; J. B. Zhou,; X. Li,; J. D. Zhou,; X. Y. Sui, et al. 3R MoS2 with broken inversion symmetry: A promising ultrathin nonlinear optical device. Adv. Mater. 2017, 29, 1701486.
[28]
S. Yazdani,; M. Yarali,; J. J. Cha, Recent progress on in situ characterizations of electrochemically intercalated transition metal dichalcogenides. Nano Res. 2019, 12, 2126-2139.
[29]
A. Splendiani,; L. Sun,; Y. B. Zhang,; T. S. Li,; J. Kim,; C. Y. Chim,; G. Galli,; F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.
[30]
D. Xiao,; G. B. Liu,; W. X. Feng,; X. Xu,; W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.
[31]
A. Chernikov,; T. C. Berkelbach,; H. M. Hill,; A. Rigosi,; Y. L. Li,; O. B. Aslan,; D. R. Reichman,; M. S. Hybertsen,; T. F. Heinz, Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2. Phys. Rev. Lett. 2014, 113, 076802.
[32]
L. Xu,; L. Y. Zhao,; Y. S. Wang,; M. C. Zou,; Q. Zhang,; A. Y. Cao, Analysis of photoluminescence behavior of high-quality single- layer MoS2. Nano Res. 2019, 12, 1619-1624.
[33]
M. Drüppel,; T. Deilmann,; P. Krüger,; M. Rohlfing, Diversity of trion states and substrate effects in the optical properties of an MoS2 monolayer. Nat. Commun. 2017, 8, 2117.
[34]
K. F. Mak,; K. L. He,; C. Lee,; G. H. Lee,; J. Hone,; T. F. Heinz,; J. Shan, Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207-211.
[35]
J. S. Ross,; S. F. Wu,; H. Y. Yu,; N. J. Ghimire,; A. M. Jones,; G. Aivazian,; J. Q. Yan,; D. G. Mandrus,; D. Xiao,; W. Yao, et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.
[36]
Y. M. You,; X. X. Zhang,; T. C. Berkelbach,; M. S. Hybertsen,; D. R. Reichman,; T. F. Heinz, Observation of biexcitons in monolayer WSe2. Nat. Phys. 2015, 11, 477-481.
[37]
Z. Y. He,; W. S. Xu,; Y. Q. Zhou,; X. C. Wang,; Y. W. Sheng,; Y. M. Rong,; S. Q. Guo,; J. Y. Zhang,; J. M. Smith,; J. H. Warner, Biexciton formation in bilayer tungsten disulfide. ACS Nano 2016, 10, 2176-2183.
[38]
K. Hao,; J. F. Specht,; P. Nagler,; L. X. Xu,; K. Tran,; A. Singh,; C. K. Dass,; C. Schüller,; T. Korn,; M. Richter, et al. Neutral and charged inter-valley biexcitons in monolayer MoSe2. Nat. Commun. 2017, 8, 15552.
[39]
Z. P. Li,; T. M. Wang,; Z. G. Lu,; C. H. Jin,; Y. W. Chen,; Y. Z. Meng,; Z. Lian,; T. Taniguchi,; K. Watanabe,; S. B. Zhang, et al. Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2. Nat. Commun. 2018, 9, 3719.
[40]
M. M. Fogler,; L. V. Butov,; K. S. Novoselov, High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 2014, 5, 4555.
[41]
Y. J. Gong,; J. H. Lin,; X. L. Wang,; G. Shi,; S. D. Lei,; Z. Lin,; X. L. Zou,; G. L. Ye,; R. Vajtai,; B. I. Yakobson, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135-1142.
[42]
S. X. Huang,; X. Ling,; L. B. Liang,; J. Kong,; H. Terrones,; V. Meunier,; M. S. Dresselhaus, Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy. Nano. Lett. 2014, 14, 5500-5508.
[43]
C. H. Lee,; G. H. Lee,; A. M. van der Zande,; W. B. Chen,; Y. L. Li,; M. Y. Han,; X. Cui,; G. Arefe,; C. Nuckolls,; T. F. Heinz, et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676-681.
[44]
J. Kunstmann,; F. Mooshammer,; P. Nagler,; A. Chaves,; F. Stein,; N. Paradiso,; G. Plechinger,; C. Strunk,; C. Schüller,; G. Seifert, et al. Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. Nat. Phys. 2018, 14, 801-805.
[45]
P. Rivera,; J. R. Schaibley,; A. M. Jones,; J. S. Ross,; S. F. Wu,; G. Aivazian,; P. Klement,; K. Seyler,; G. Clark,; N. J. Ghimire, et al. Observation of long-lived interlayer excitons in monolayer MoSe2- WSe2 heterostructures. Nat. Commun. 2015, 6, 6242.
[46]
P. Rivera,; H. Y. Yu,; K. L. Seyler,; N. P. Wilson,; W. Yao,; X. D. Xu, Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 2018, 13, 1004-1015.
[47]
F. Ceballos,; M. Z. Bellus,; H. Y. Chiu,; H. Zhao, Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. ACS Nano 2014, 8, 12717-12724.
