AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nickel phosphonate MOF as efficient water splitting photocatalyst

Pablo Salcedo-Abraira1,2Sérgio M. F. Vilela1Artem A. Babaryk1María Cabrero-Antonino3Pedro Gregorio1Fabrice Salles4Sergio Navalón3Hermenegildo García3,( )Patricia Horcajada1,( )
IMDEA Energy, Advanced Porous Materials Unit (APMU), Avda. Ramón de la Sagra 3, E-28935 Móstoles, Madrid, Spain
Departamento de Química Inorgánica I. Fac. CC. Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
Departamento de Química and Instituto de Tecnología Química (CSIC-UPV), Universitat Politècnica de València, C/Camino de Vera, s/n, 46022 Valencia, Spain
Institut Charles Gerhardt Montpellier, UMR 5253 CNRS UM ENSCM, Université Montpellier, Place E. Bataillon, 34095 Montpellier Cedex 05, France
Show Author Information

Graphical Abstract

Abstract

A novel microporous two-dimensional (2D) Ni-based phosphonate metal-organic framework (MOF; denoted as IEF-13) has been successfully synthesized by a simple and green hydrothermal method and fully characterized using a combination of experimental and computational techniques. Structure resolution by single-crystal X-ray diffraction reveals that IEF-13 crystallizes in the triclinic space group Pī having bi-octahedra nickel nodes and a photo/electroactive tritopic phosphonate ligand. Remarkably, this material exhibits coordinatively unsaturated nickel(II) sites, free -PO3H2 and -PO3H acidic groups, a CO2 accessible microporosity, and an exceptional thermal and chemical stability. Further, its in-deep optoelectronic characterization evidences a photoresponse suitable for photocatalysis. In this sense, the photocatalytic activity for challenging H2 generation and overall water splitting in absence of any co-catalyst using UV-Vis irradiation and simulated sunlight has been evaluated, constituting the first report for a phosphonate-MOF photocatalyst. IEF-13 is able to produce up to 2,200 μmol of H2 per gram using methanol as sacrificial agent, exhibiting stability, maintaining its crystal structure and allowing its recycling. Even more, 170 μmol of H2 per gram were produced using IEF-13 as photocatalyst in the absence of any co-catalyst for the overall water splitting, being this reaction limited by the O2 reduction. The present work opens new avenues for further optimization of the photocatalytic activity in this type of multifunctional materials.

Electronic Supplementary Material

Download File(s)
12274_2020_3056_MOESM1_ESM.pdf (3.5 MB)
12274_2020_3056_MOESM2_ESM.pdf (21 KB)
12274_2020_3056_MOESM3_ESM.cif (781.7 KB)

