Journal Home > Volume 14 , Issue 1

Smart materials that reversibly change color upon light illumination are widely explored for diverse appealing applications. However, light-responsive color switching materials are mainly limited to organic molecules. The synthesis of inorganic counterparts has remained a significant challenge because of their slow light response and poor reversibility. Here, we report a seeded growth strategy for the synthesis of TiO2-x/WO3·0.33H2O hetero-nanoparticles (HNPs) with networked wire-like structure of ~ 10 nm in diameters that enable the highly reversible light-responsive color switching properties. For the TiO2-x/WO3·0.33H2O HNPs, Ti3+ species self-doped in TiO2-x nanoparticles (NPs) act as efficient sacrificial electron donors (SEDs) and Ti-O-W linkages formed between TiO2-x and WO3·0.33H2O NPs ensure the nanoscale interfacial contact, endowing the HNPs enhanced photoreductive activity and efficient interfacial charge transfer upon ultraviolet (UV) illumination to achieve highly efficient color switching. The TiO2-x/WO3·0.33H2O HNPs exhibits rapid light response (< 15 s) and long reversible color switching cycles (> 180 times). We further demonstrate the applications of TiO2-x/WO3·0.33H2O HNPs in ink-free, light-printable rewritable paper that can be written on freehand or printed on through a photomask using UV light. This work opens an avenue for designing inorganic light-responsive color switching nanomaterials and their smart applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Light-responsive color switching of self-doped TiO2-x/WO3·0.33H2O hetero-nanoparticles for highly efficient rewritable paper

Show Author's information Jingmei ZhaoLuntao LiuYun ZhangZhenyu FengFeifei ZhaoWenshou Wang( )
National Engineering Research Center for Colloidal Materials and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China

Abstract

Smart materials that reversibly change color upon light illumination are widely explored for diverse appealing applications. However, light-responsive color switching materials are mainly limited to organic molecules. The synthesis of inorganic counterparts has remained a significant challenge because of their slow light response and poor reversibility. Here, we report a seeded growth strategy for the synthesis of TiO2-x/WO3·0.33H2O hetero-nanoparticles (HNPs) with networked wire-like structure of ~ 10 nm in diameters that enable the highly reversible light-responsive color switching properties. For the TiO2-x/WO3·0.33H2O HNPs, Ti3+ species self-doped in TiO2-x nanoparticles (NPs) act as efficient sacrificial electron donors (SEDs) and Ti-O-W linkages formed between TiO2-x and WO3·0.33H2O NPs ensure the nanoscale interfacial contact, endowing the HNPs enhanced photoreductive activity and efficient interfacial charge transfer upon ultraviolet (UV) illumination to achieve highly efficient color switching. The TiO2-x/WO3·0.33H2O HNPs exhibits rapid light response (< 15 s) and long reversible color switching cycles (> 180 times). We further demonstrate the applications of TiO2-x/WO3·0.33H2O HNPs in ink-free, light-printable rewritable paper that can be written on freehand or printed on through a photomask using UV light. This work opens an avenue for designing inorganic light-responsive color switching nanomaterials and their smart applications.

Keywords: light-response, color switching, self-doping, hetero-nanoparticles, rewritable paper

References(44)

