AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Improved Na storage and Coulombic efficiency in TiP2O7@C microflowers for sodium ion batteries

Jun Pan1,2Nana Wang3Lili Li4Feng Zhang1Zhenjie Cheng1Yanlu Li4Jian Yang1,2( )Yitai Qian1
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
Shenzhen Research Institute of Shandong University, Shenzhen 518000, China
Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, North Wollongong New South Wales 2500, Australia
State Key Lab of Crystal Materials, Shandong University, Jinan 250100, China
Show Author Information

Graphical Abstract

Abstract

Ti-based anode materials in sodium ion batteries have attracted extensive interests due to its abundant resources, low toxicity, easy synthesis and long cycle life. However, low coulombic efficiency and limited specific capacity affect their applications. Here, cubic-phase TiP2O7 is examined as anode materials, using in-situ/ex-situ characterization techniques. It is concluded that the redox reactions of Ti4+/Ti3+ and Ti3+/Ti0 consecutively occur during the discharge/charge processes, both of which are highly reversible. These reactions make the specific capacity of TiP2O7 even higher than the case of TiO2 that only contains a simple anion, O2-. Interestingly, Ti species participate only one of the redox reactions, due to the remarkable difference in local structures related to the sodiation process. The stable discharge/charge products in TiP2O7 reduce the side reactions and improve the coulombic efficiency as compared to TiO2. These features make it a promising Ti-based anode for sodium ion batteries. Therefore, TiP2O7@C microflowers exhibit excellent electrochemical performances, ~ 109 mAh·g-1 after 10,000 cycles at 2 A·g-1, or 95.2 mAh·g-1 at 10 A·g-1. The results demonstrate new opportunities for advanced Ti-based anodes in sodium ion batteries.

Electronic Supplementary Material

Download File(s)
12274_2020_3057_MOESM1_ESM.pdf (3.1 MB)