References

[1]
G. Férey,; C. Mellot-Draznieks,; C. Serre,; F. Millange,; J. Dutour,; S. Surblé,; I. Margiolaki, A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040-2042.
[2]
H. Furukawa,; N. Ko,; Y. B. Go,; N. Aratani,; S. B. Choi,; E. Choi,; A. Ö. Yazaydin,; R. Q. Snurr,; M. O’Keeffe,; J. Kim, et al. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424-428.
[3]
O. K. Farha,; I. Eryazici,; N. C. Jeong,; B. G. Hauser,; C. E. Wilmer,; A. A. Sarjeant,; R. Q. Snurr,; S. T. Nguyen,; A. Ö. Yazaydın,; J. T. Hupp, Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit? J. Am. Chem. Soc. 2012, 134, 15016-15021.
[4]
H. C. Zhou,; S. Kitagawa, Themed issues on metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 5415-6172.
[5]
M. P. Suh,; H. J. Park,; T. K. Prasad,; D. W. Lim, Hydrogen storage in metal-organic frameworks. Chem. Rev. 2011, 112, 782-835.
[6]
M. R. Ryder,; J. C. Tan, Nanoporous metal organic framework materials for smart applications. Mater. Sci. Technol. 2014, 30, 1598-1612.
[7]
K. J. Gagnon,; H. P. Perry,; A. Clearfield, Conventional and unconventional metal-organic frameworks based on phosphonate ligands: MOFs and UMOFs. Chem. Rev. 2012, 112, 1034-1054.
[8]
S. J. I. Shearan,; N. Stock,; F. Emmerling,; J. Demel,; P. A. Wright,; K. D. Demadis,; M. Vassaki,; F. Costantino,; R. Vivani,; S. Sallard, et al. New directions in metal phosphonate and phosphinate chemistry. Crystals 2019, 9, 270.
[9]
S. De,; J. G. Zhang,; R. Luque,; N. Yan, Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy Environ. Sci. 2016, 9, 3314-3347.
[10]
Y. An,; Y. Y. Liu,; P. F. An,; J. C. Dong,; B. Y. Xu,; Y. Dai,; X. Y. Qin,; X. Y. Zhang,; M. H. Whangbo,; B. B. Huang, NiII coordination to an Al-based metal-organic framework made from 2-aminoterephthalate for photocatalytic overall water splitting. Angew. Chem., Int. Ed. 2017, 56, 3036-3040.
[11]
H. F. Chen,; S. J. Yang,; Z. H. Tsai,; W. Y. Hung,; T. C. Wang,; K. T. Wong, 1,3,5-Triazine derivatives as new electron transport-type host materials for highly efficient green phosphorescent OLEDs. J. Mater. Chem. 2009, 19, 8112-8118.
[12]
M. Taddei,; F. Costantino,; F. Marmottini,; A. Comotti,; P. Sozzani,; R. Vivani, The first route to highly stable crystalline microporous zirconium phosphonate metal-organic frameworks. Chem. Commun. 2014, 50, 14831-14834.
[13]
A. Dhakshinamoorthy,; A. M. Asiri,; H. García, Metal-organic framework (MOF) compounds: Photocatalysts for redox reactions and solar fuel production. Angew. Chem., Int. Ed. 2016, 55, 5414-5445.
[14]
Y. Shi,; A. F. Yang,; C. S. Cao,; B. Zhao, Applications of MOFs: Recent advances in photocatalytic hydrogen production from water. Coord. Chem. Rev. 2019, 390, 50-75.
[15]
A. Dhakshinamoorthy,; A. M. Asiri,; H. Garcia, 2D metal-organic frameworks as multifunctional materials in heterogeneous catalysis and electro/photocatalysis. Adv. Mater. 2019, 31, 1900617.
[16]
E. Carbonell,; F. Ramiro-Manzano,; I. Rodríguez,; A. Corma,; F. Meseguer,; H. García, Enhancement of TiO2 photocatalytic activity by structuring the photocatalyst film as photonic sponge. Photochem. Photobiol. Sci. 2008, 7, 931-935.
[17]
Z. Abdin,; A. Zafaranloo,; A. Rafiee,; W. Mérida,; W. Lipiński,; K. R. Khalilpour, Hydrogen as an energy vector. Renew. Sustain. Energy Rev. 2020, 120, 109620.
[18]
Q. Wang,; K. Domen, Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919-985.
[19]
H. Li,; Y. Sun,; Z. Y. Yuan,; Y. P. Zhu,; T. Y. Ma, Titanium phosphonate based metal-organic frameworks with hierarchical porosity for enhanced photocatalytic hydrogen evolution. Angew. Chem. 2018, 130, 3276-3281.
[20]