[1]
C. C. Jia,; A. Migliore,; N. Xin,; S. Y. Huang,; J. Y. Wang,; Q. Yang,; S. P. Wang,; H. L. Chen,; D. M. Wang,; B. Y. Feng, et al. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 2016, 352, 1443-1445.
[2]
P. K. Kundu,; D. Samanta,; R. Leizrowice,; B. Margulis,; H. Zhao,; M. Börner,; T. Udayabhaskararao,; D. Manna,; R. Klajn, Light-controlled self-assembly of non-photoresponsive nanoparticles. Nat. Chem. 2015, 7, 646-652.
[3]
Z. Q. Li,; G. N. Wang,; Y. X. Ye,; B. Li,; H. R. Li,; B. L. Chen, Loading photochromic molecules into a luminescent metal-organic framework for information anticounterfeiting. Angew. Chem., Int. Ed. 2019, 58, 18025-18031.
[4]
M. I. Khazi,; W. Jeong,; J. M. Kim, Functional materials and systems for rewritable paper. Adv. Mater. 2018, 30, 1705310.
[5]
W. S. Wang,; N. Xie,; L. He,; Y. D. Yin, Photocatalytic colour switching of redox dyes for ink-free light-printable rewritable paper. Nat. Commun. 2014, 5, 5459.
[6]
Y. Q. Yang,; J. Q. Li,; X. Y. Li,; L. Guan,; Z. J. Gao,; L. J. Duan,; F. Jia,; G. H. Gao, Easily prepared and reusable films for fast-response rewritable light printing. ACS Appl. Mater. Interfaces 2019, 11, 14322-14328.
[7]
A. Fihey,; A. Perrier,; W. R. Browne,; D. Jacquemin, Multiphotochromic molecular systems. Chem. Soc. Rev. 2015, 44, 3719-3759.
[8]
M. Irie,; T. Fukaminato,; K. Matsuda,; S. Kobatake, Photochromism of diarylethene molecules and crystals: Memories, switches, and actuators. Chem. Rev. 2014, 114, 12174-12277.
[9]
G. X. Huang,; Q. Xia,; W. B. Huang,; J. W. Tian,; Z. K. He,; B. S. Li,; B. Z. Tang, Multiple anti-counterfeiting guarantees from a simple tetraphenylethylene derivative-high-contrasted and multi-state mechanochromism and photochromism. Angew. Chem., Int. Ed. 2019, 58, 17814-17819.
[10]
W. S. Wang,; L. T. Liu,; J. Feng,; Y. D. Yin, Photocatalytic reversible color switching based on titania nanoparticles. Small Methods 2018, 2, 1700273.
[11]
H. X. Gu,; C. S. Guo,; S. H. Zhang,; L. H. Bi,; T. C. Li,; T. D. Sun,; S. Q. Liu, Highly efficient, near-infrared and visible light modulated electrochromic devices based on polyoxometalates and W18O49 nanowires. ACS Nano 2018, 12, 559-567.
[12]
J. X. Zhao,; Y. Y. Tian,; Z. Wang,; S. Cong,; D. Zhou,; Q. Z. Zhang,; M. Yang,; W. K. Zhang,; F. X. Geng,; Z. G. Zhao, Trace H2O2-assisted high-capacity tungsten oxide electrochromic batteries with ultrafast charging in seconds. Angew. Chem., Int. Ed. 2016, 55, 7161-7165.
[13]
L. Santos,; P. Wojcik,; J. V. Pinto,; E. Elangovan,; J. Viegas,; L. Pereira,; R. Martins,; E. Fortunato, Structure and morphologic influence of WO3 nanoparticles on the electrochromic performance of dual-phase a-WO3/WO3 inkjet printed films. Adv. Electron. Mater. 2015, 1, 1400002.
[14]
S. Yamazaki,; H. Ishida,; D. Shimizu,; K. Adachi, Photochromic properties of tungsten oxide/methylcellulose composite film containing dispersing agents. ACS Appl. Mater. Interfaces 2015, 7, 26326-26332.
[15]
J. Dong,; J. P. Zhang, Photochromic and super anti-wetting coatings based on natural nanoclays. J. Mater. Chem. A 2019, 7, 3120-3127.
[16]
S. Yamazaki,; D. Shimizu,; S. Tani,; K. Honda,; M. Sumimoto,; K. Komaguchi, Effect of dispersants on photochromic behavior of tungsten oxide nanoparticles in methylcellulose. ACS Appl. Mater. Interfaces 2018, 10, 19889-19896.
[17]
R. T. Wen,; C. G. Granqvist,; G. A. Niklasson, Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films. Nat. Mater. 2015, 14, 996-1001.
