Journal Home > Volume 14 , Issue 1

Over recent years, catalytic materials of Fe-N-C species have been recognized being active for oxygen reduction reaction (ORR). However, the identification of active site remains challenging as it generally involves a pyrolysis process and mixed components being obtained. Herein Fe3C/C and Fe2N/C samples were synthesized by temperature programmed reduction of Fe precursors in 15% CH4/H2 and pure NH3, respectively. By acid leaching of Fe2N/C sample, only single sites of FeN4 species were presented, providing an ideal model for identification of catalytic functions of the single sites of FeN4 in ORR. A correlation was conducted between the concentration of FeN4 in low spin state by Mössbauer spectra and the kinetic current density at 0.8 V in alkaline media, and such a structure-performance correlation assures the catalytic roles of low spin FeN4 species as highly active sites for the ORR.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly active sites of low spin FeN4 species: The identification and the ORR performance

Show Author's information Huizhu Cai1Bingbing Chen1Xiao Zhang1Yuchen Deng2Dequan Xiao3Ding Ma2( )Chuan Shi1( )
State Key Laboratory of Fine Chemicals, College of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
College of Chemistry and Molecular Engineering and College of Engineering, Peking University, Beijing 100871, China
Center for Integrative Materials Discovery, Department of Chemistry and Chemical Engineering, University of New Haven, CT 06516, USA

Abstract

Over recent years, catalytic materials of Fe-N-C species have been recognized being active for oxygen reduction reaction (ORR). However, the identification of active site remains challenging as it generally involves a pyrolysis process and mixed components being obtained. Herein Fe3C/C and Fe2N/C samples were synthesized by temperature programmed reduction of Fe precursors in 15% CH4/H2 and pure NH3, respectively. By acid leaching of Fe2N/C sample, only single sites of FeN4 species were presented, providing an ideal model for identification of catalytic functions of the single sites of FeN4 in ORR. A correlation was conducted between the concentration of FeN4 in low spin state by Mössbauer spectra and the kinetic current density at 0.8 V in alkaline media, and such a structure-performance correlation assures the catalytic roles of low spin FeN4 species as highly active sites for the ORR.

Keywords: oxygen reduction reaction, electrocatalysis, single sites of FeN4, structure-performance correlation

References(60)