[48]
W. H. Zheng,; B. Y. Zheng,; C. L. Yan,; Y. Liu,; X. X. Sun,; Z. Y. Qi,; T. F. Yang,; Y. Jiang,; W. Huang,; P. Fan, et al. Direct vapor growth of 2D vertical heterostructures with tunable band alignments and interfacial charge transfer behaviors. Adv. Sci. 2019, 6, 1802204.
[49]
L. H. Li,; W. H. Zheng,; C. Ma,; H. P. Zhao,; F. Jiang,; Y. Ouyang,; B. Y. Zheng,; X. W. Fu,; P. Fan,; M. Zheng, et al. Wavelength-tunable interlayer exciton emission at the near-infrared region in van der Waals semiconductor heterostructures. Nano Lett. 2020, 20, 3361-3368.
[50]
Z. L. Ye,; T. Cao,; K. O’Brien,; H. Y. Zhu,; X. B. Yin,; Y. Wang,; S. G. Louie,; X. Zhang, Probing excitonic dark states in single-layer tungsten disulphide. Nature 2014, 513, 214-218.
[51]
J. Feng,; X. F. Qian,; C. W. Huang,; J. Li, Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photon. 2012, 6, 866-872.
[52]
A. R. Klots,; A. K. M. Newaz,; B. Wang,; D. Prasai,; H. Krzyzanowska,; J. H. Lin,; D. Caudel,; N. J. Ghimire,; J. Yan,; B. L. Ivanov, et al. Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy. Sci. Rep. 2014, 4, 6608.
[53]
B. R. Zhu,; H. L. Zeng,; J. F. Dai,; Z. R. Gong,; X. D. Cui, Anomalously robust valley polarization and valley coherence in bilayer WS2. Proc. Natl. Acad. Sci. USA 2014, 111, 11606-11611.
[54]
J. J. Pei,; J. Yang,; X. B. Wang,; F. Wang,; S. Mokkapati,; T. Y. Lü,; J. C. Zheng,; Q. H. Qin,; D. Neshev,; H. H. Tan, et al. Excited state biexcitons in atomically thin MoSe2. ACS Nano 2017, 11, 7468-7475.
[55]
C. Mai,; A. Barrette,; Y. F. Yu,; Y. G. Semenov,; K. W. Kim,; L. Y. Cao,; K. Gundogdu, Many-body effects in valleytronics: Direct measurement of valley lifetimes in single-layer MoS2. Nano Lett. 2014, 14, 202-206.
[56]
M. M. Ugeda,; A. J. Bradley,; S. F. Shi,; F. H. da Jornada,; Y. Zhang,; D. Y. Qiu,; W. Ruan,; S. K. Mo,; Z. Hussain,; Z. X. Shen, et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091-1095.
[57]
A. Singh,; G. Moody,; K. Tran,; M. E. Scott,; V. Overbeck,; G. Berghäuser,; J. Schaibley,; E. Seifert,; D. Pleskot,; N. M. Gabor, et al. Trion formation dynamics in monolayer transition metal dichalcogenides. Phys. Rev. B 2016, 93, 041401(R).
[58]
J. Yang,; T. Y. Lü,; Y. W. Myint,; J. J. Pei,; D. Macdonald,; J. C. Zheng,; Y. R. Lu, Robust excitons and trions in monolayer MoTe2. ACS Nano 2015, 9, 6603-6609.
[59]
J. H. Li,; D. Bing,; Z. T. Wu,; G. Q. Wu,; J. Bai,; R. X. Du,; Z. Q. Qi, Thickness-dependent excitonic properties of atomically thin 2H-MoTe2. Chin. Phys. B 2020, 29, 17802.
[60]
B. R. Zhu,; X. Chen,; X. D. Cui, Exciton binding energy of monolayer WS2. Sci. Rep. 2015, 5, 9218.
[61]
G. Plechinger,; P. Nagler,; J. Kraus,; N. Paradiso,; C. Strunk,; C. Schüller,; T. Korn, Identification of excitons, trions and biexcitons in single-layer WS2. Phys. Status Solidi 2015, 9, 457-461.
[62]
R. K. Chowdhury,; S. Nandy,; S. Bhattacharya,; M. Karmakar,; S. N. B. Bhaktha,; P. K. Datta,; A. Taraphder,; S. K. Ray, Ultrafast time-resolved investigations of excitons and biexcitons at room temperature in layered WS2. 2D Mater. 2018, 6, 015011.
[63]
K. L. He,; N. Kumar,; L. Zhao,; Z. F. Wang,; K. F. Mak,; H. Zhao,; J. Shan, Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 2014, 113, 026803.
[64]
J. N. Huang,; T. B. Hoang,; M. H. Mikkelsen, Probing the origin of excitonic states in monolayer WSe2. Sci. Rep. 2016, 6, 22414.
[65]
A. M. Jones,; H. Y. Yu,; N. J. Ghimire,; S. F. Wu,; G. Aivazian,; J. S. Ross,; B. Zhao,; J. Q. Yan,; D. G. Mandrus,; D. Xiao, et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634-638.