[18]
A. Azam,; J. Kim,; J. Park,; T. G. Novak,; A. P. Tiwari,; S. H. Song,; B. Kim,; S. Jeon, Two-dimensional WO3 nanosheets chemically converted from layered WS2 for high-performance electrochromic devices. Nano Lett. 2018, 18, 5646-5651.
[19]
J. Wei,; X. L. Jiao,; T. Wang,; D. R. Chen, Electrospun photochromic hybrid membranes for flexible rewritable media. ACS Appl. Mater. Interfaces 2016, 8, 29713-29720.
[20]
S. F. Wang,; W. R. Fan,; Z. C. Liu,; A. B. Yu,; X. C. Jiang, Advances on tungsten oxide based photochromic materials: Strategies to improve their photochromic properties. J. Mater. Chem. C 2018, 6, 191-212.
[21]
Z. Z. Lou,; P. Zhang,; J. Li,; X. G. Yang,; B. B. Huang,; B. J. Li, Plasmonic heterostructure TiO2-MCs/WO3-x-NWs with continuous photoelectron injection boosting hot electron for methane generation. Adv. Funct. Mater. 2019, 29, 1808696.
[22]
H. Khan,; M. G. Rigamonti,; G. S. Patience,; D. C. Boffito, Spray dried TiO2/WO3 heterostructure for photocatalytic applications with residual activity in the dark. Appl. Catal. B 2018, 226, 311-323.
[23]
M. Grandcolas,; T. Cottineau,; A. Louvet,; N. Keller,; V. Keller, Solar light-activated photocatalytic degradation of gas phase diethylsulfide on WO3-modified TiO2 nanotubes. Appl. Catal. B 2013, 138-139, 128-140.
[24]
M. Nolan,; A. Iwaszuk,; A. K. Lucid,; J. J. Carey,; M. Fronzi, Design of novel visible light active photocatalyst materials: Surface modified TiO2. Adv. Mater. 2016, 28, 5425-5446.
[25]
G. Xi,; L. Sheng,; J. H. Du,; J. Y. Zhang,; M. J. Li,; H. Z. Wang,; Y. F. Ma,; S. X. A. Zhang, Water assisted biomimetic synergistic process and its application in water-jet rewritable paper. Nat. Commun. 2018, 9, 4819.
[26]
H. B. Sun,; S. J. Liu,; W. P. Lin,; K. Y. Zhang,; W. Lv,; X. Huang,; F. W. Huo,; H. R. Yang,; G. Jenkins,; Q. Zhao, et al. Smart responsive phosphorescent materials for data recording and security protection. Nat. Commun. 2014, 5, 3601.
[27]
L. Sheng,; M. J. Li,; S. Y. Zhu,; H. Li,; G. Xi,; Y. G. Li,; Y. Wang,; Q. S. Li,; S. J. Liang,; K. Zhong, et al. Hydrochromic molecular switches for water-jet rewritable paper. Nat. Commun. 2014, 5, 3044.
[28]
Y. Ma,; P. F. She,; K. Y. Zhang,; H. R. Yang,; Y. Y. Qin,; Z. H. Xu,; S. J. Liu,; Q. Zhao,; W. Huang, Dynamic metal-ligand coordination for multicolour and water-jet rewritable paper. Nat. Commun. 2018, 9, 3.
[29]
Z. P. Gao,; L. T. Liu,; Z. Tian,; Z. Y. Feng,; B. L. Jiang,; W. S. Wang, Fast-response flexible photochromic gels for self-erasing rewritable media and colorimetric oxygen indicator applications. ACS Appl. Mater. Interfaces 2018, 10, 33423-33433.
[30]
B. X. Liu,; J. S. Wang,; J. S. Wu,; H. Y. Li,; H. Wang,; Z. F. Li,; M. L. Zhou,; T. Y. Zuo, Proton exchange growth to mesoporous WO3·0.33H2O structure with highly photochromic sensitivity. Mater. Lett. 2013, 91, 334-337.
[31]
X. N. Song,; C. Y. Wang,; W. K. Wang,; X. Zhang,; N. N. Hou,; H. Q. Yu, A dissolution-regeneration route to synthesize blue tungsten oxide flowers and their applications in photocatalysis and gas sensing. Adv. Mater. Interfaces 2016, 3, 1500417.
[32]
K. W. Yang,; X. Y. Chen,; Z. H. Zheng,; J. Q. Wan,; M. Feng,; Y. Yu, Solvent-induced surface disorder and doping-induced lattice distortion in anatase TiO2 nanocrystals for enhanced photoreversible color switching. J. Mater. Chem. A 2019, 7, 3863-3873.
[33]