[1]
B. C. H. Steele,; A. Heinzel, Materials for fuel-cell technologies. Nature 2001, 414, 345-352.
[2]
H. W. Liang,; W. Wei,; Z. S. Wu,; X. L. Feng,; K. Müllen, Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 16002-16005.
[3]
R. G. Cao,; R. Thapa,; H. Kim,; X. D. Xu,; M. Gyu Kim,; Q. Li,; N. Park,; M. L. Liu,; J. Cho, Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 2013, 4, 2076.
[4]
M. K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43-51.
[5]
T. T. Sun,; Y. L. Li,; T. T. Cui,; L. B. Xu,; Y. G. Wang,; W. X. Chen,; P. P. Zhang,; T. Y. Zheng,; X. Z. Fu,; S. L. Zhang, et al. Engineering of coordination environment and multiscale structure in single-site copper catalyst for superior electrocatalytic oxygen reduction. Nano Lett. 2020, 20, 6206-6214.
[6]
M. Lefèvre,; E. Proietti,; F. Jaouen,; J. P. Dodelet, Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71-74.
[7]
X. Y. Li,; H. P. Rong,; J. T. Zhang,; D. S. Wang,; Y. D. Li, Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842-1855.
[8]
X. Y. Cui,; S. B. Yang,; X. X. Yan,; J. G. Leng,; S. Shuang,; P. M. Ajayan,; Z. J. Zhang, Pyridinic-nitrogen-dominated graphene aerogels with Fe-N-C coordination for highly efficient oxygen reduction reaction. Adv. Funct. Mater. 2016, 26, 5708-5717.
[9]
Y. Z. Chen,; C. M. Wang,; Z. Y. Wu,; Y. J. Xiong,; Q. Xu,; S. H. Yu,; H. L. Jiang, From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010-5016.
[10]
B. Y. Guan,; L. Yu,; X. W. Lou, A dual-metal-organic-framework derived electrocatalyst for oxygen reduction. Energy Environ. Sci. 2016, 9, 3092-3096.
[11]
H. W. Liang,; X. D. Zhuang,; S. Bruller,; X. L. Feng,; K. Müllen, Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nat. Commun. 2014, 5, 4973.
[12]
S. H. Lee,; J. Kim,; D. Y. Chung,; J. M. Yoo,; H. S. Lee,; M. J. Kim,; B. S. Mun,; S. G. Kwon,; Y. E. Sung,; T. Hyeon, Design principle of Fe-N-C electrocatalysts: How to optimize multimodal porous structures? J. Am. Chem. Soc. 2019, 141, 2035-2045.
[13]
P. Z. Chen,; T. P. Zhou,; L. L. Xing,; K. Xu,; Y. Tong,; H. Xie,; L. D. Zhang,; W. S. Yan,; W. S. Chu,; C. Z. Wu, et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem., Int. Ed. 2017, 56, 610-614.
[14]
B. You,; N. Jiang,; M. L. Sheng,; W. S. Drisdell,; J. Yano,; Y. J. Sun, Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction. ACS Catal. 2015, 5, 7068-7076.
[15]
W. J. Wan,; X. J. Liu,; H. Y. Li,; X. Y. Peng,; D. S. Xi,; J. Luo, 3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Appl. Catal. B: Environ. 2019, 240, 193-200.
[16]
R. Jasinski, A new fuel cell cathode catalyst. Nature 1964, 201, 1212-1213.
[17]
H. L. Tang,; Y. Zeng,; Y. X. Zeng,; R. Wang,; S. C. Cai,; C. Liao,; H. P. Cai,; X. H. Lu,; P. Tsiakaras, Iron-embedded nitrogen doped carbon frameworks as robust catalyst for oxygen reduction reaction in microbial fuel cells. Appl. Catal. B: Environ. 2017, 202, 550-556.
[18]
W. X. Yang,; X. J. Liu,; X. Y. Yue,; J. B. Jia,; S. J. Guo, Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. J. Am. Chem. Soc. 2015, 137, 1436-1439.
[19]
D. Sebastián,; A. Serov,; I. Matanovic,; K. Artyushkova,; P. Atanassov,; A. S. Aricò,; V. Baglio, Insights on the extraordinary tolerance to alcohols of Fe-N-C cathode catalysts in highly performing direct alcohol fuel cells. Nano Energy 2017, 34, 195-204.
[20]