References

[1]
M. Li,; J. Lu,; Z. W. Chen,; K. Amine, 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.
[2]
G. Assat,; J. M. Tarascon, Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 2018, 3, 373-386.
[3]
L. Li,; Y. Zheng,; S. L. Zhang,; J. P. Yang,; Z. P. Shao,; Z. P. Guo, Recent progress on sodium ion batteries: Potential high-performance anodes. Energy Environ. Sci. 2018, 11, 2310-2340.
[4]
N. Zhang,; Y. C. Liu,; Y. Y. Lu,; X. P. Han,; F. Y. Cheng,; J. Chen, Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries. Nano Res. 2015, 8, 3384-3393.
[5]
J. Y. Hwang,; S. T. Myung,; Y. K. Sun, Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529-3614.
[6]
J. Pan,; N. N. Wang,; Y. L. Zhou,; X. F. Yang,; W. Y. Zhou,; Y. T. Qian,; J. Yang, Simple synthesis of a porous Sb/Sb2O3 nanocomposite for a high-capacity anode material in Na-ion batteries. Nano Res. 2017, 10, 1794-1803.
[7]
H. S. Hou,; X. Q. Qiu,; W. F. Wei,; Y. Zhang,; X. B. Ji, Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater. 2017, 7, 1602898.
[8]
L. F. Xiao,; Y. L. Cao,; W. A. Henderson,; M. L. Sushko,; Y. Y. Shao,; J. Xiao,; W. Wang,; M. H. Engelhard,; Z. M. Nie,; J. Liu, Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy 2016, 19, 279-288.
[9]
C. J. Wu,; W. B. Hua,; Z. Zhang,; B. H. Zhong,; Z. G. Yang,; G. L. Feng,; W. Xiang,; Z. G. Wu,; X. D. Guo, Design and synthesis of layered Na2Ti3O7 and tunnel Na2Ti6O13 hybrid structures with enhanced electrochemical behavior for sodium-ion batteries. Adv. Sci. 2018, 5, 1800519.
[10]
Y. Liu,; J. Y. Liu,; M. Y. Hou,; L. Fan,; Y. G. Wang,; Y. Y. Xia, Carbon-coated Li4Ti5O12 nanoparticles with high electrochemical performance as anode material in sodium-ion batteries. J. Mater. Chem. A 2017, 5, 10902-10908.
[11]
M. Wahid,; D. Puthusseri,; Y. Gawli,; N. Sharma,; S. Ogale, Hard carbons for sodium-ion battery anodes: Synthetic strategies, material properties, and storage mechanisms. ChemSusChem 2018, 11, 506-526.
[12]
D. Saurel,; B. Orayech,; B. W. Xiao,; D. Carriazo,; X. L. Li,; T. Rojo, From charge storage mechanism to performance: A roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv. Energy Mater. 2018, 8, 1703268.
[13]
P. Senguttuvan,; G. Rousse,; V. Seznec, J. M. Tarascon,; M. R. Palacín, Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chem. Mater. 2011, 23, 4109-4111.
[14]
S. Nie,; L. Liu,; M. Li,; J. F. Liu,; J. Xia,; Y. Zhang,; X. Y. Wang, Na2Ti3O7/C nanofibers for high-rate and ultralong-life anodes in sodium-ion batteries. ChemElectroChem 2018, 5, 3498-3505.
[15]
Y. J. Fang,; L. F. Xiao,; J. F. Qian,; Y. L. Cao,; X. P. Ai,; Y, H. Huang,; H. X. Yang, 3D graphene decorated NaTi2(PO4)3 microspheres as a superior high-rate and ultracycle-stable anode material for sodium ion batteries. Adv. Energy Mater. 2016, 6, 1502197.
[16]
D. W. Su,; S. X. Dou,; G. X. Wang, Anatase TiO2: Better anode material than amorphous and rutile phases of TiO2 for Na-ion batteries. Chem. Mater. 2015, 27, 6022-6029.
[17]
D. X. Wang,; Q. Liu,; C. J. Chen,; M. L. Li,; X. Meng,; X. F. Bie,; Y. J. Wei,; Y. H. Huang,; F, Du,; C. Z. Wang, et al. NASICON-structured NaTi2(PO4)3@C nanocomposite as the low operation-voltage anode material for high-performance sodium-ion batteries. ACS Appl. Mater. Interface 2016, 8, 2238-2246.
[18]
H. Y. Zhao,; F. Zhang,; S. M. Zhang,; S. N. He,; F. Shen,; X. G. Han,; Y. D. Yin,; C. B. Cao, Scalable synthesis of sub-100 nm hollow carbon nanospheres for energy storage applications. Nano Res. 2018, 11, 1822-1833.
[19]
T. B. Song,; H. Chen,; Z. Li,; Q. J. Xu,; H. M. Liu,; Y. G. Wang,; Y. Y. Xia, Creating an air-stable sulfur-doped black phosphorus-TiO2 composite as high-performance anode material for sodium-ion storage, Adv. Funct. Mater. 2019, 29, 1900535.