[66]
H. J. Liu,; L. Jiao,; L. Xie,; F. Yang,; J. L. Chen,; W. K. Ho,; C. L. Gao,; J. F. Jia,; X. D. Cui,; M. H. Xie, Molecular-beam epitaxy of monolayer and bilayer WSe2: A scanning tunneling microscopy/spectroscopy study and deduction of exciton binding energy. 2D Mater. 2015, 2, 034004.
[67]
B. Amin,; N. Singh,; U. Schwingenschlögl, Heterostructures of transition metal dichalcogenides. Phys. Rev. B 2015, 92, 075439.
[68]
M. Koperski,; M. R. Molas,; A. Arora,; K. Nogajewski,; A. O. Slobodeniuk,; C. Faugeras,; M. Potemski, Optical properties of atomically thin transition metal dichalcogenides: Observations and puzzles. Nanophotonics 2017, 6, 1289-1308.
[69]
M. S. Kim,; S. J. Yun,; Y. Lee,; C. Seo,; G. H. Han,; K. K. Kim,; Y. H. Lee,; J. Kim, Biexciton emission from edges and grain boundaries of triangular WS2 monolayers. ACS Nano 2016, 10, 2399-2405.
[70]
S. Mouri,; Y. Miyauchi,; K. Matsuda, Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944-5948.
[71]
S. S. Singha,; D. Nandi,; A. Singha, Tuning the photoluminescence and ultrasensitive trace detection properties of few-layer MoS2 by decoration with gold nanoparticles. RSC Adv. 2015, 5, 24188-24193.
[72]
I. Datta,; S. H. Chae,; G. R. Bhatt,; M. A. Tadayon,; B. C. Li,; Y. L. Yu,; C. Park,; J. Park,; L. Y. Cao,; D. N. Basov, et al. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nat. Photon. 2020, 14, 256-262.
[73]
J. Z. Shang,; X. N. Shen,; C. X. Cong,; N. Peimyoo,; B. C. Cao,; M. Eginligil,; T. Yu, Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. ACS Nano 2015, 9, 647-655.
[74]
L. Y. Zhao,; X. W. Wang,; Z. P. Zhang,; P. F. Yang,; J. Chen,; Y. Q. Chen,; H. Wang,; Q. Y. Shang,; Y. Y. Zhang,; Y. F. Zhang, et al. Surface state mediated interlayer excitons in a 2D nonlayered- layered semiconductor heterojunction. Adv. Electron. Mater. 2017, 3, 1700373.
[75]
J. Shi,; Y. Z. Li,; Z. P. Zhang,; W. Q. Feng,; Q. Wang,; S. L. Ren,; J. Zhang,; W. N. Du,; X. X. Wu,; X. Y. Sui, et al. Twisted- angle-dependent optical behaviors of intralayer excitons and trions in WS2/WSe2 heterostructure. ACS Photonics 2019, 6, 3082-3091.
[76]
N. Ubrig,; E. Ponomarev,; J. Zultak,; D. Domaretskiy,; V. Zólyomi,; D. Terry,; J. Howarth,; I. Gutiérrez-Lezama,; A. Zhukov,; Z. R. Kudrynskyi, et al. Design of van der Waals interfaces for broad-spectrum optoelectronics. Nat. Mater. 2020, 19, 299-304.
[77]
T. Cao,; G. Wang,; W. P. Han,; H. Q. Ye,; C. R. Zhu,; J. R. Shi,; Q. Niu,; P. H. Tan,; E. G. Wang,; B. L. Liu, et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012, 3, 887.
[78]
T. Jiang,; H. R. Liu,; D. Huang,; S. Zhang,; Y. G. Li,; X. G. Gong,; Y. R. Shen,; W. T. Liu,; S. W. Wu, Valley and band structure engineering of folded MoS2 bilayers. Nat. Nanotechnol. 2014, 9, 825-829.
[79]
G. Wang,; L. Bouet,; D. Lagarde,; M. Vidal,; A. Balocchi,; T. Amand,; X. Marie,; B. Urbaszek, Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2. Phys. Rev. B 2014, 90, 075413.
[80]
E. J. Sie,; J. W. McIver,; Y. H. Lee,; L. Fu,; J. Kong,; N. Gedik, Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 2015, 14, 290-294.
[81]
K. Hao,; G. Moody,; F. C. Wu,; C. K. Dass,; L. X. Xu,; C. H. Chen,; L. Y. Sun,; M. Y. Li,; L. J. Li,; A. H. MacDonald, et al. Direct measurement of exciton valley coherence in monolayer WSe2. Nat. Phys. 2016, 12, 677-682.
[82]
C. Schneider,; M. M. Glazov,; T. Korn,; S. Höfling,; B. Urbaszek, Two-dimensional semiconductors in the regime of strong light- matter coupling. Nat. Commun. 2018, 9, 2695.
