Journal Home > Volume 14 , Issue 4

Acute kidney injury (AKI), has become the focus of increasing attention due to its high risk of death. The early diagnosis and treatment of AKI significantly reduce the risk of renal tissue damage and kidney dysfunction. However, the efficient early diagnosis and treatment approach for AKI remains a challenge. AKI screening via precise nanomaterial theranostics is a new alternative approach. This study summarizes the recent advances in functional nanomaterials in the early detection and treatment of AKI. The challenges and problems in the use of nanomaterials for AKI in clinical applications are also discussed. It is anticipated that highlighting these new advances will lay the foundation for further translational research on the promising application of nanomaterials for AKI.


menu
Abstract
Full text
Outline
About this article

Recent advances in engineered nanomaterials for acute kidney injury theranostics

Show Author's information Lefeng Wang1,2Yunjing Zhang3Yangyang Li4( )Jianghua Chen1,2( )Weiqiang Lin3( )
Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine; Institute of Nephrology, Zhejiang University, Hangzhou 310003, China
Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou 310003, China
The Fourth Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Jinhua 322000, China
Key Laboratory of Women’s Reproductive Health Research of Zhejiang Province, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China

Abstract

Acute kidney injury (AKI), has become the focus of increasing attention due to its high risk of death. The early diagnosis and treatment of AKI significantly reduce the risk of renal tissue damage and kidney dysfunction. However, the efficient early diagnosis and treatment approach for AKI remains a challenge. AKI screening via precise nanomaterial theranostics is a new alternative approach. This study summarizes the recent advances in functional nanomaterials in the early detection and treatment of AKI. The challenges and problems in the use of nanomaterials for AKI in clinical applications are also discussed. It is anticipated that highlighting these new advances will lay the foundation for further translational research on the promising application of nanomaterials for AKI.

Keywords: therapy, nanomaterials, acute kidney injury, early detection, translational applications

References(142)

[1]
X. Chen,; J. Sun,; H. Li,; H. Wang,; Y. Lin,; Y. Hu,; D. Zheng, Curcumin-loaded nanoparticles protect against rhabdomyolysis-induced acute kidney injury. Cell. Physiol. Biochem. 2017, 43, 2143-2154.
[2]
J. G. Huang,; J. C. Li,; Y. Lyu,; Q. Q. Miao,; K. Y. Pu, Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat. Mater. 2019, 18, 1133-1143.
[3]
Y. Wang,; Y. Fang,; J. Teng,; X. Ding, Acute kidney injury epidemiology: From recognition to intervention. Contrib. Nephrol. 2016, 187, 1-8.
[4]
J. P. Roy,; P. Devarajan, Acute kidney injury: Diagnosis and management. Indian J. Pediatr. 2020, 87, 600-607.
[5]
D. W. Jiang,; Z. L. Ge,; H. J. Im,; C. G. England,; D. L. Ni,; J. J. Hou,; L. H. Zhang,; C. J. Kutyreff,; Y. J. Yan,; Y. Liu, et al. DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nat. Biomed. Eng. 2018, 2, 865-877.
[6]
C. Ronco,; R. Bellomo,; J. A. Kellum, Acute kidney injury. Lancet 2019, 394, 1949-1964.
[7]
C. Ronco,; Z. Ricci,; D. De Backer,; J. A. Kellum,; F. S. Taccone,; M. Joannidis,; P. Pickkers,; V. Cantaluppi,; F. Turani,; P. Saudan, et al. Renal replacement therapy in acute kidney injury: Controversy and consensus. Crit. Care 2015, 19, 146.
[8]
G. R. Rudramurthy,; M. K. Swamy, Potential applications of engineered nanoparticles in medicine and biology: An update. J. Biol. Inorg. Chem. 2018, 23, 1185-1204.
[9]
Y. L. Wang,; S. Y. Sun,; Z. Y. Zhang,; D. L. Shi, Nanomaterials for cancer precision medicine. Adv. Mater. 2018, 30, e1705660.
[10]
R. M. Williams,; E. A. Jaimes,; D. A. Heller, Nanomedicines for kidney diseases. Kidney Int. 2016, 90, 740-745.
[11]
S. Wu,; L. X. Qian,; L. Huang,; X. M. Sun,; H. Y. Su,; D. D. Gurav,; M. W. Jiang,; W. Cai,; K. Qian, A plasmonic mass spectrometry approach for detection of small nutrients and toxins. Nano-Micro Lett. 2018, 10, 52.
[12]
C. Brede,; V. Labhasetwar, Applications of nanoparticles in the detection and treatment of kidney diseases. Adv. Chronic Kidney Dis. 2013, 20, 454-465.
[13]
P. Singh,; Y. J. Kim,; D. B. Zhang,; D. C. Yang, Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016, 34, 588-599.
[14]
X. Li,; C. R. Wang, The potential biomedical platforms based on the functionalized Gd@C82 nanomaterials. View 2020, 1, e7.