X. G. Wang,; M. H. Sun,; M. Murugananthan,; Y. R. Zhang,; L. Z. Zhang, Electrochemically self-doped WO3/TiO2 nanotubes for photocatalytic degradation of volatile organic compounds. Appl. Catal. B 2020, 260, 118205.
[34]
P. H. Yang,; P. Sun,; Z. S. Chai,; L. H. Huang,; X. Cai,; S. Z. Tan,; J. H. Song,; W. J. Mai, Large-scale fabrication of pseudocapacitive glass windows that combine electrochromism and energy storage. Angew. Chem., Int. Ed. 2014, 53, 11935-11939.
[35]
S. B. Wang,; L. Pan,; J. J. Song,; W. B. Mi,; J. J. Zou,; L. Wang,; X. W. Zhang, Titanium-defected undoped anatase tio2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. J. Am. Chem. Soc. 2015, 137, 2975-2983.
[36]
Z. J. Yao,; H. Y. Yin,; L. M. Zhou,; G. X. Pan,; Y. D. Wang,; X. H. Xia,; J. B. Wu,; X. L. Wang,; J. P. Tu, Ti3+ self-doped Li4Ti5O12 anchored on N-doped carbon nanofiber arrays for ultrafast lithium-ion storage. Small 2019, 15, 1905296.
[37]
G. R. Hanson,; G. L. Wilson,; T. D. Bailey,; J. R. Pilbrow,; A. G. Wedd, Multifrequency electron spin resonance of molybdenum(V) and tungsten(V) compounds. J. Am. Chem. Soc. 1987, 109, 2609-2616.
[38]
C. H. Jiang,; Y. S. Li,; S. T. Wang,; Z. T. Zhang,; Z. L. Tang, Hierarchical hydrated WO3·0.33H2O/graphene composites with improved lithium storage. Electrochim. Acta 2018, 278, 290-301.
[39]
A. Tribalis,; G. D. Panagiotou,; G. Tsilomelekis,; A. G. Kalampounias,; K. Bourikas,; C. Kordulis,; S. Boghosian,; A. Lycourghiotis, Temperature-dependent evolution of the molecular configuration of oxo-tungsten(VI) species deposited on the surface of titania. J. Phys. Chem. C 2014, 118, 11319-11332.
[40]
R. Fricke,; H. G. Jerschkewitz,; G. Öhlmann, Electron spin resonance studies of free and supported 12-heteropoly acids. Part 6.-The investigation of reduced H4(SiW12O40xH2O and Ag4(SiW12O40xH2O and Ag4(SiW12O40)·x H2O and the effects of oxygen adsorption. J. Chem. Soc. Faraday Trans. 1 1987, 83, 3115-3128.
[41]
G. Wang,; Q. H. Chen,; Y. J. Xin,; Y. P. Liu,; Z. L. Zang,; C. G. Hu,; B. Zhang, Construction of graphene-WO3/TiO2 nanotube array photoelectrodes and its enhanced performance for photocatalytic degradation of dimethyl phthalate. Electrochim. Acta 2016, 222, 1903-1913.
[42]
Y. Peng,; W. Z. Si,; X. Li,; J. M. Luo,; J. H. Li,; J. Crittenden,; J. M. Hao, Comparison of MoO3 and WO3 on arsenic poisoning V2O5/TiO2 catalyst: DRIFTS and DFT study. Appl. Catal. B 2016, 181, 692-698.
[43]
Y. J. Ma,; J. X. Hu,; S. D. Han,; J. Pan,; J. H. Li,; G. M. Wang, Photochromism and photomagnetism in crystalline hybrid materials actuated by nonphotochromic units. Chem. Commun. 2019, 55, 5631-5634.
[44]
Y. X. Shi,; W. H. Zhang,; B. F. Abrahams,; P. Braunstein,; J. P. Lang, Fabrication of photoactuators: Macroscopic photomechanical responses of metal-organic frameworks to irradiation by UV light. Angew. Chem., Int. Ed. 2019, 58, 9453-9458.
File
12274_2020_3061_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 July 2020
Revised: 17 August 2020
Accepted: 20 August 2020
Published: 05 January 2021
Issue date: January 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the Natural Science Foundation of Shandong Province (No. ZR2019JQ15) and the National Natural Science Foundation of China (Nos. 21671120 and 51972199). We would like to thank the Analytical Center for Structural Constituent and Physical Property of Core Facilities Sharing Platform, Shandong University for ESR and Raman characterizations.

Return