[83]
H. L. Zeng,; J. F. Dai,; W. Yao,; D. Xiao,; X. D. Cui, Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490-493.
[84]
Y. L. Wang,; C. X. Cong,; J. Z. Shang,; M. Eginligil,; Y. Q. Jin,; G. Li,; Y. Chen,; N. Peimyoo,; T. Yu, Unveiling exceptionally robust valley contrast in AA- and AB-stacked bilayer WS2. Nanoscale Horiz. 2019, 4, 396-403.
[85]
S. F. Wu,; J. S. Ross,; G. B. Liu,; G. Aivazian,; A. Jones,; Z. Y. Fei,; W. G. Zhu,; D. Xiao,; W. Yao,; D. Cobden, et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat. Phys. 2013, 9, 149-153.
[86]
A. M. Yan,; C. S. Ong,; D. Y. Qiu,; C. Ophus,; J. Ciston,; C. Merino,; S. G. Louie,; A. Zettl, Dynamics of symmetry-breaking stacking boundaries in bilayer MoS2. J. Phys. Chem. C 2017, 121, 22559-22566.
[87]
A. M. Jones,; H. Y. Yu,; J. S. Ross,; P. Klement,; N. J. Ghimire,; J. Q. Yan,; D. G. Mandrus,; W. Yao,; X. D. Xu, Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nat. Phys. 2014, 10, 130-134.
[88]
D. K. Armani,; T. J. Kippenberg,; S. M. Spillane,; K. J. Vahala, Ultra-high-Q toroid microcavity on a chip. Nature 2003, 421, 925-928.
[89]
L. Wang,; X. F. Zhou,; S. Yang,; G. S. Huang,; Y. F. Mei, 2D-material-integrated whispering-gallery-mode microcavity. Photonics Res. 2019, 7, 905-916.
[90]
S. Kim,; J. E. Fröch,; J. Christian,; M. Straw,; J. Bishop,; D. Totonjian,; K. Watanabe,; T. Taniguchi,; M. Toth,; I. Aharonovich, Photonic crystal cavities from hexagonal boron nitride. Nat. Commun. 2018, 9, 2623.
[91]
C. Javerzac-Galy,; A. Kumar,; R. D. Schilling,; N. Piro,; S. Khorasani,; M. Barbone,; I. Goykhman,; J. B. Khurgin,; A. C. Ferrari,; T. J. Kippenberg, Excitonic emission of monolayer semiconductors near-field coupled to high-Q microresonators. Nano Lett. 2018, 18, 3138-3146.
[92]
S. Hammer,; H. M. Mangold,; A. E. Nguyen,; D. Martinez-Ta,; S. Naghibi Alvillar,; L. Bartels,; H. J. Krenner, Scalable and transfer- free fabrication of MoS2/SiO2 hybrid nanophotonic cavity arrays with quality factors exceeding 4000. Sci. Rep. 2017, 7, 7251.
[93]
J. C. Reed,; S. C. Malek,; F. Yi,; C. H. Naylor,; A. T. Charlie Johnson,; E. Cubukcu, Photothermal characterization of MoS2 emission coupled to a microdisk cavity. Appl. Phys. Lett. 2016, 109, 193109.
[94]
T. K. Fryett,; K. L. Seyler,; J. J. Zheng,; C. H. Liu,; X. D. Xu,; A. Majumdar, Silicon photonic crystal cavity enhanced second- harmonic generation from monolayer WSe2. 2D Mater. 2016, 4, 015031.
[95]
J. K. Day,; M. H. Chung,; Y. H. Lee,; V. M. Menon, Microcavity enhanced second harmonic generation in 2D MoS2. Opt. Mater. Express 2016, 6, 2360-2365.
[96]
S. Schwarz,; S. Dufferwiel,; P. M. Walker,; F. Withers,; A. A. P. Trichet,; M. Sich,; F. Li,; E. A. Chekhovich,; D. N. Borisenko,; N. N. Kolesnikov, et al. Two-dimensional metal-chalcogenide films in tunable optical microcavities. Nano Lett. 2014, 14, 7003-7008.
[97]
X. T. Gan,; Y. D. Gao,; K. F. Mak,; X. W. Yao,; R. J. Shiue,; A. van der Zande,; M. E. Trusheim,; F. Hatami,; T. F. Heinz,; J. Hone, et al. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity. Appl. Phys. Lett. 2013, 103, 181119.
[98]
T. Liu,; H. D. Qiu,; T. T. Yin,; C. C. Huang,; G. Z. Liang,; B. Qiang,; Y. D. Shen,; H. K. Liang,; Y. Zhang,; H. Wang, et al. Enhanced light- matter interaction in atomically thin MoS2 coupled with 1D photonic crystal nanocavity. Opt. Express 2017, 25, 14691-14696.
[99]
C. Husko,; J. Kang,; G. Moille,; J. D. Wood,; Z. Han,; D. Gosztola,; X. D. Ma,; S. Combrié,; A. De Rossi,; M. C. Hersam, et al. Silicon- phosphorene nanocavity-enhanced optical emission at telecommunications wavelengths. Nano Lett. 2018, 18, 6515-6520.