[15]
J. Yang,; R. Wang,; L. Huang,; M. J. Zhang,; J. Y. Niu,; C. D. Bao,; N. Shen,; M. Dai,; Q. Guo,; Q. Wang, et al. Urine metabolic fingerprints encode subtypes of kidney diseases. Angew. Chem., Int. Ed. 2020, 59, 1703-1710.
[16]
X. M. Sun,; J. J. Wan,; K. Qian, Designed microdevices for in vitro diagnostics. Small Methods 2017, 1, 1700196.
[17]
M. L. Zhang,; J. J. Cheng,; Z. W. Sun,; H. Kong,; Y. Zhang,; S. N. Wang,; X. K. Wang,; Y. Zhao,; H. H. Qu, Protective effects of carbon dots derived from phellodendri chinensis cortex carbonisata against Deinagkistrodon acutus venom-induced acute kidney injury. Nanoscale Res. Lett. 2019, 14, 377.
[18]
J. K. Moore,; J. J. Chen,; H. Pan,; J. P. Gaut,; S. Jain,; S. A. Wickline, Quantification of vascular damage in acute kidney injury with fluorine magnetic resonance imaging and spectroscopy. Magn. Reson. Med. 2018, 79, 3144-3153.
[19]
J. Kellum,; N. Lameire,; P. Aspelin,; R. Barsoum,; E. Burdmann,; S. Goldstein,; C. Herzog,; M. Joannidis,; A. Kribben,; A.; Levey, et al. Kidney disease: improving global outcome (KDIGO) acute kidney injury work group. Section 2: AKI definition. Kidney Int. Suppl. 2012, 2, 19-36.
[20]
A. Khwaja, Kdigo clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012, 120, c179-c184.
[21]
J. Gameiro,; J. Agapito Fonseca,; S. Jorge,; J. A. Lopes, Acute kidney injury definition and diagnosis: A narrative review. J. Clin. Med. 2018, 7, 307.
[22]
K. Doi,; O. Nishida,; T. Shigematsu,; T. Sadahiro,; N. Itami,; K. Iseki,; Y. Yuzawa,; H. Okada,; D. Koya,; H. Kiyomoto, et al. The Japanese clinical practice guideline for acute kidney injury 2016. Clin. Exp. Nephrol. 2018, 22, 985-1045.
[23]
N. H. Lameire,; A. Bagga,; D. Cruz,; J. De Maeseneer,; Z. Endre,; J. A. Kellum,; K. D. Liu,; R. L. Mehta,; N. Pannu,; W. van Biesen, et al. Acute kidney injury: An increasing global concern. Lancet 2013, 382, 170-179.
[24]
E. A. J. Hoste,; S. M. Bagshaw,; R. Bellomo,; C. M. Cely,; R. Colman,; D. N. Cruz,; K. Edipidis,; L. G. Forni,; C. D. Gomersall,; D. Govil, et al. Epidemiology of acute kidney injury in critically ill patients: The multinational AKI-EPI study. Intensive Care Med. 2015, 41, 1411-1423.
[25]
L. Yang,; G. L. Xing,; L. Wang,; Y. G. Wu,; S. H. Li,; G. Xu,; Q. He,; J. H. Chen,; M. H. Chen,; X. H. Liu, et al. Acute kidney injury in china: A cross-sectional survey. Lancet 2015, 386, 1465-1471.
[26]
Z. Ricci,; D. N. Cruz,; C. Ronco, Classification and staging of acute kidney injury: Beyond the RIFLE and akin criteria. Nat. Rev. Nephrol. 2011, 7, 201-208.
[27]
N. Perico,; G. Remuzzi, Acute kidney injury: More awareness needed, globally. Lancet 2015, 386, 1425-1427.
[28]
Z. A. Radi, Immunopathogenesis of acute kidney injury. Toxicol. Pathol. 2018, 46, 930-943.
[29]
F. Fani,; G. Regolisti,; M. Delsante,; V. Cantaluppi,; G. Castellano,; L. Gesualdo,; G. Villa,; E. Fiaccadori, Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury. J. Nephrol. 2018, 31, 351-359.
[30]
S. Peerapornratana,; C. L. Manrique-Caballero,; H. Gómez,; J. A. Kellum, Acute kidney injury from sepsis: Current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 2019, 96, 1083-1099.
[31]
N. S. Kanagasundaram, Assessment and management of acute kidney injury. Medicine 2019, 47, 551-561.
[32]
S. M. Parikh,; Y. Yang,; L. Y. He,; C. Y. Tang,; M. Zhan,; Z. Dong, Mitochondrial function and disturbances in the septic kidney. Semin. Nephrol. 2015, 35, 108-119.
[33]
J. M. Dennis,; P. K. Witting, Protective role for antioxidants in acute kidney disease. Nutrients 2017, 9, 718.
[34]
A. Rahal,; A. Kumar,; V. Singh,; B. Yadav,; R. Tiwari,; S. Chakraborty,; K. Dhama, Oxidative stress, prooxidants, and antioxidants: The interplay. BioMed Res. Int. 2014, 2014, 761264.
[35]
F. Emma,; G. Montini,; S. M. Parikh,; L. Salviati, Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nat. Rev. Nephrol. 2016, 12, 267-280.