C. H. Li,; H. X. Liu,; Z. Y. Yu, Novel and multifunctional inorganic mixing salt-templated 2D ultrathin Fe/Co-N/S-carbon nanosheets as effectively bifunctional electrocatalysts for Zn-air batteries. J. Am. Chem. Soc. 2019, 241, 95-103.
[21]
B. C. Hu,; Z. Y. Wu,; S. Q. Chu,; H. W. Zhu,; H. W. Liang,; J. Zhang,; S. H. Yu, SiO2-protected shell mediated templating synthesis of Fe- N-doped carbon nanofibers and their enhanced oxygen reduction reaction performance. Energy Environ. Sci. 2018, 11, 2208-2215.
[22]
M. S. Thorum,; J. M. Hankett,; A. A. Gewirth, Poisoning the oxygen reduction reaction on carbon-supported Fe and Cu electrocatalysts: Evidence for metal-centered activity. J. Phys. Chem. Lett. 2011, 2, 295-298.
[23]
M. L. Xiao,; J. B. Zhu,; L. G. Feng,; C. P. Liu,; W. Xing, Meso/ macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv. Mater. 2015, 27, 2521-2527.
[24]
J. Wei,; Y. X. Hu,; Y. Liang,; B. Kong,; J. Zhang,; J. C. Song,; Q. L. Bao,; G. P. Simon,; S. P. Jiang,; H. T. Wang, Nitrogen-doped nanoporous carbon/graphene nano-sandwiches: Synthesis and application for efficient oxygen reduction. Adv. Funct. Mater. 2015, 25, 5768-5777.
[25]
Y. S. Zhu,; B. S. Zhang,; X. Liu,; D. W. Wang,; D. S. Su, Unravelling the structure of electrocatalytically active Fe-N complexes in carbon for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2014, 53, 10673-10677.
[26]
Q. R. Li,; G. Wan,; H. Zhao,; L. Y. Pan,; N. Wang,; W. P. Zhao,; X. X. Zhou,; X. Z. Cui,; H. R. Chen, Nitrogen-doped carbon vesicles with dual iron-based sites for efficient oxygen reduction. ChemSusChem 2017, 10, 499-505.
[27]
B. Y. Guan,; S. L. Zhang,; X. W. D. Lou, Realization of walnut-shaped particles with macro-/mesoporous open channels through pore architecture manipulation and their use in electrocatalytic oxygen reduction. Angew. Chem., Int. Ed. 2018, 57, 6176-6180.
[28]
K. Yuan,; S. Sfaelou,; M. Qiu,; D. Lützenkirchen-Hecht,; X. D. Zhuang,; Y. W. Chen,; C. Yuan,; X. L. Feng,; U. Scherf, Synergetic contribution of boron and Fe-Nx species in porous carbons toward efficient electrocatalysts for oxygen reduction reaction. ACS Energy Lett. 2018, 3, 252-260.
[29]
M. Lefèvre,; J. P. Dodelet,; P. Bertrand, Molecular oxygen reduction in PEM fuel cells:  Evidence for the simultaneous presence of two active sites in Fe-based catalysts. J. Phys. Chem. B 2002, 106, 8705-8713.
[30]
S. Kabir,; K. Artyushkova,; B. Kiefer,; P. Atanassov, Computational and experimental evidence for a new TM-N3/C moiety family in non-PGM electrocatalysts. Phys. Chem. Chem. Phys. 2015, 17, 17785-17789.
[31]
W. J. Jiang,; L. Gu,; L. Li,; Y. Zhang,; X. Zhang,; L. J. Zhang,; J. Q. Wang,; J. S. Hu,; Z. D. Wei,; L. J. Wan, Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. J. Am. Chem. Soc. 2016, 138, 3570-3578.
[32]
S. Ratso,; N. R. Sahraie,; M. T. Sougrati,; M. Käärik,; M. Kook,; R. Saar,; P. Paiste,; Q. Y. Jia,; J. Leis,; S. Mukerjee, et al. Synthesis of highly-active Fe-N-C catalysts for PEMFC with carbide-derived carbons. J. Mater. Chem. A 2018, 6, 14663-14674.
[33]
Z. J. Liu,; J. Yu,; X. Y. Li,; L. X. Zhang,; D. Luo,; X. H. Liu,; X. W. Liu,; S. B. Liu,; H. B. Feng,; G. L. Wu, et al. Facile synthesis of N-doped carbon layer encapsulated Fe2N as an efficient catalyst for oxygen reduction reaction. Carbon 2018, 127, 636-642.
[34]
X. X. Huang,; Z. Y. Yang,; B. Dong,; Y. Z. Wang,; T. Y. Tang,; Y. L. Hou, In situ Fe2N@N-doped porous carbon hybrids as superior catalysts for oxygen reduction reaction. Nanoscale 2017, 9, 8102-8106.