[100]
J. C. Reed,; A. Y. Zhu,; H. Zhu,; F. Yi,; E. Cubukcu, Wavelength tunable microdisk cavity light source with a chemically enhanced MoS2 emitter. Nano Lett. 2015, 15, 1967-1971.
[101]
G. H. Wei,; T. K. Stanev,; D. A. Czaplewski,; I. W. Jung,; N. P. Stern, Silicon-nitride photonic circuits interfaced with monolayer MoS2. Appl. Phys. Lett. 2015, 107, 091112.
[102]
Y. Mi,; Z. P. Zhang,; L. Y. Zhao,; S. Zhang,; J. Chen,; Q. Q. Ji,; J. P. Shi,; X. B. Zhou,; R. Wang,; J. Shi, et al. Tuning excitonic properties of monolayer MoS2 with microsphere cavity by high-throughput chemical vapor deposition method. Small 2017, 13, 1701694.
[103]
J. H. Chen,; J. Tan,; G. X. Wu,; X. J. Zhang,; F. Xu,; Y. Q. Lu, Tunable and enhanced light emission in hybrid WS2-optical-fiber- nanowire structures. Light-Sci. Appl. 2019, 8, 8.
[104]
F. Yi,; M. L. Ren,; J. C. Reed,; H. Zhu,; J. C. Hou,; C. H. Naylor,; A. T. C. Johnson,; R. Agarwal,; E. Cubukcu, Optomechanical enhancement of doubly resonant 2D optical nonlinearity. Nano Lett. 2016, 16, 1631-1636.
[105]
W. N. Du,; S. Zhang,; Q. Zhang,; X. F. Liu, Recent progress of strong exciton-photon coupling in lead halide perovskites. Adv. Mater. 2018, 30, 1804894.
[106]
T. Byrnes,; N. Y. Kim,; Y. Yamamoto, Exciton-polariton condensates. Nat. Phys. 2014, 10, 803-813.
[107]
Q. Li,; C. Li,; Q. Y. Shang,; L. Y. Zhao,; S. Zhang,; Y. Gao,; X. F. Liu,; X. Wang,; Q. Zhang, Lasing from reduced dimensional perovskite microplatelets: Fabry-Pérot or whispering-gallery-mode? J. Chem. Phys. 2019, 151, 211101.
[108]
X. Z. Liu,; W. Bao,; Q. W. Li,; C. Ropp,; Y. Wang,; X. Zhang, Control of coherently coupled exciton polaritons in monolayer tungsten disulphide. Phys. Rev. Lett. 2017, 119, 027403.
[109]
F. Hu,; Y. Luan,; M. E. Scott,; J. Yan,; D. G. Mandrus,; X. Xu,; Z. Fei, Imaging exciton-polariton transport in MoSe2 waveguides. Nat. Photon. 2017, 11, 356-360.
[110]
W. N. Du,; S. Zhang,; J. Shi,; J. Chen,; Z. Y. Wu,; Y. Mi,; Z. X. Liu,; Y. Z. Li,; X. Y. Sui,; R. Wang, et al. Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity. ACS Photonics 2018, 5, 2051-2059.
[111]
Q. Y. Shang,; S. Zhang,; Z. Liu,; J. Chen,; P. F. Yang,; C. Li,; W. Li,; Y. F. Zhang,; Q. H. Xiong,; X. F. Liu, et al. Surface plasmon enhanced strong exciton-photon coupling in hybrid inorganic- organic perovskite nanowires. Nano Lett. 2018, 18, 3335-3343.
[112]
S. Zhang,; Q. Y. Shang,; W. N. Du,; J. Shi,; Z. Y. Wu,; Y. Mi,; J. Chen,; F. J. Liu,; Y. Z. Li,; M. Liu, et al. Strong exciton-photon coupling in hybrid inorganic-organic perovskite micro/nanowires. Adv. Opt. Mater. 2018, 6, 1701032.
[113]
Q. Y. Shang,; C. Li,; S. Zhang,; Y. Liang,; Z. Liu,; X. F. Liu,; Q. Zhang, Enhanced optical absorption and slowed light of reduced- dimensional CsPbBr3 nanowire crystal by exciton-polariton. Nano Lett. 2020, 20, 1023-1032.
[114]
X. Z. Liu,; T. Galfsky,; Z. Sun,; F. N. Xia,; E. C. Lin,; Y. H. Lee,; S. Kéna-Cohen,; V. M. Menon, Strong light-matter coupling in two-dimensional atomic crystals. Nat. Photon. 2015, 9, 30-34.
[115]
S. Dufferwiel,; S. Schwarz,; F. Withers,; A. A. P. Trichet,; F. Li,; M. Sich,; O. Del Pozo-Zamudio,; C. Clark,; A. Nalitov,; D. D. Solnyshkov, et al. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities. Nat. Commun. 2015, 6, 8579.
[116]
L. C. Flatten,; Z. He,; D. M. Coles,; A. A. P. Trichet,; A. W. Powell,; R. A. Taylor,; J. H. Warner,; J. M. Smith, Room-temperature exciton- polaritons with two-dimensional WS2. Sci. Rep. 2016, 6, 33134.
