Journal Home > Volume 14 , Issue 1

Highly faceted geometries such as nanowires are prone to form self-formed features, especially those that are driven by segregation. Understanding these features is important in preventing their formation, understanding their effects on nanowire properties, or engineering them for applications. Single elemental segregation lines that run along the radii of the hexagonal cross-section have been a common observation in alloy semiconductor nanowires. Here, in GaAsP nanowires, two additional P rich bands are formed on either side of the primary band, resulting in a total of three segregation bands in the vicinity of three of the alternating radii. These bands are less intense than the primary band and their formation can be attributed to the inclined nanofacets that form in the vicinity of the vertices. The formation of the secondary bands requires a higher composition of P in the shell, and to be grown under conditions that increase the diffusivity difference between As and P. Furthermore, it is observed that the primary band can split into two narrow and parallel bands. This can take place in all six radii, making the cross sections to have up to a maximum of 18 radial segregation bands. With controlled growth, these features could be exploited to assemble multiple different quantum structures in a new dimension (circumferential direction) within nanowires.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Multiple radial phosphorus segregations in GaAsP core-shell nanowires

Show Author's information H. Aruni Fonseka1( )Yunyan Zhang2James A. Gott1Richard Beanland1Huiyun Liu2Ana M. Sanchez1
Department of Physics, University of Warwick, Coventry CV4 7AL, UK
Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, UK

Abstract

Highly faceted geometries such as nanowires are prone to form self-formed features, especially those that are driven by segregation. Understanding these features is important in preventing their formation, understanding their effects on nanowire properties, or engineering them for applications. Single elemental segregation lines that run along the radii of the hexagonal cross-section have been a common observation in alloy semiconductor nanowires. Here, in GaAsP nanowires, two additional P rich bands are formed on either side of the primary band, resulting in a total of three segregation bands in the vicinity of three of the alternating radii. These bands are less intense than the primary band and their formation can be attributed to the inclined nanofacets that form in the vicinity of the vertices. The formation of the secondary bands requires a higher composition of P in the shell, and to be grown under conditions that increase the diffusivity difference between As and P. Furthermore, it is observed that the primary band can split into two narrow and parallel bands. This can take place in all six radii, making the cross sections to have up to a maximum of 18 radial segregation bands. With controlled growth, these features could be exploited to assemble multiple different quantum structures in a new dimension (circumferential direction) within nanowires.

Keywords: compound semiconductor alloys, radial segregations, three-fold symmetry, surface chemical potential

References(44)