[35]
A. Q. Zhu,; L. L. Qiao,; P. F. Tan,; Y. J. Ma,; W. X. Zeng,; R. Dong,; C. Ma,; J. Pan, Iron-nitrogen-carbon species for oxygen electro-reduction and Zn-air battery: Surface engineering and experimental probe into active sites. Appl. Catal. B: Environ. 2019, 254, 601-611.
[36]
Y. Yu,; D. J. Xiao,; J. Ma,; C. L. Chen,; K. Li,; J. Ma,; Y. Liao,; L. R. Zheng,; X. Zuo, The self-template synthesis of highly efficient hollow structure Fe/N/C electrocatalysts with Fe-N coordination for the oxygen reduction reaction. RSC Adv. 2018, 8, 24509-24516.
[37]
L. Jiao,; G. Wan,; R. Zhang,; H. Zhou,; S. H. Yu,; H. L. Jiang, From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: Efficient oxygen reduction in both alkaline and acidic media. Angew. Chem., Int. Ed. 2018, 57, 8525-8529.
[38]
J. Zhang,; C. Y. Zheng,; M. L. Zhang,; Y. J. Qiu,; Q. Xu,; W. C. Cheong,; W. X. Chen,; L. R. Zheng,; L. Gu,; Z. P. Hu, et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res., in press, .
[39]
P. Xu,; J. Zhang,; G. P. Jiang,; F. Hassan,; J. Y. Choi,; X. G. Fu,; P. Zamani,; L. J. Yang,; D. Banham,; S. Y. Ye, et al. Embellished hollow spherical catalyst boosting activity and durability for oxygen reduction reaction. Nano Energy 2018, 51, 745-753.
[40]
Z. Y. Wu,; X. X. Xu,; B. C. Hu,; H. W. Liang,; Y. Lin,; L. F. Chen,; S. H. Yu, Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew. Chem., Int. Ed. 2015, 54, 8179-8183.
[41]
R. Jiang,; L. Li,; T. Sheng,; G. F. Hu,; Y. G. Chen,; L. Y. Wang, Edge-site engineering of atomically dispersed Fe-N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 2018, 140, 11594-11598.
[42]
J. S. Li,; J. J. Chen,; H. Wan,; J. Xiao,; Y. G. Tang,; M. Liu,; H. Y. Wang, Boosting oxygen reduction activity of Fe-N-C by partial copper substitution to iron in Al-air batteries. Appl. Catal. B: Environ. 2019, 242, 209-217.
[43]
W. G. Liu,; L. L. Zhang,; X. Liu,; X. Y. Liu,; X. F. Yang,; S. Miao,; W. T. Wang,; A. Q. Wang,; T. Zhang, Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C-H bond. J. Am. Chem. Soc. 2017, 139, 10790-10798.
[44]
Q. H. Li,; W. X. Chen,; H. Xiao,; Y. Gong,; Z. Li,; L. R. Zheng,; X. S. Zheng,; W. S. Yan,; W. C. Cheong,; R. A. Shen, et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, 1800588.
[45]
J. D. Yi,; R. Xu,; Q. Wu,; T. Zhang,; K. T. Zang,; J. Luo,; Y. L. Liang,; Y. B. Huang,; R. Cao, Atomically dispersed iron-nitrogen active sites within porphyrinic triazine-based frameworks for oxygen reduction reaction in both alkaline and acidic media. ACS Energy Lett. 2018, 3, 883-889.
[46]
Y. J. Chen,; S. F. Ji,; Y. G. Wang,; J. C. Dong,; W. X. Chen,; Z. Li,; R. A. Shen,; L. R. Zheng,; Z. B. Zhuang,; D. S. Wang, et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937-6941.
[47]
S. F. An,; G. H. Zhang,; T. W. Wang,; W. N. Zhang,; K. Y. Li,; C. S. Song,; J. T. Miller,; S. Miao,; J. H. Wang,; X. W. Guo, High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes. ACS Nano 2018, 12, 9441-9450.
[48]
Y. Xiong,; W. M. Sun,; P. Y. Xin,; W. X. Chen,; X. S. Zheng,; W. S. Yan,; L. R. Zheng,; J. C. Dong,; J. Zhang,; D. S. Wang, et al. Gram-scale synthesis of high-loading single-atomic-site Fe catalysts for effective epoxidation of styrene. Adv. Mater., in press, .
[49]
U. I. Kramm,; J. Herranz,; N. Larouche,; T. M. Arruda,; M. Lefèvre,; F. Jaouen,; P. Bogdanoff,; S. Fiechter,; I. Abs-Wurmbach,; S. Mukerjee, et al. Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells. Phys. Chem. Chem. Phys. 2012, 14, 11673-11688.