[117]
N. Lundt,; S. Klembt,; E. Cherotchenko,; S. Betzold,; O. Iff,; A. V. Nalitov,; M. Klaas,; C. P. Dietrich,; A. V. Kavokin,; S. Höfling, et al. Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer. Nat. Commun. 2016, 7, 13328.
[118]
Q. Wang,; L. X. Sun,; B. Zhang,; C. Q. Chen,; X. C. Shen,; W. Lu, Direct observation of strong light-exciton coupling in thin WS2 flakes. Opt. Express 2016, 24, 7151-7157.
[119]
S. J. Wang,; S. L. Li,; T. Chervy,; A. Shalabney,; S. Azzini,; E. Orgiu,; J. A. Hutchison,; C. Genet,; P. Samori,; T. W. Ebbesen, Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature. Nano Lett. 2016, 16, 4368-4374.
[120]
Y. J. Chen,; J. D. Cain,; T. K. Stanev,; V. P. Dravid,; N. P. Stern, Valley-polarized exciton-polaritons in a monolayer semiconductor. Nat. Photon. 2017, 11, 431-435.
[121]
S. Dufferwiel,; T. P. Lyons,; D. D. Solnyshkov,; A. A. P. Trichet,; F. Withers,; S. Schwarz,; G. Malpuech,; J. M. Smith,; K. S. Novoselov,; M. S. Skolnick, et al. Valley-addressable polaritons in atomically thin semiconductors. Nat. Photon. 2017, 11, 497-501.
[122]
N. Lundt,; S. Stoll,; P. Nagler,; A. Nalitov,; S. Klembt,; S. Betzold,; J. Goddard,; E. Frieling,; A. V. Kavokin,; C. Schüller, et al. Observation of macroscopic valley-polarized monolayer exciton- polaritons at room temperature. Phys. Rev. B 2017, 96, 241403.
[123]
D. B. Hu,; X. X. Yang,; C. Li,; R. N. Liu,; Z. H. Yao,; H. Hu,; S. N. G. Corder,; J. N. Chen,; Z. P. Sun,; M. K. Liu, et al. Probing optical anisotropy of nanometer-thin van der Waals microcrystals by near- field imaging. Nat. Commun. 2017, 8, 1471.
[124]
T. Hu,; Y. F. Wang,; L. Wu,; L. Zhang,; Y. W. Shan,; J. Lu,; J. Wang,; S. Luo,; Z. Zhang,; L. M. Liao, et al. Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons. Appl. Phys. Lett. 2017, 110, 051101.
[125]
S. Dufferwiel,; T. P. Lyons,; D. D. Solnyshkov,; A. A. P. Trichet,; A. Catanzaro,; F. Withers,; G. Malpuech,; J. M. Smith,; K. S. Novoselov,; M. S. Skolnick, et al. Valley coherent exciton-polaritons in a monolayer semiconductor. Nat. Commun. 2018, 9, 4797.
[126]
X. B. Han,; K. Wang,; X. Y. Xing,; M. Y. Wang,; P. X. Lu, Rabi splitting in a plasmonic nanocavity coupled to a WS2 monolayer at room temperature. ACS Photonics 2018, 5, 3970-3976.
[127]
B. Y. Ding,; Z. P. Zhang,; Y. H. Chen,; Y. F. Zhang,; R. J. Blaikie,; M. Qiu, Tunable valley polarized plasmon-exciton polaritons in two- dimensional semiconductors. ACS Nano 2019, 13, 1333-1341.
[128]
M. Mrejen,; L. Yadgarov,; A. Levanon,; H. Suchowski, Transient exciton-polariton dynamics in WSe2 by ultrafast near-field imaging. Sci. Adv. 2019, 5, eaat9618.
[129]
B. Munkhbat,; D. G. Baranov,; M. Stührenberg,; M. Wersäll,; A. Bisht,; T. Shegai, Self-hybridized exciton-polaritons in multilayers of transition metal dichalcogenides for efficient light absorption. ACS Photonics 2019, 6, 139-147.
[130]
L. Zhang,; R. Gogna,; W. Burg,; E. Tutuc,; H. Deng, Photonic- crystal exciton-polaritons in monolayer semiconductors. Nat. Commun. 2018, 9, 713.
[131]
D. Zheng,; S. P. Zhang,; Q. Deng,; M. Kang,; P. Nordlander,; H. X. Xu, Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2. Nano Lett. 2017, 17, 3809-3814.
[132]
M. Stührenberg,; B. Munkhbat,; D. G. Baranov,; J. Cuadra,; A. B. Yankovich,; T. J. Antosiewicz,; E. Olsson,; T. Shegai, Strong light-matter coupling between plasmons in individual gold bi-pyramids and excitons in mono- and multilayer WSe2. Nano Lett. 2018, 18, 5938-5945.
[133]
M. E. Kleemann,; R. Chikkaraddy,; E. M. Alexeev,; D. Kos,; C. Carnegie,; W. Deacon,; A. C. de Pury,; C. Groβe,; B. de Nijs,; J. Mertens, et al. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Nat. Commun. 2017, 8, 1296.