[36]
D. Liu,; F. Y. Jin,; G. F. Shu,; X. L. Xu,; J. Qi,; X. Q. Kang,; H. Yu,; K. J. Lu,; S. P. Jiang,; F. Han, et al. Enhanced efficiency of mitochondria-targeted peptide SS-31 for acute kidney injury by pH-responsive and AKI-kidney targeted nanopolyplexes. Biomaterials 2019, 211, 57-67.
[37]
Expert Panel on Gastrointestinal Imaging; C. D. Scheirey,; K. J. Fowler,; J. A. Therrien,; D. H. Kim,; W. B. Al-Refaie,; M. A. Camacho,; B. D. Cash,; K. J. Chang,; E. M. Garcia, et al. ACR appropriateness criteria® acute nonlocalized abdominal pain. J. Am. Coll. Radiol. 2018, 15, S217-S231.
[38]
A. Sureshbabu,; S. W. Ryter,; M. E. Choi, Oxidative stress and autophagy: Crucial modulators of kidney injury. Redox Biol. 2015, 4, 208-214.
[39]
K. M. Ralto,; S. M. Parikh, Mitochondria in acute kidney injury. Semin. Nephrol. 2016, 36, 8-16.
[40]
G. P. Kaushal,; K. Chandrashekar,; L. A. Juncos, Molecular interactions between reactive oxygen species and autophagy in kidney disease. Int. J. Mol. Sci. 2019, 20, 3791.
[41]
D. L. Ni,; D. W. Jiang,; C. J. Kutyreff,; J. H. Lai,; Y. J. Yan,; T. E. Barnhart,; B. Yu,; H. J. Im,; L. Kang,; S. Y. Cho, et al. Molybdenum- based nanoclusters act as antioxidants and ameliorate acute kidney injury in mice. Nat. Commun. 2018, 9, 5421.
[42]
P. Bhargava,; R. G. Schnellmann, Mitochondrial energetics in the kidney. Nat. Rev. Nephrol. 2017, 13, 629-646.
[43]
Y. Wang,; J. Cai,; C. Y. Tang,; Z. Dong, Mitophagy in acute kidney injury and kidney repair. Cells 2020, 9, 338.
[44]
H. H. Szeto, Pharmacologic approaches to improve mitochondrial function in AKI and CKD. J. Am. Soc. Nephrol. 2017, 28, 2856-2865.
[45]
N. Panizo,; A. Rubio-Navarro,; J. M. Amaro-Villalobos,; J. Egido,; J. A. Moreno, Molecular mechanisms and novel therapeutic approaches to rhabdomyolysis-induced acute kidney injury. Kidney Blood Press. Res. 2015, 40, 520-532.
[46]
P. Singh,; R. K. Kesharwani,; R. K. Keservani, 24-antioxidants and vitamins: Roles in cellular function and metabolism. In Sustained Energy for Enhanced Human Functions and Activity. D. Bagchi,, Ed.; Academic Press: London, 2017; pp 385-407.
DOI
[47]
F. A. Matough,; S. B. Budin,; Z. A. Hamid,; N. Alwahaibi,; J. Mohamed, The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ. Med. J. 2012, 12, 5-18.
[48]
B. B. Ratliff,; W. Abdulmahdi,; R. Pawar,; M. S. Wolin, Oxidant mechanisms in renal injury and disease. Antioxid. Redox Signal. 2016, 25, 119-146.
[49]
L. Dalfino,; F. Puntillo,; M. J. Ondok,; A. Mosca,; R. Monno,; S. Coppolecchia,; M. L. Spada,; F. Bruno,; N. Brienza, Colistin- associated acute kidney injury in severely ill patients: A step toward a better renal care? A prospective cohort study. Clin. Infect. Dis. 2015, 61, 1771-1777.
[50]
M. G. Traber,; J. F. Stevens, Vitamins C and E: Beneficial effects from a mechanistic perspective. Free Radic. Biol. Med. 2011, 51, 1000-1013.
[51]
O. Firuzi,; R. Miri,; M. Tavakkoli,; L. Saso, Antioxidant therapy: Current status and future prospects. Curr. Med. Chem. 2011, 18, 3871-3888.
[52]
N. Ghosh,; A. Das,; S. Chaffee,; S. Roy,; C. K. Sen, Chapter 4 — reactive oxygen species, oxidative damage and cell death. In Immunity and Inflammation in Health and Disease. S. Chatterjee,; W. Jungraithmayr,; D. Bagchi,, Eds.; Academic Press: Amsterdam, 2018; pp 45-55.
DOI
[53]
A. J. Dare,; E. A. Bolton,; G. J. Pettigrew,; J. A. Bradley,; K. Saeb-Parsy,; M. P. Murphy, Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ. Redox Biol. 2015, 5, 163-168.
[54]
L. C. Tábara,; J. Poveda,; C. Martin-Cleary,; R. Selgas,; A. Ortiz,; M. D. Sanchez-Niño, Mitochondria-targeted therapies for acute kidney injury. Expert Rev. Mol. Med. 2014, 16, e13.