[1]
G. Biasiol,; A. Gustafsson,; K. Leifer,; E. Kapon, Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures. Phys. Rev. B 2002, 65, 205306.
[2]
M. Ozdemir,; A. Zangwill, Theory of epitaxial growth onto nonplanar substrates. J. Vac. Sci. Technol. A 1992, 10, 684-690.
[3]
C. Chen,; S. Shehata,; C. Fradin,; R. LaPierre,; C. Couteau,; G. Weihs, Self-directed growth of AlGaAs core-shell nanowires for visible light applications. Nano Lett. 2007, 7, 2584-2589.
[4]
A. S. Ameruddin,; H. A. Fonseka,; P. Caroff,; J. Wong-Leung,; R. L. O. het Veld,; J. L. Boland,; M. B. Johnston,; H. H. Tan,; C. Jagadish, InxGa1-xAs nanowires with uniform composition, pure wurtzite crystal phase and taper-free morphology. Nanotechnology 2015, 26, 205604.
[5]
N. Sköld,; J. B. Wagner,; G. Karlsson,; T. Hernán,; W. Seifert,; M. E. Pistol,; L. Samuelson, Phase segregation in AlInP shells on GaAs nanowires. Nano Lett. 2006, 6, 2743-2747.
[6]
Y. Y. Zhang,; A. M. Sanchez,; J. Wu,; M. Aagesen,; J. V. Holm,; R. Beanland,; T. Ward,; H. Y. Liu, Polarity-driven quasi-3-fold composition symmetry of self-catalyzed III-V-V ternary core-shell nanowires. Nano Lett. 2015, 15, 3128-3133.
[7]
C. L. Zheng,; J. Wong-Leung,; Q. Gao,; H. H. Tan,; C. Jagadish,; J. Etheridge, Polarity-driven 3-fold symmetry of GaAs/AlGaAs core multishell nanowires. Nano Lett. 2013, 13, 3742-3748.
[8]
J. B. Wagner,; N. Sköld,; L. R. Wallenberg,; L. Samuelson, Growth and segregation of GaAs-AlxIn1-xP core-shell nanowires. J. Cryst. Growth 2010, 312, 1755-1760.
[9]
K. W. Ng,; W. S. Ko,; R. Chen,; F. L. Lu,; T. T. D. Tran,; K. Li,; C. J. Chang-Hasnain, Composition homogeneity in InGaAs/GaAs core-shell nanopillars monolithically grown on silicon. ACS Appl. Mater. Interfaces 2014, 6, 16706-16711.
[10]
X. M. Yuan,; P. Caroff,; J. Wong-Leung,; H. H. Tan,; C. Jagadish, Controlling the morphology, composition and crystal structure in gold-seeded GaAs1-xSbx nanowires. Nanoscale 2015, 7, 4995-5003.
[11]
L. Francaviglia,; G. Tütüncüoglu,; S. Martí-Sánchez,; E. Di Russo,; S. E. Steinvall,; J. S. Ruiz,; H. Potts,; M. Friedl,; L. Rigutti,; J. Arbiol, et al. Segregation scheme of indium in AlGaInAs nanowire shells. Phys. Rev. Mater. 2019, 3, 023001.
[12]
D. Rudolph,; S. Funk,; M. Döblinger,; S. Morkötter,; S. Hertenberger,; L. Schweickert,; J. Becker,; S. Matich,; M. Bichler,; D. Spirkoska, et al. Spontaneous alloy composition ordering in GaAs-AlGaAs core-shell nanowires. Nano Lett. 2013, 13, 1522-1527.
[13]
N. Jeon,; B. Loitsch,; S. Morkoetter,; G. Abstreiter,; J. Finley,; H. J. Krenner,; G. Koblmueller,; L. J. Lauhon, Alloy fluctuations act as quantum dot-like emitters in GaAs-AlGaAs core-shell nanowires. ACS Nano 2015, 9, 8335-8343.
[14]
B. Loitsch,; N. Jeon,; M. Döblinger,; J. Winnerl,; E. Parzinger,; S. Matich,; U. Wurstbauer,; H. Riedl,; G. Abstreiter,; J. J. Finley, et al. Suppression of alloy fluctuations in GaAs-AlGaAs core-shell nanowires. Appl. Phys. Lett. 2016, 109, 093105.
[15]
H. A. Fonseka,; A. V. Velichko,; Y. Y. Zhang,; J. A. Gott,; G. D. Davis,; R. Beanland,; H. Y. Liu,; D. J. Mowbray,; A. M. Sanchez, Self-formed quantum wires and dots in GaAsP-GaAsP core-shell nanowires. Nano Lett. 2019, 19, 4158-4165.
[16]