[134]
A. Bisht,; J. Cuadra,; M. Wersall,; A. Canales,; T. J. Antosiewicz,; T. Shegai, Collective strong light-matter coupling in hierarchical microcavity-plasmon-exciton systems. Nano Lett. 2019, 19, 189-196.
[135]
F. Barachati,; A. Fieramosca,; S. Hafezian,; J. Gu,; B. Chakraborty,; D. Ballarini,; L. Martinu,; V. Menon,; D. Sanvitto,; S. Kéna-Cohen, Interacting polariton fluids in a monolayer of tungsten disulfide. Nat. Nanotechnol. 2018, 13, 906-909.
[136]
B. Lee,; W. J. Liu,; C. H. Naylor,; J. Park,; S. C. Malek,; J. S. Berger,; A. T. C. Johnson,; R. Agarwal, Electrical tuning of exciton- plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice. Nano Lett. 2017, 17, 4541-4547.
[137]
M. Waldherr,; N. Lundt,; M. Klaas,; S. Betzold,; M. Wurdack,; V. Baumann,; E. Estrecho,; A. Nalitov,; E. Cherotchenko,; H. Cai, et al. Observation of bosonic condensation in a hybrid monolayer MoSe2-GaAs microcavity. Nat. Commun. 2018, 9, 3286.
[138]
Z. F. Wang,; D. A. Rhodes,; K. Watanabe,; T. Taniguchi,; J. C. Hone,; J. Shan,; K. F. Mak, Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 2019, 574, 76-80.
[139]
Z. Sun,; J. Gu,; A. Ghazaryan,; Z. Shotan,; C. R. Considine,; M. Dollar,; B. Chakraborty,; X. Z. Liu,; P. Ghaemi,; S. Kéna-Cohen, et al. Optical control of room-temperature valley polaritons. Nat. Photon. 2017, 11, 491-495.
[140]
B. Chakraborty,; J. Gu,; Z. Sun,; M. Khatoniar,; R. Bushati,; A. L. Boehmke,; R. Koots,; V. M. Menon, Control of strong light- matter interaction in monolayer WS2 through electric field gating. Nano Lett. 2018, 18, 6455-6460.
[141]
S. Dhara,; C. Chakraborty,; K. M. Goodfellow,; L. Qiu,; T. A. O’Loughlin,; G. W. Wicks,; S. Bhattacharjee,; A. N. Vamivakas, Anomalous dispersion of microcavity trion-polaritons. Nat. Phys. 2018, 14, 130-133.
[142]
L. Qiu,; C. Chakraborty,; S. Dhara,; A. N. Vamivakas, Room- temperature valley coherence in a polaritonic system. Nat. Commun. 2019, 10, 1513.
[143]
L. C. Flatten,; D. M. Coles,; Z. Y. He,; D. G. Lidzey,; R. A. Taylor,; J. H. Warner,; J. M. Smith, Electrically tunable organic-inorganic hybrid polaritons with monolayer WS2. Nat. Commun. 2017, 8, 14097.
[144]
Z. Q. Liang,; J. Sun,; Y. Y. Jiang,; L. Jiang,; X. D. Chen, Plasmonic enhanced optoelectronic devices. Plasmonics 2014, 9, 859-866.
[145]
A. Chernikov,; A. M. van der Zande,; H. M. Hill,; A. F. Rigosi,; A. Velauthapillai,; J. Hone,; T. F. Heinz, Electrical tuning of exciton binding energies in monolayer WS2. Phys. Rev. Lett. 2015, 115, 126802.
[146]
S. Y. Gao,; Y. F. Liang,; C. D. Spataru,; L. Yang, Dynamical excitonic effects in doped two-dimensional semiconductors. Nano Lett. 2016, 16, 5568-5573.
[147]
M. Sidler,; P. Back,; O. Cotlet,; A. Srivastava,; T. Fink,; M. Kroner,; E. Demler,; A. Imamoglu, Fermi polaron-polaritons in charge- tunable atomically thin semiconductors. Nat. Phys. 2017, 13, 255-261.
[148]
Q. Zhang,; R. Su,; W. N. Du,; X. F. Liu,; L. Y. Zhao,; S. T. Ha,; Q. H. Xiong, Advances in small perovskite-based lasers. Small Methods 2017, 1, 1700163.
[149]
O. Salehzadeh,; M. Djavid,; N. H. Tran,; I. Shih,; Z. T. Mi, Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Lett. 2015, 15, 5302-5306.
[150]
F. Lohof,; A. Steinhoff,; M. Florian,; M. Lorke,; D. Erben,; F. Jahnke,; C. Gies, Prospects and limitations of transition metal dichalcogenide laser gain materials. Nano Lett. 2019, 19, 210-217.
[151]
A. Chernikov,; C. Ruppert,; H. M. Hill,; A. F. Rigosi,; T. F. Heinz, Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat. Photon. 2015, 9, 466-470.