[55]
J. C. Wyss,; R. Kumar,; J. Mikulic,; M. Schneider,; J. L. Mary,; J. D. Aebi,; L. Juillerat-Jeanneret,; D. Golshayan, Differential effects of the mitochondria-active tetrapeptide ss-31 (d-Arg-dimethyltyr-lys-phe- NH2) and its peptidase-targeted prodrugs in experimental acute kidney injury. Front. Pharmacol. 2019, 10, 1209.
[56]
H. H. Szeto,; S. Y. Liu,; Y. Soong,; D. L. Wu,; S. F. Darrah,; F. Y. Cheng,; Z. H. Zhao,; M. Ganger,; C. Y. Tow,; S. V. Seshan, Mitochondria-targeted peptide accelerates atp recovery and reduces ischemic kidney injury. J. Am. Soc. Nephrol. 2011, 22, 1041-1052.
[57]
P. Mukhopadhyay,; B. Horváth,; Z. Zsengellér,; J. Zielonka,; G. Tanchian,; E. Holovac,; M. Kechrid,; V. Patel,; I. E. Stillman,; S. M. Parikh, et al. Mitochondrial-targeted antioxidants represent a promising approach for prevention of cisplatin-induced nephropathy. Free Radic. Biol. Med. 2012, 52, 497-506.
[58]
M. X. Yu,; J. Xu,; J. Zheng, Renal clearable luminescent gold nanoparticles: From the bench to the clinic. Angew. Chem., Int. Ed. 2019, 58, 4112-4128.
[59]
C. P. Liu,; Y. Hu,; J. C. Lin,; H. L. Fu,; L. Y. Lim,; Z. X. Yuan, Targeting strategies for drug delivery to the kidney: From renal glomeruli to tubules. Med. Res. Rev. 2019, 39, 561-578.
[60]
D. A. Ferenbach,; J. V. Bonventre, Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat. Rev. Nephrol. 2015, 11, 264-276.
[61]
B. C. Liu,; T. T. Tang,; L. L. Lv,; H. Y. Lan, Renal tubule injury: A driving force toward chronic kidney disease. Kidney Int. 2018, 93, 568-579.
[62]
N. Kamaly,; J. C. He,; D. A. Ausiello,; O. C. Farokhzad, Nanomedicines for renal disease: Current status and future applications. Nat. Rev. Nephrol. 2016, 12, 738-753.
[63]
R. J. Kok,; R. H. Henning, Drug targeting to the kidney. Adv. Drug Deliv. Rev. 2010, 62, 1323-1324.
[64]
J. B. Liu,; M. X. Yu,; C. Zhou,; J. Zheng, Renal clearable inorganic nanoparticles: A new frontier of bionanotechnology. Mater. Today 2013, 16, 477-486.
[65]
G. Adamo,; S. Campora,; G. Ghersi, Chapter 3 — functionalization of nanoparticles in specific targeting and mechanism release. In Nanostructures for Novel Therapy. D. Ficai,; A. M. Grumezescu,, Eds.; Elsevier: Amsterdam, 2017; pp 57-80.
DOI
[66]
H. Yu,; T. S. Lin,; W. Chen,; W. M. Cao,; C. W. Zhang,; T. W. Wang,; M. Ding,; S. Zhao,; H. Wei,; H. Q. Guo, et al. Size and temporal-dependent efficacy of oltipraz-loaded PLGA nanoparticles for treatment of acute kidney injury and fibrosis. Biomaterials 2019, 219, 119368.
[67]
M. Andersson,; U. Nilsson,; C. Hjalmarsson,; B. Haraldsson,; J. S. Nyström, Mild renal ischemia-reperfusion reduces charge and size selectivity of the glomerular barrier. Am. J. Physiol. Renal Physiol. 2007, 292, F1802-F1809.
[68]
B. Tampe,; U. Steinle,; D. Tampe,; J. L. Carstens,; P. Korsten,; E. M. Zeisberg,; G. A. Müller,; R. Kalluri,; M. Zeisberg, Low-dose hydralazine prevents fibrosis in a murine model of acute kidney injury-to-chronic kidney disease progression. Kidney Int. 2017, 91, 157-176.
[69]
B. J. Du,; X. Y. Jiang,; A. Das,; Q. H. Zhou,; M. X. Yu,; R. C. Jin,; J. Zheng, Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 2017, 12, 1096-1102.
[70]
F. Oroojalian,; F. Charbgoo,; M. Hashemi,; A. Amani,; R. Yazdian- Robati,; A. Mokhtarzadeh,; M. Ramezani,; M. R. Hamblin, Recent advances in nanotechnology-based drug delivery systems for the kidney. J. Control. Release 2020, 321, 442-462.
[71]
M. L. Amin,; J. Y. Joo,; D. K. Yi,; S. S. A. An, Surface modification and local orientations of surface molecules in nanotherapeutics. J. Control. Release 2015, 207, 131-142.
[72]
F. Charbgoo,; M. Nejabat,; K. Abnous,; F. Soltani,; S. M. Taghdisi,; M. Alibolandi,; W. Thomas Shier,; T. W. J. Steele,; M. Ramezani, Gold nanoparticle should understand protein corona for being a clinical nanomaterial. J. Control. Release 2018, 272, 39-53.