[20]
Z. Y. Le,; F. Liu,; P. Nie,; X. R. Li,; X. Y. Liu,; Z. F. Bian,; G. Chen,; H. B. Wu,; Y. F. Lu, Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 2017, 11, 2952-2960.
[21]
X. Guo,; J. Q. Zhang,; J. J. Song,; W. J. Wu,; H. Liu,; G. X. Wang, MXene encapsulated titanium oxide nanospheres for ultra-stable and fast sodium storage. Energy Storage Mater. 2018, 14, 306-313.
[22]
K. K. Li,; J. Zhang,; D. M. Lin,; D. W. Wang,; B. H. Li,; W. Lv,; S. Sun,; Y. B. He,; F. Y. Kang,; Q. H. Yang, et al. Author correction: Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes. Nat. Commun. 2019, 10, 1248.
[23]
L. M. Wu,; D. Bresser,; D. Buchholz,; G. A. Giffin,; C. R. Castro,; A. Ochel,; S. Passerini, Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles. Adv. Energy Mater. 2015, 5, 1401142.
[24]
G. Longoni,; R. L. P. Cabrera,; S. Polizzi,; M. D’Arienzo,; C. M. Mari,; Y. Cui,; R. Ruffo, Shape-controlled TiO2 nanocrystals for Na-ion battery electrodes: The role of different exposed crystal facets on the electrochemical properties. Nano Lett. 2017, 17, 992-1000.
[25]
J. Sanz,; J. E. Iglesias,; J. Soria,; E. R. Losilla,; M. A. G. Aranda,; S. Bruque, Structural disorder in the cubic 3 × 3 × 3 superstructure of TiP2O7 XRD and NMR study. Chem. Mater. 1997, 9, 996-1003.
[26]
K. T. Kim,; G. Ali,; K. Y. Chung,; C. S. Yoon,; H. S. Yashiro,; Y. K. Sun,; J. Lu,; K. Amine,; S. T. Myung, Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett. 2014, 14, 416-422.
[27]
J. Pan,; S. L. Chen,; D. P. Zhang,; X. N. Xu,; Y. W. Sun,; F. Tian,; P. Gao,; J. Yang, SnP2O7 covered carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv. Funct. Mater. 2018, 28, 1804672.
[28]
J. Pan,; S. L. Chen,; Q. Fu,; Y. W. Sun,; Y. C. Zhang,; N. Lin,; P. Gao,; J. Yang,; Y. T. Qian, Layered-structure SbPO4/reduced graphene oxide: An advanced anode material for sodium ion batteries. ACS Nano 2018, 12, 12869-12878.
[29]
J. Pan,; Y. C. Zhang,; L. L. Li,; Z. J. Cheng,; Y. L. Li,; X. F. Yang,; J. Yang,; Y. T. Qian, Polyanions enhance conversion reactions for lithium/sodium-ion batteries: The case of SbVO4 nanoparticles on reduced graphene oxide. Small Methods 2019, 3, 1900231.
[30]
P. Senguttuvan,; G. Rousse,; J. Oró-Solé,; J. M. Tarascon,; M. R. Palacín, A low temperature TiP2O7 polymorph exhibiting reversible insertion of lithium and sodium ions. J. Mater. Chem. A 2013, 1, 15284-15291.
[31]
Q. Hu,; J. Y. Liang,; J. Y. Liao,; Z. F. Tang,; X. Ding,; C. H. Chen, A comparative study on nanocrystalline layered and crystalline cubic TiP2O7 for rechargeable Li/Na/K alkali metal batteries. J. Mater. Chem. A 2018, 6, 15230-15236.
[32]
Z. T. Li,; Y. F. Dong,; J. Z. Feng,; T. Xu,; H. Ren,; C. Gao,; Y. R. Li,; M. J. Cheng,; W. T. Wu,; M. B. Wu, Controllably enriched oxygen vacancies through polymer assistance in titanium pyrophosphate as a super anode for Na/K-ion batteries. ACS Nano 2019, 13, 9227-9236.
[33]
Y. P. Wen,; L. Chen,; Y. Pang,; Z. W. Guo,; D. Bin,; Y. G. Wang,; C. X. Wang,; Y. Y. Xia, TiP2O7 and expanded graphite nanocomposite as anode material for aqueous lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 8075-8082.
[34]
G. Yee,; S. Shanbhag,; W. Wu,; K. Carlisle,; J. Chang,; J. F. Whitacre, TiP2O7 exhibiting reversible interaction with sodium ions in aqueous electrolytes. Electrochem. Commun. 2018, 86, 104-107.
[35]
C. X. Chu,; J. Yang,; Q. Q. Zhang,; N. N. Wang,; F. E. Niu,; X. N. Xu,; J. Yang,; W. L. Fan,; Y. T. Qian, Biphase-interface enhanced sodium storage and accelerated charge transfer: Flower-like anatase/bronze TiO2/C as an advanced anode material for Na-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 43648-43656.