[50]
Q. Y. Jia,; N. Ramaswamy,; U. Tylus,; K. Strickland,; J. K. Li,; A. Serov,; K. Artyushkova,; P. Atanassov,; J. Anibal,; C. Gumeci, et al. Spectroscopic insights into the nature of active sites in iron- nitrogen-carbon electrocatalysts for oxygen reduction in acid. Nano Energy 2016, 29, 65-82.
[51]
X. N. Li,; K. Y. Zhu,; J. F. Pang,; M. Tian,; J. Y. Liu,; A. I. Rykov,; M. Y. Zheng,; X. D. Wang,; X. F. Zhu,; Y. Q. Huang, et al. Unique role of Mössbauer spectroscopy in assessing structural features of heterogeneous catalysts. Appl. Catal. B: Environ. 2018, 224, 518-532.
[52]
J. A. Varnell,; E. C. M. Tse,; C. E. Schulz,; T. T. Fister,; R. T. Haasch,; J. Timoshenko,; A. I. Frenkel,; A. A. Gewirth, Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts. Nat. Commun. 2016, 7, 12582.
[53]
J. C. Park,; S. C. Yeo,; D. H. Chun,; J. T. Lim,; J. I. Yang,; H. T. Lee,; S. Hong,; H. M. Lee,; C. S. Kim,; H. Jung, Highly activated K-doped iron carbide nanocatalysts designed by computational simulation for Fischer-Tropsch synthesis. J. Mater. Chem. A 2014, 2, 14371-14379.
[54]
M. Ferrandon,; A. J. Kropf,; D. J. Myers,; K. Artyushkova,; U. Kramm,; P. Bogdanoff,; G. Wu,; C. M. Johnston,; P. Zelenay, Multitechnique characterization of a polyaniline-iron-carbon oxygen reduction Catalyst. J. Phys. Chem. C 2012, 116, 16001-16013.
[55]
A. Zitolo,; V. Goellner,; V. Armel,; M. T. Sougrati,; T. Mineva,; L. Stievano,; E. Fonda,; F. Jaouen, Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 2015, 14, 937-942.
[56]
U. I. Kramm,; M. Lefèvre,; N. Larouche,; D. Schmeisser,; J. P. Dodelet, Correlations between mass activity and physicochemical properties of Fe/N/C catalysts for the ORR in PEM fuel cell via 57Fe Mössbauer spectroscopy and other techniques. J. Am. Chem. Soc. 2014, 136, 978-985.
[57]
C. Zang,; Y. G. Liu,; Z. J. Xu,; C. W. Tse,; X. G. Guan,; J. H. Wei,; J. S. Huang,; C. M. Che, Highly enantioselective iron-catalyzed cis-dihydroxylation of alkenes with hydrogen peroxide oxidant via an Fe-OOH reactive intermediate. Angew. Chem., Int. Ed. 2016, 55, 10253-10257.
[58]
U. I. Kramm,; I. Herrmann-Geppert,; J. Behrends,; K. Lips,; S. Fiechter,; P. Bogdanoff, On an easy way to prepare metal-nitrogen doped carbon with exclusive presence of MeN4-type sites active for the ORR. J. Am. Chem. Soc. 2016, 138, 635-640.
[59]
Y. F. Chen,; Z. J. Li,; Y. B. Zhu,; D. M. Sun,; X. E. Liu,; L. Xu,; Y. W. Tang, Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction. Adv. Mater. 2019, 31, 1806312.
[60]
A. K. Mechler,; N. R. Sahraie,; V. Armel,; A. Zitolo,; M. T. Sougrati,; J. N. Schwämmlein,; D. J. Jones,; F. Jaouen, Stabilization of iron-based fuel cell catalysts by non-catalytic platinum. J. Electrochem. Soc. 2018, 165, F1084.
File
12274_2020_3054_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 May 2020
Revised: 12 August 2020
Accepted: 12 August 2020
Published: 05 January 2021
Issue date: January 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

The work was supported by the National Key R&D Program of China (No. 2017YFA0700103), the National Natural Science Foundation of China (Nos. 21932002, 21872014, 21707015, 21902018, and 21577013), the Postdoctoral Science Foundation of China (Nos. 2019T120210, 2018M641687) and the Natural Science Foundation of Liaoning Province (No. 2019-MS-053).

Return