[73]
J. Y. C. Soo,; J. Jansen,; R. Masereeuw,; M. H. Little, Advances in predictive in vitro models of drug-induced nephrotoxicity. Nat. Rev. Nephrol. 2018, 14, 378-393.
[74]
M. A. Perazella,; S. G. Coca, Three feasible strategies to minimize kidney injury in ‘incipient AKI’. Nat. Rev. Nephrol. 2013, 9, 484-490.
[75]
M. Darmon,; M. Ostermann,; J. Cerda,; M. A. Dimopoulos,; L. Forni,; E. Hoste,; M. Legrand,; N. Lerolle,; E. Rondeau,; A. Schneider, et al. Diagnostic work-up and specific causes of acute kidney injury. Intensive Care Med. 2017, 43, 829-840.
[76]
S. J. Allison, A molecular imaging approach for the early, real-time diagnosis of acute kidney injury. Nat. Rev. Nephrol. 2019, 15, 458.
[77]
A. S. Thakor,; S. S. Gambhir, Nanooncology: The future of cancer diagnosis and therapy. CA Cancer J. Clin. 2013, 63, 395-418.
[78]
Q. Q. Miao,; C. Xie,; X. Zhen,; Y. Lyu,; H. W. Duan,; X. G. Liu,; J. V. Jokerst,; K. Y. Pu, Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 2017, 35, 1102-1110.
[79]
S. M. Park,; A. Aalipour,; O. Vermesh,; J. H. Yu,; S. S. Gambhir, Towards clinically translatable in vivo nanodiagnostics. Nat. Rev. Mater. 2017, 2, 17014.
[80]
F. Dieterle,; E. Perentes,; A. Cordier,; D. R. Roth,; P. Verdes,; O. Grenet,; S. Pantano,; P. Moulin,; D. Wahl,; A. Mahl, et al. Urinary clusterin, cystatin c, β2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nat. Biotechnol. 2010, 28, 463-469.
[81]
P. A. McCullough,; J. P. Choi,; G. A. Feghali,; J. M. Schussler,; R. M. Stoler,; R. C. Vallabahn,; A. Mehta, Contrast-induced acute kidney injury. J. Am. Coll. Cardiol. 2016, 68, 1465-1473.
[82]
J. G. Huang,; Y. Lyu,; J. C. Li,; P. H. Cheng,; Y. Y. Jiang,; K. Y. Pu, A renal-clearable duplex optical reporter for real-time imaging of contrast-induced acute kidney injury. Angew. Chem., Int. Ed. 2019, 58, 17796-17804.
[83]
X. D. Li,; H. D. Chen,; F. Y. Liu,; Y. X. Chen,; H. M. Zhang,; Z. X. Wang, Accurate monitoring of renal injury state through in vivo magnetic resonance imaging with ferric coordination polymer nanodots. ACS Omega 2018, 3, 4918-4923.
[84]
Q. R. Fu,; R. Zhu,; J. B. Song,; H. H. Yang,; X. Y. Chen, Photoacoustic imaging: Contrast agents and their biomedical applications. Adv. Mater. 2019, 31, 1805875.
[85]
A. B. E. Attia,; G. Balasundaram,; M. Moothanchery,; U. S. Dinish,; R. Z. Bi,; V. Ntziachristos,; M. Olivo, A review of clinical photoacoustic imaging: Current and future trends. Photoacoustics 2019, 16, 100144.
[86]
C. B. Liu,; J. Q. Chen,; Y. Zhu,; X. J. Gong,; R. Q. Zheng,; N. B. Chen,; D. Chen,; H. X. Yan,; P. Zhang,; H. R. Zheng, et al. Highly sensitive MoS2-indocyanine green hybrid for photoacoustic imaging of orthotopic brain glioma at deep site. Nano-Micro Lett. 2018, 10, 48.
[87]
L. V. Wang,; S. Hu, Photoacoustic tomography: In vivo imaging from organelles to organs. Science 2012, 335, 1458-1462.
[88]
G. L. Li,; Y. D. Chen,; L. Y. Zhang,; M. J. Zhang,; S. N. Li,; L. Li,; T. T. Wang,; C. G. Wang, Facile approach to synthesize gold nanorod@polyacrylic acid/calcium phosphate yolk-shell nanoparticles for dual-mode imaging and pH/NIR-responsive drug delivery. Nano- Micro Lett. 2018, 10, 7.
[89]
G. Rousseau,; A. Blouin,; J. P. Monchalin, Non-contact photoacoustic tomography and ultrasonography for tissue imaging. Biomed. Opt. Express 2012, 3, 16-25.
[90]
W. M. Pan,; W. Peng,; F. L. Ning,; Y. Zhang,; Y. F. Zhang,; Y. H. Wang,; W. Y. Xie,; J. Zhang,; H. Xin,; C. Li, et al. Non-invasive detection of the early phase of kidney injury by photoacoustic/computed tomography imaging. Nanotechnology 2018, 29, 265101.