J. Arbiol,; C. Magen,; P. Becker,; G. Jacopin,; A. Chernikov,; S. Schäfer,; F. Furtmayr,; M. Tchernycheva,; L. Rigutti,; J. Teubert, et al. Self-assembled GaN quantum wires on GaN/AlN nanowire templates. Nanoscale 2012, 4, 7517-7524.
[17]
G. Schmidt,; M. Müller,; P. Veit,; S. Metzner,; F. Bertram,; J. Hartmann,; H. Zhou,; H. H. Wehmann,; A. Waag,; J. Christen, Direct imaging of Indium-rich triangular nanoprisms self-organized formed at the edges of InGaN/GaN core-shell nanorods. Sci. Rep. 2018, 8, 16026.
[18]
M. Heiss,; Y. Fontana,; A. Gustafsson,; G. Wüst,; C. Magen,; D. D. O’Regan,; J. W. Luo,; B. Ketterer,; S. Conesa-Boj,; A. V. Kuhlmann, et al. Self-assembled quantum dots in a nanowire system for quantum photonics. Nat. Mater. 2013, 12, 439-444.
[19]
Y. Yu,; X. M. Dou,; B. Wei,; G. W. Zha,; X. J. Shang,; L. Wang,; D. Su,; J. X. Xu,; H. Y. Wang,; H. Q. Ni, et al. Self-assembled quantum dot structures in a hexagonal nanowire for quantum photonics. Adv. Mater. 2014, 26, 2710-2717.
[20]
J. Lähnemann,; M. O. Hill,; J. Herranz,; O. Marquardt,; G. H. Gao,; A. Al Hassan,; A. Davtyan,; S. O. Hruszkewycz,; M. V. Holt,; C. Y. Huang, et al. Correlated nanoscale analysis of the emission from wurtzite versus zincblende (In, Ga)As/GaAs nanowire core-shell quantum wells. Nano Lett. 2019, 19, 4448-4457.
[21]
P. Corfdir,; R. B. Lewis,; O. Marquardt,; H. Küpers,; J. Grandal,; E. Dimakis,; A. Trampert,; L. Geelhaar,; O. Brandt,; R. T. Phillips, Exciton recombination at crystal-phase quantum rings in GaAs/ InxGa1-xAs core/multishell nanowires. Appl. Phys. Lett. 2016, 109, 082107.
[22]
K. Ariga,; M. Nishikawa,; T. Mori,; J. Takeya,; L. K. Shrestha,; J. P. Hill, Self-assembly as a key player for materials nanoarchitectonics. Sci. Technol. Adv. Mater. 2019, 20, 51-95.
[23]
H. Weman,; E. Martinet,; A. Rudra,; E. Kapon, Selective carrier injection into V-groove quantum wires. Appl. Phys. Lett. 1998, 73, 2959-2961.
[24]
Q. Zhu,; E. Pelucchi,; S. Dalessi,; K. Leifer,; M. A. Dupertuis,; E. Kapon, Alloy segregation, quantum confinement, and carrier capture in self-ordered pyramidal quantum wires. Nano Lett. 2006, 6, 1036-1041.
[25]
S. D. Wu,; L. W. Guo,; W. X. Wang,; Z. H. Li,; P. J. Niu,; Q. Huang,; J. M. Zhou, Incorporation behaviour of arsenic and phosphorus in GaAsP/GaAs grown by solid source molecular beam epitaxy with a GaP decomposition source. Chin. Phys. Lett. 2005, 22, 960-962.
[26]
N. Jeon,; D. Ruhstorfer,; M. Döblinger,; S. Matich,; B. Loitsch,; G. Koblmüller,; L. Lauhon, Connecting composition-driven faceting with facet-driven composition modulation in GaAs-AlGaAs core-shell nanowires. Nano Lett. 2018, 18, 5179-5185.
[27]
R. Bergamaschini,; F. Montalenti,; L. Miglio, Sunburst pattern by kinetic segregation in core-shell nanowires: A phase-field study. Appl. Surf. Sci. 2020, 517, 146056.
[28]
T. Sato,; I. Tamai,; H. Hasegawa, Growth kinetics and modeling of selective molecular beam epitaxial growth of GaAs ridge quantum wires on pre-patterned nonplanar substrates. J. Vac. Sci. Technol. B 2004, 22, 2266-2274.
[29]
K. Stiles,; A. Kahn, Low energy electron diffraction study of (221) and (311) GaAs surfaces. J. Vac. Sci. Technol. B 1985, 3, 1089-1092.
[30]
K. Jacobi,; L. Geelhaar,; J. Márquez, Structure of high-index GaAs surfaces—The discovery of the stable GaAs (2511) surface. Appl. Phys. A 2002, 75, 113-127.