S. Remiro-Buenamañana,; M. Cabrero-Antonino,; M. Martínez-Guanter,; M. Álvaro,; S. Navalón,; H. García, Influence of co-catalysts on the photocatalytic activity of MIL-125(Ti)-NH2 in the overall water splitting. Appl. Catal. B Environ. 2019, 254, 677-684.
[21]
M. Fiaz,; M. Athar, Modification of MIL-125(Ti) by incorporating various transition metal oxide nanoparticles for enhanced photocurrent during hydrogen and oxygen evolution reactions. ChemistrySelect 2019, 4, 8508-8515.
[22]
G. M. Sheldrick, SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3-8.
[23]
G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3-8.
[24]
D. Frenkel,; B. Smit, Understanding Molecular Simulation; Academic Press: San Diego, 2001.
[25]
A. K. Rappe,; C. J. Casewit,; K. S. Colwell,; W. A. Goddard III,; W. M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024-10035.
[26]
J. L. F. Abascal,; C. Vega, A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 2005, 123, 234505.
[27]
F. Salles,; D. I. Kolokolov,; H. Jobic,; G. Maurin,; P. L. Llewellyn,; T. Devic,; C. Serre,; G. Ferey, Adsorption and diffusion of H2 in the MOF type systems MIL-47(V) and MIL-53(Cr): A combination of microcalorimetry and QENS experiments with molecular simulations. J. Phys. Chem. C 2009, 113, 7802-7812.
[28]
J. G. Harris,; K. H. Yung, Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. J. Phys. Chem. 1995, 99, 12021-12024.
[29]
N. Stock, High-throughput investigations employing solvothermal syntheses. Microporous Mesoporous Mater. 2010, 129, 287-295.
[30]
A. L. Spek, Structure validation in chemical crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2009, 65, 148-155.
[31]
H. Frost,; T. Düren,; R. Q. Snurr, Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. J. Phys. Chem. B 2006, 110, 9565-9570.
[32]
J. G. Duan,; M. Higuchi,; R. Krishna,; T. Kiyonaga,; Y. Tsutsumi,; Y. Sato,; Y. Kubota,; M. Takata,; S. Kitagawa, High CO2/N2/O2/CO separation in a chemically robust porous coordination polymer with low binding energy. Chem. Sci. 2014, 5, 660-666.
[33]
C. Chen,; Y. R. Lee,; W. S. Ahn, CO2 adsorption over metal-organic frameworks: A mini review. J. Nanosci. Nanotechnol. 2016, 16, 4291-4301.
[34]
L. Boudjema,; J. Long,; F. Salles,; J. Larionova,; Y. Guari,; P. Trens, A switch in the hydrophobic/hydrophilic gas-adsorption character of prussian blue analogues: An affinity control for smart gas sorption. Chem.—Eur. J. 2019, 25, 479-484.
[35]
F. Salles,; S. Bourrelly,; H. Jobic,; T. Devic,; V. Guillerm,; P. Llewellyn,; C. Serre,; G. Ferey,; G. Maurin, Molecular insight into the adsorption and diffusion of water in the versatile hydrophilic/hydrophobic flexible MIL-53(Cr) MOF. J. Phys. Chem. C 2011, 115, 10764-10776.
[36]
L. D. Freedman,; G. O. Doak, The preparation and properties of phosphonic acids. Chem. Rev. 1957, 57, 479-523.
[37]
G. Wilkinson,; R. D. Gillard,; J. A. McCleverty, Comprehensive Coordination Chemistry: The Synthesis, Reactions, Properties and Applications of Coordination Compounds; Pergamon Press: Oxford, 1987.
[38]
C. Wang,; D. M. Liu,; W. B. Lin, Metal-organic frameworks as a tunable platform for designing functional molecular materials. J. Am. Chem. Soc. 2013, 135, 13222-13234.
Nano Research
Pages 450-457
Cite this article:
Salcedo-Abraira P, Vilela SMF, Babaryk AA, et al. Nickel phosphonate MOF as efficient water splitting photocatalyst. Nano Research, 2021, 14(2): 450-457. https://doi.org/10.1007/s12274-020-3056-6
Topics:

814

Views

71

Crossref

N/A

Web of Science

68

Scopus

6

CSCD

Altmetrics

Received: 14 February 2020
Revised: 14 July 2020
Accepted: 14 August 2020
Published: 21 September 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return