[91]
H. S. Choi,; W. H. Liu,; P. Misra,; E. Tanaka,; J. P. Zimmer,; B. Itty Ipe,; M. G. Bawendi,; J. V. Frangioni, Renal clearance of quantum dots. Nat. Biotechnol. 2007, 25, 1165-1170.
[92]
X. Y. Jiang,; B. J. Du,; S. H. Tang,; J. T. Hsieh,; J. Zheng, Photoacoustic imaging of nanoparticle transport in the kidneys at high temporal resolution. Angew. Chem., Int. Ed. 2019, 58, 5994-6000.
[93]
P. H. Cheng,; W. Chen,; S. H. Li,; S. S. He,; Q. Q. Miao,; K. Y. Pu, Fluoro-photoacoustic polymeric renal reporter for real-time dual imaging of acute kidney injury. Adv. Mater. 2020, 32, 1908530.
[94]
Q. Q. Miao,; K. Y. Pu, Emerging designs of activatable photoacoustic probes for molecular imaging. Bioconjugate Chem. 2016, 27, 2808-2823.
[95]
E. Blanco,; H. F. Shen,; M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941-951.
[96]
S. Shikha,; X. Zheng,; Y. Zhang, Upconversion nanoparticles- encoded hydrogel microbeads-based multiplexed protein detection. Nano-Micro Lett. 2018, 10, 31.
[97]
R. X. Zhang,; L. Yin,; B. Zhang,; H. Shi,; Y. X. Sun,; C. Ji,; J. Y. Chen,; P. P. Wu,; L. L. Zhang,; W. R. Xu, et al. Resveratrol improves human umbilical cord-derived mesenchymal stem cells repair for cisplatin-induced acute kidney injury. Cell Death Dis. 2018, 9, 965.
[98]
Y. Z. Min,; J. M. Caster,; M. J. Eblan,; A. Z. Wang, Clinical translation of nanomedicine. Chem. Rev. 2015, 115, 11147-11190.
[99]
B. Pelaz,; C. Alexiou,; R. A. Alvarez-Puebla,; F. Alves,; A. M. Andrews,; S. Ashraf,; L. P. Balogh,; L. Ballerini,; A. Bestetti,; C. Brendel, et al. Diverse applications of nanomedicine. ACS Nano 2017, 11, 2313-2381.
[100]
Y. P. Zeng,; W. N. Zeng,; Q. Zhou,; X. L. Jia,; J. Li,; Z. Y. Yang,; Y. H. Hao,; J. L. Liu, Hyaluronic acid mediated biomineralization of multifunctional ceria nanocomposites as ROS scavengers and tumor photodynamic therapy agents. J. Mater. Chem. B 2019, 7, 3210-3219.
[101]
J. B. Hu,; S. J. Li,; X. Q. Kang,; J. Qi,; J. H. Wu,; X. J. Wang,; X. L. Xu,; X. Y. Ying,; S. P. Jiang,; J. You, et al. CD44-targeted hyaluronic acid-curcumin prodrug protects renal tubular epithelial cell survival from oxidative stress damage. Carbohydr Polym. 2018, 193, 268-280.
[102]
A. Chongtham,; N. Agrawal, Curcumin modulates cell death and is protective in huntington’s disease model. Sci. Rep. 2016, 6, 18736.
[103]
A. S. Awad,; A. A. El-Sharif, Curcumin immune-mediated and anti- apoptotic mechanisms protect against renal ischemia/reperfusion and distant organ induced injuries. Int. Immunopharmacol. 2011, 11, 992-996.
[104]
S. Zhao,; L. T. Ma,; C. W. Cao,; Q. Q. Yu,; L. M. Chen,; J. Liu, Curcumin-loaded redox response of self-assembled micelles for enhanced antitumor and anti-inflammation efficacy. Int. J. Nanomedicine 2017, 12, 2489-2504.
[105]
I. E. Allijn,; R. M. Schiffelers,; G. Storm, Comparison of pharmaceutical nanoformulations for curcumin: Enhancement of aqueous solubility and carrier retention. Int. J. Pharm. 2016, 506, 407-413.
[106]
M. Kitada,; D. Koya, Renal protective effects of resveratrol. Oxid. Med. Cell. Longev. 2013, 2013, 568093.
[107]
J. H. Holthoff,; Z. Wang,; K. A. Seely,; N. Gokden,; P. R. Mayeux, Resveratrol improves renal microcirculation, protects the tubular epithelium, and prolongs survival in a mouse model of sepsis- induced acute kidney injury. Kidney Int. 2012, 81, 370-378.
[108]
S. Q. Xu,; Y. G. Gao,; Q. Zhang,; S. W. Wei,; Z. Q. Chen,; X. G. Dai,; Z. H. Zeng,; K. S. Zhao, SIRT1/3 activation by resveratrol attenuates acute kidney injury in a septic rat model. Oxid. Med. Cell. Longev. 2016, 2016, 7296092.
[109]
L. Chen,; S. X. Yang,; E. E. Zumbrun,; H. B. Guan,; P. S. Nagarkatti,; M. Nagarkatti, Resveratrol attenuates lipopolysaccharide-induced acute kidney injury by suppressing inflammation driven by macrophages. Mol. Nutr. Food Res. 2015, 59, 853-864.