[152]
A. Steinhoff,; M. Florian,; M. Rösner,; G. Schönhoff,; T. O. Wehling,; F. Jahnke, Exciton fission in monolayer transition metal dichalcogenide semiconductors. Nat. Commun. 2017, 8, 1166.
[153]
Z. Wang,; H. Sun,; Q. Y. Zhang,; J. B. Feng,; J. X. Zhang,; Y. Z. Li,; C. Z. Ning, Excitonic complexes and optical gain in two-dimensional molybdenum ditelluride well below the Mott transition. Light-Sci. Appl. 2020, 9, 39.
[154]
S. F. Wu,; S. Buckley,; J. R. Schaibley,; L. F. Feng,; J. Q. Yan,; D. G. Mandrus,; F. Hatami,; W. Yao,; J. Vučković,; A. Majumdar, et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 2015, 520, 69-72.
[155]
Y. Ye,; Z. J. Wong,; X. F. Lu,; X. J. Ni,; H. Y. Zhu,; X. H. Chen,; Y. Wang,; X. Zhang, Monolayer excitonic laser. Nat. Photon. 2015, 9, 733-737.
[156]
Y. Z. Li,; J. X. Zhang,; D. D. Huang,; H. Sun,; F. Fan,; J. B. Feng,; Z. Wang,; C. Z. Ning, Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat. Nanotechnol. 2017, 12, 987-992.
[157]
J. Z. Shang,; C. X. Cong,; Z. L. Wang,; N. Peimyoo,; L. S. Wu,; C. J. Zou,; Y. Chen,; X. Y. Chin,; J. P. Wang,; C. Soci, et al. Room- temperature 2D semiconductor activated vertical-cavity surface- emitting lasers. Nat. Commun. 2017, 8, 543.
[158]
H. L. Fang,; J. Liu,; H. J. Li,; L. D. Zhou,; L. Liu,; J. T. Li,; X. H. Wang,; T. F. Krauss,; Y. Wang, 1305 nm few-layer MoTe2-on-silicon laser-like emission. Laser Photonics Rev. 2018, 12, 1800015.
[159]
L. Y. Zhao,; Q. Y. Shang,; Y. Gao,; J. Shi,; Z. Liu,; J. Chen,; Y. Mi,; P. F. Yang,; Z. P. Zhang,; W. N. Du, et al. High-temperature continuous- wave pumped lasing from large-area monolayer semiconductors grown by chemical vapor deposition. ACS Nano 2018, 12, 9390-9396.
[160]
H. L. Fang,; J. Liu,; Q. L. Lin,; R. B. Su,; Y. M. Wei,; T. F. Krauss,; J. T. Li,; Y. Wang,; X. H. Wang, Laser-like emission from a sandwiched MoTe2 heterostructure on a silicon single-mode resonator. Adv. Opt. Mater. 2019, 7, 1900538.
[161]
Y. D. Liu,; H. L. Fang,; A. Rasmita,; Y. Zhou,; J. T. Li,; T. Yu,; Q. H. Xiong,; N. Zheludev,; J. Liu,; W. B. Gao, Room temperature nanocavity laser with interlayer excitons in 2D heterostructures. Sci. Adv. 2019, 5, eaav4506.
[162]
E. Y. Paik,; L. Zhang,; G. W. Burg,; R. Gogna,; E. Tutuc,; H. Deng, Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature 2019, 576, 80-84.
[163]
Y. Q. Huang,; J. Q. Ning,; H. M. Chen,; Y. J. Xu,; X. Wang,; X. T. Ge,; C. Jiang,; X. Zhang,; J. W. Zhang,; Y. Peng, et al. Mid-infrared black phosphorus surface-emitting laser with an open microcavity. ACS Photonics 2019, 6, 1581-1586.
[164]
Y. S. Zhang,; S. W. Wang,; S. L. Chen,; Q. L. Zhang,; X. Wang,; X. L. Zhu,; X. H. Zhang,; X. Xu,; T. F. Yang,; M. He, et al. Wavelength- tunable mid-infrared lasing from black phosphorus nanosheets. Adv. Mater. 2020, 32, 1808319.
[165]
N. Lundt,; A. Maryński,; E. Cherotchenko,; A. Pant,; X. Fan,; S. Tongay,; G. Sęk,; A. V. Kavokin,; S. Höfling,; C. Schneider, Monolayered MoSe2: A candidate for room temperature polaritonics. 2D Mater. 2016, 4, 015006.
[166]
L. B. Tan,; O. Cotlet,; A. Bergschneider,; R. Schmidt,; P. Back,; Y. Shimazaki,; M. Kroner,; A. İmamoğlu, Interacting polaron-polaritons. Phys. Rev. X 2020, 10, 021011.
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 June 2020
Revised: 22 August 2020
Accepted: 24 August 2020
Published: 21 September 2020
Issue date: June 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

We acknowledge funding support from the Natural Science Foundation of China (Nos. 51991340 and 51991344), the National Key Research and Development Program of China (Nos. 2017YFA0205700 and 2017YFA0304600), and the Open Research Fund Program of the State Key Laboratory of Low- dimensional Quantum Physics (No. KF201907).

Return