[31]
D. J. Chadi, Atomic and electronic structures of (111), (211), and (311) surfaces of GaAs. J. Vac. Sci. Technol. B 1985, 3, 1167-1169.
[32]
J. Márquez,; P. Kratzer,; L. Geelhaar,; K. Jacobi,; M. Scheffler, Atomic structure of the stoichiometric GaAs(114) surface. Phys. Rev. Lett. 2001, 86, 115-118.
[33]
A. Palma,; E. Semprini,; A. Talamo,; N. Tomassini, Diffusion constant of Ga, In and As adatoms on GaAs (001) surface: Molecular dynamics calculations. Mater. Sci. Eng. B 1996, 37, 135-138.
[34]
M. Tanaka,; T. Suzuki,; T. Nishinaga, Surface diffusion of Al and Ga atoms on GaAs (001) and (111) B vicinal surfaces in molecular beam epitaxy. J. Crystal Growth 1991, 111, 168-172.
[35]
G. Biasiol,; F. Reinhardt,; A. Gustafsson,; E. Kapon, Self-limiting OMCVD growth of GaAs on V-grooved substrates with application to InGaAs/GaAs quantum wires. J. Electron. Mater. 1997, 26, 1194-1198.
[36]
J. Platen,; A. Kley,; C. Setzer,; K. Jacobi,; P. Ruggerone,; M. Scheffler, The importance of high-index surfaces for the morphology of GaAs quantum dots. J. Appl. Phys. 1999, 85, 3597-3601.
[37]
R. Nötzel,; L. Däweritz,; K. Ploog, Topography of high- and low-index GaAs surfaces. Phys. Rev. B 1992, 46, 4736-4743.
[38]
N. V. Sibirev,; M. A. Timofeeva,; A. D. Bol’shakov,; M. V. Nazarenko,; V. G. Dubrovskiĭ, Surface energy and crystal structure of nanowhiskers of III-V semiconductor compounds. Phys. Solid State 2010, 52, 1531-1538.
[39]
[40]
Y. Matsushima,; S. I. Gonda, Molecular beam epitaxy of GaP and GaAs1-xPx. Jpn. J. Appl. Phys. 1976, 15, 2093.
[41]
H. A. Fonseka,; A. S. Ameruddin,; P. Caroff,; D. Tedeschi,; M. De Luca,; F. Mura,; Y. Guo,; M. Lysevych,; F. Wang,; H. H. Tan, et al. InP-InxGa1-xAs core-multi-shell nanowire quantum wells with tunable emission in the 1.3-1.55 μm wavelength range. Nanoscale 2017, 9, 13554-13562.
[42]
M. De la Mata,; X. Zhou,; F. Furtmayr,; J. Teubert,; S. Gradečak,; M. Eickhoff,; A. Fontcuberta i Morral,; J. Arbiol, A review of MBE grown 0D, 1D and 2D quantum structures in a nanowire. J. Mater. Chem. C 2013, 1, 4300-4312.
[43]
F. Qian,; Y. Li,; S. Gradečak,; H. G. Park,; Y. J. Dong,; Y. Ding,; Z. L. Wang,; C. M. Lieber, Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 2008, 7, 701-706.
[44]
M. Karimi,; V. Jain,; M. Heurlin,; A. Nowzari,; L. Hussain,; D. Lindgren,; J. E. Stehr,; I. A. Buyanova,; A. Gustafsson,; L. Samuelson, et al. Room-temperature InP/InAsP quantum discs-in-nanowire infrared photodetectors. Nano Lett. 2017, 17, 3356-3362.
File
12274_2020_3060_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 09 July 2020
Revised: 13 August 2020
Accepted: 14 August 2020
Published: 05 January 2021
Issue date: January 2021

Copyright

© The Author(s) 2020

Acknowledgements

This work was supported by the EPSRC grants Nos. EP/P000916/1 and EP/P000886/1. The University of Warwick Electron Microscopy Research Technology Platform and the EPSRC National Epitaxy Facility are acknowledged for providing access to the equipment used. Dr. Anton Velichko is thanked for the careful reading of the manuscript.

The data set related to this publication may be obtained from https://wrap.warwick.ac.uk/140556.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/

Return