[110]
S. H. Hong,; H. J. Lee,; E. J. Sohn,; H. S. Ko,; B. S. Shim,; K. S. Ahn,; S. H. Kim, Anti-nephrolithic potential of resveratrol via inhibition of ROS, MCP-1, hyaluronan and osteopontin in vitro and in vivo. Pharmacol. Rep. 2013, 65, 970-979.
[111]
N. Summerlin,; E. Soo,; S. Thakur,; Z. Qu,; S. Jambhrunkar,; A. Popat, Resveratrol nanoformulations: Challenges and opportunities. Int. J. Pharm. 2015, 479, 282-290.
[112]
Y. F. Lin,; Y. H. Lee,; Y. H. Hsu,; Y. J. Chen,; Y. F. Lin,; F. Y. Cheng,; H. W. Chiu, Resveratrol-loaded nanoparticles conjugated with kidney injury molecule-1 as a drug delivery system for potential use in chronic kidney disease. Nanomedicine 2017, 12, 2741-2756.
[113]
W. K. Han,; V. Bailly,; R. Abichandani,; R. Thadhani,; J. V. Bonventre, Kidney injury molecule-1 (KIM-1): A novel biomarker for human renal proximal tubule injury. Kidney Int. 2002, 62, 237-244.
[114]
L. Yang,; C. R. Brooks,; S. Xiao,; V. Sabbisetti,; M. Y. Yeung,; L. L. Hsiao,; T. Ichimura,; V. Kuchroo,; J. V. Bonventre, KIM-1-mediated phagocytosis reduces acute injury to the kidney. J. Clin. Invest. 2015, 125, 1620-1636.
[115]
D. L. Ni,; D. W. Jiang,; H. F. Valdovinos,; E. B. Ehlerding,; B. Yu,; T. E. Barnhart,; P. Huang,; W. B. Cai, Bioresponsive polyoxometalate cluster for redox-activated photoacoustic imaging-guided photothermal cancer therapy. Nano Lett. 2017, 17, 3282-3289.
[116]
H. J. Kwon,; D. Kim,; K. Seo,; Y. G. Kim,; S. I. Han,; T. Kang,; M. Soh,; T. Hyeon, Ceria nanoparticle systems for selective scavenging of mitochondrial, intracellular, and extracellular reactive oxygen species in parkinson's disease. Angew. Chem., Int. Ed. 2018, 57, 9408-9412.
[117]
H. Yu,; F. Y. Jin,; D. Liu,; G. F. Shu,; X. J. Wang,; J. Qi,; M. C. Sun,; P. Yang,; S. P. Jiang,; X. Y. Ying, et al. ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury. Theranostics 2020, 10, 2342-2357.
[118]
F. Zhang,; S. X. Jiang,; S. Y. Wu,; Y. L. Li,; C. D. Mao,; Y. Liu,; H. Yan, Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nat. Nanotechnol. 2015, 10, 779-784.
[119]
S. Surana,; A. R. Shenoy,; Y. Krishnan, Designing DNA nanodevices for compatibility with the immune system of higher organisms. Nat. Nanotechnol. 2015, 10, 741-747.
[120]
J. Hahn,; S. F. J. Wickham,; W. M. Shih,; S. D. Perrault, Addressing the instability of DNA nanostructures in tissue culture. ACS Nano 2014, 8, 8765-8775.
[121]
G. Z. Zhu,; J. Zheng,; E. Q. Song,; M. Donovan,; K. J. Zhang,; C. Liu,; W. H. Tan, Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc. Natl. Acad. Sci. USA 2013, 110, 7998-8003.
[122]
Y. Du,; Q. Jiang,; N. Beziere,; L. L. Song,; Q. Zhang,; D. Peng,; C. W. Chi,; X. Yang,; H. B. Guo,; G. Diot, et al. DNA-nanostructure- gold-nanorod hybrids for enhanced in vivo optoacoustic imaging and photothermal therapy. Adv. Mater. 2016, 28, 10000-10007.
[123]
B. Matter,; C. L. Seiler,; K. Murphy,; X. Ming,; J. W. Zhao,; B. Lindgren,; R. Jones,; N. Tretyakova, Mapping three guanine oxidation products along DNA following exposure to three types of reactive oxygen species. Free Radic. Biol. Med. 2018, 121, 180-189.
[124]
S. Huang,; J. You,; K. Wang,; Y. Q. Li,; Y. Zhang,; H. T. Wei,; X. J. Liang,; Y. Y. Liu, N-acetylcysteine attenuates cisplatin-induced acute kidney injury by inhibiting the C5a receptor. BioMed Res. Int. 2019, 2019, 4805853.
[125]
X. L. Su,; X. F. Xie,; L. J. Liu,; J. H. Lv,; F. J. Song,; V. Perkovic,; H. Zhang, Comparative effectiveness of 12 treatment strategies for preventing contrast-induced acute kidney injury: A systematic review and Bayesian network meta-analysis. Am. J. Kidney Dis. 2017, 69, 69-77.