[36]
Y. R. Sun,; L. G. Gai,; Y. Zhou,; X. Z. Zuo,; J. H. Zhou,; H. H. Jiang, Polyhierarchically structured TiP2O7/C microparticles with enhanced electrochemical performance for lithium-ion batteries. CrystEngComm 2014, 16, 10681-10691.
[37]
C. Xu,; Y. N. Xu,; C. J. Tang,; Q. L. Wei,; J. S. Meng,; L. Huang,; L. Zhou,; G. B. Zhang,; L. He,; L. Q. Mai, Carbon-coated hierarchical NaTi2(PO4)3 mesoporous microflowers with superior sodium storage performance. Nano Energy 2016, 28, 224-231.
[38]
O. Xing,; C. H. Yang,; X. H. Xiong,; F. H. Zheng,; Q. C. Pan,; C. Jin,; M. L. Liu,; K. Huang, A new rGO-overcoated Sb2Se3 nanorods anode for Na+ battery: In situ X-ray diffraction study on a live sodiation/desodiation process. Adv. Funct. Mater. 2017, 27, 1606242.
[39]
Z. X. Wei,; D. X. Wang,; M. L. Li,; Y. Guo,; C. Z. Wang,; G. Chen,; F. Du, Fabrication of hierarchical potassium titanium phosphate spheroids: A host material for sodium-ion and potassium-ion storage. Adv. Energy Mater. 2018, 8, 1801102.
[40]
L. Li,; K. H. Seng,; D. Li,; Y. Y. Xia,; H. K. Liu,; Z. P. Guo, SnSb@carbon nanocable anchored on graphene sheets for sodium ion batteries. Nano Res. 2014, 7, 1466-1476.
[41]
Z. L. Xu,; K. Lim,; K. Y. Park,; G. Yoon,; W. M. Seong,; K. Kang, Engineering solid electrolyte interphase for pseudocapacitive anatase TiO2 anodes in sodium-ion batteries. Adv. Funct. Mater. 2018, 28, 1802099.
[42]
N. N. Wang,; Z. C. Bai,; Y. T. Qian,; J. Yang, One-dimensional yolk-shell Sb@Ti-O-P nanostructures as a high-capacity and high-rate anode material for sodium ion batteries. ACS Appl. Mater. Interface 2017, 9, 447-454.
[43]
C. Zeng,; F. X. Xie,; X. F. Yang,; M. Jaroniec,; L. Zhang,; S. Z. Qiao, Ultrathin titanate nanosheets/graphene films derived from confined transformation for excellent Na/K ion storage. Angew. Chem., Int. Ed. 2018, 57, 8540-8544.
[44]
D. L. Chao,; C. R. Zhu,; P. H. Yang,; X. H. Xia,; J. L. Liu,; J. Wang,; X. F. Fan,; S. V. Savilov,; J. Y. Lin,; H. J. Fan, et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 2016, 7, 12122.
[45]
C. Wu,; P. Kopold,; Y. L. Ding,; P. A. van Aken,; J. Maier,; Y. Yu, Synthesizing porous NaTi2(PO4)3 nanoparticles embedded in 3D graphene networks for high-rate and long cycle-life sodium electrodes. ACS Nano 2015, 9, 6610-6618.
[46]
G. Z. Yang,; H. W. Song,; M. M. Wu,; C. X. Wang, Porous NaTi2(PO4)3 nanocubes: A high-rate nonaqueous sodium anode material with more than 10,000 cycle life. J. Mater. Chem. A 2015, 3, 18718-18726.
[47]
V. Augustyn,; J. Come,; M. A. Lowe,; J. W. Kim,; P. L. Taberna,; S. H. Tolbert,; H. D. Abruna,; P. Simon,; B. Dunn, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518-522.
[48]
T. Brezesinski,; J. Wang,; J. Polleux,; B. Dunn,; S. H. Tolbert, Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J. Am. Chem. Soc. 2009, 131, 1802-1809.
[49]
J. Y. Hwang,; H. L. Du,; B. N. Yun,; M. G. Jeong,; J. S. Kim,; H. Kim,; H. G. Jung,; Y. K. Sun, Carbon-free TiO2 microspheres as anode materials for sodium ion batteries. ACS Energy Lett. 2019, 4, 494-501.
Nano Research
Pages 139-147
Cite this article:
Pan J, Wang N, Li L, et al. Improved Na storage and Coulombic efficiency in TiP2O7@C microflowers for sodium ion batteries. Nano Research, 2021, 14(1): 139-147. https://doi.org/10.1007/s12274-020-3057-5
Topics:

740

Views

22

Crossref

0

Web of Science

20

Scopus

1

CSCD

Altmetrics

Received: 15 July 2020
Revised: 14 August 2020
Accepted: 16 August 2020
Published: 05 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return