[126]
W. S. Chen,; J. Ouyang,; X. Y. Yi,; Y. Xu,; C. C. Niu,; W. Y. Zhang,; L. Q. Wang,; J. P. Sheng,; L. Deng,; Y. N. Liu, et al. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv. Mater. 2018, 30, 1703458.
[127]
J. D. Shao,; H. H. Xie,; H. Huang,; Z. B. Li,; Z. B. Sun,; Y. H. Xu,; Q. L. Xiao,; X. F. Yu,; Y. T. Zhao,; H. Zhang, et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 2016, 7, 12967.
[128]
X. J. Zhang,; Z. M. Zhang,; S. Y. Zhang,; D. Y. Li,; W. Ma,; C. X. Ma,; F. C. Wu,; Q. Zhao,; Q. F. Yan,; B. S. Xing, Size effect on the cytotoxicity of layered black phosphorus and underlying mechanisms. Small 2017, 13, 1701210.
[129]
D. Jana,; S. R. Jia,; A. K. Bindra,; P. Y. Xing,; D. Ding,; Y. L. Zhao, Clearable black phosphorus nanoconjugate for targeted cancer phototheranostics. ACS Appl. Mater. Interfaces 2020, 12, 18342-18351.
[130]
J. J. Hou,; H. Wang,; Z. L. Ge,; T. T. Zuo,; Q. Chen,; X. G. Liu,; S. Mou,; C. H. Fan,; Y. Xie,; L. H. Wang, Treating acute kidney injury with antioxidative black phosphorus nanosheets. Nano Lett. 2020, 20, 1447-1454.
[131]
S. Y. Geng,; T. Pan,; W. H. Zhou,; H. D. Cui,; L. Wu,; Z. B. Li,; P. K. Chu,; X. F. Yu, Bioactive phospho-therapy with black phosphorus for in vivo tumor suppression. Theranostics 2020, 10, 4720-4736.
[132]
J. J. Li,; C. Wu,; P. F. Hou,; M. Zhang,; K. Xu, One-pot preparation of hydrophilic manganese oxide nanoparticles as T1 nano-contrast agent for molecular magnetic resonance imaging of renal carcinoma in vitro and in vivo. Biosens. Bioelectron. 2018, 102, 1-8.
[133]
N. Ponnuswamy,; M. M. C. Bastings,; B. Nathwani,; J. H. Ryu,; L. Y. T. Chou,; M. Vinther,; W. A. Li,; F. M. Anastassacos,; D. J. Mooney,; W. M. Shih, Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation. Nat. Commun. 2017, 8, 15654.
[134]
M. Geso, Gold nanoparticles: A new X-ray contrast agent. Br. J. Radiol. 2007, 80, 64-65.
[135]
C. Zhang,; W. B. Bu,; D. L. Ni,; C. J. Zuo,; C. Cheng,; Q. Li,; L. L. Zhang,; Z. Wang,; J. L. Shi, A polyoxometalate cluster paradigm with self-adaptive electronic structure for acidity/reducibility-specific photothermal conversion. J. Am. Chem. Soc. 2016, 138, 8156-8164.
[136]
C. F. Zhang,; H. J. Wang,; Z. H. Tong,; C. Zhang,; Y. S. Wang,; H. Q. Yang,; R. Y. Gao,; H. Z. Shi, The diagnostic and prognostic values of serum and urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin in sepsis induced acute renal injury patients. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 5604-5617.
[137]
S. B. Qian,; W. M. Xia,; Y. Wu,; Q. F. Cao,; Y. Ding,; Y. T. Huang,; H. B. Shen, Urinary kidney injury molecule-1: A novel biomarker to monitor renal function in patients with unilateral ureteral obstruction. Int. Urol. Nephrol., in press, .
[138]
F. Xiao,; L. Wang,; H. W. Duan, Nanomaterial based electrochemical sensors for in vitro detection of small molecule metabolites. Biotechnol. Adv. 2016, 34, 234-249.
[139]
A. Poma,; A. P. F. Turner,; S. A. Piletsky, Advances in the manufacture of MIP nanoparticles. Trends Biotechnol. 2010, 28, 629-637.
[140]
X. Q. Chi,; D. T. Huang,; Z. H. Zhao,; Z. J. Zhou,; Z. Y. Yin,; J. H. Gao, Nanoprobes for in vitro diagnostics of cancer and infectious diseases. Biomaterials 2012, 33, 189-206.
[141]
S. Sathish,; K. Toda-Peters,; A. Q. Shen, Proof-of-concept modular fluid handling prototype integrated with microfluidic biochemical assay modules for point-of-care testing. View 2020, 1, e1.
[142]
X. L. Huang,; Y. J. Liu,; B. Yung,; Y. H. Xiong,; X. Y. Chen, Nanotechnology-enhanced no-wash biosensors for in vitro diagnostics of cancer. ACS Nano 2017, 11, 5238-5292.
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 July 2020
Revised: 19 August 2020
Accepted: 22 August 2020
Published: 06 November 2020
Issue date: April 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by grants from the National Key R&D Program of China (No. 2018YFC2000400), and the National Natural Science Foundation of China (Nos. 31470776, 81670651, 81770752, and 81970573).

Return