Journal Home > Volume 14 , Issue 1

Inorganic perovskite lasers are of particular interest, with much recent work focusing on Fabry-Pérot cavity-forming nanowires. We demonstrate the direct observation of lasing from transverse electromagnetic (TEM) modes with a long coherence time ~ 9.5 ps in coupled CsPbBr3 quantum dots, which dispense with an external cavity resonator and show how the wavelength of the modes can be controlled via two independent tuning-mechanisms. Controlling the pump power allowed us to fine-tune the TEM mode structure to the emission wavelength, thus providing a degree of control over the properties of the lasing signal. The temperature-tuning provided an additional degree of control over the wavelength of the lasing peak, importantly, maintained a constant full width at half maximum (FWHM) over the entire tuning range without mode-hopping.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Coarse and fine-tuning of lasing transverse electromagnetic modes in coupled all-inorganic perovskite quantum dots

Show Author's information Youngsin Park1,§Guanhua Ying2,§Atanu Jana1,§Vitaly Osokin2Claudius C. Kocher2Tristan Farrow3,2( )Robert A. Taylor2( )Kwang S. Kim1( )
School of Natural Science, Ulsan National Institute of Science and Technologh, Ulsan 44919, Republic of Korea
Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
Centre for Quantum Technologies, National University of Singapore, Science Drive 2, Singapore 117543, Singapore

§ Youngsin Park, Guanhua Ying, and Atanu Jana contributed equally to this work.

Abstract

Inorganic perovskite lasers are of particular interest, with much recent work focusing on Fabry-Pérot cavity-forming nanowires. We demonstrate the direct observation of lasing from transverse electromagnetic (TEM) modes with a long coherence time ~ 9.5 ps in coupled CsPbBr3 quantum dots, which dispense with an external cavity resonator and show how the wavelength of the modes can be controlled via two independent tuning-mechanisms. Controlling the pump power allowed us to fine-tune the TEM mode structure to the emission wavelength, thus providing a degree of control over the properties of the lasing signal. The temperature-tuning provided an additional degree of control over the wavelength of the lasing peak, importantly, maintained a constant full width at half maximum (FWHM) over the entire tuning range without mode-hopping.

Keywords: perovskite quantum dots, coherent lasing, transverse electromagnetic mode, stimulated emission

References(29)

[1]
M. Z. Liu,; M. B. Johnston,; H. J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395-398.
[2]
H. Cho,; S. H. Jeong,; M. H. Park,; Y. H. Kim,; C. Wolf,; C. L. Lee,; J. H. Heo,; A. Sadhanala,; N. Myoung,; S. Yoo, et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 2015, 350, 1222-1225.
[3]
M. A. Green,; A. Ho-Baillie,; H. J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506-514.
[4]
C. K. Møller, Crystal structure and photoconductivity of cæsium plumbohalides. Nature 1958, 182, 1436.
[5]
M. M. Lee,; J. Teuscher,; T. Miyasaka,; T. N. Murakami,; H. J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643-647.
[6]
Q. Zhang,; S. T. Ha,; X. F. Liu,; T. C. Sum,; Q. H. Xiong, Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 2014, 14, 5995-6001.
[7]
S. W. Eaton,; M. L. Lai,; N. A. Gibson,; A. B. Wong,; L. T. Dou,; J. Ma,; L. W. Wang,; S. R. Leone,; P. D. Yang, Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. USA 2016, 113, 1993-1998.
[8]
Y. P. Fu,; H. M. Zhu,; C. C. Stoumpos,; Q. Ding,; J. Wang,; M. G. Kanatzidis,; X. Y. Zhu,; S. Jin, Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). ACS Nano 2016, 10, 7963-7972.
[9]
W. N. Du,; S. Zhang,; J. Shi,; J. Chen,; Z. Y. Wu,; Y. Mi,; Z. X. Liu,; Y. Z. Li,; X. Y. Sui,; R. Wang, et al. Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry-Pérot cavity. ACS Photonics 2018, 5, 2051-2059.
[10]
K. Park,; J. W. Lee,; J. D. Kim,; N. S. Han,; D. M. Jang,; S. Jeong,; J. Park,; J. K. Song, Light-matter interactions in cesium lead halide perovskite nanowire lasers. J. Phys. Chem. Lett. 2016, 7, 3703-3710.
[11]
S. Yakunin,; L. Protesescu,; F. Krieg,; M. I. Bodnarchuk,; G. Nedelcu,; M. Humer,; G. De Luca,; M. Fiebig,; W. Heiss,; M. V. Kovalenko, Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056.
[12]
Y. Wang,; X. M. Li,; J. Z. Song,; L. Xiao,; H. B. Zeng,; H. D. Sun, All-inorganic colloidal perovskite quantum dots: A new class of lasing materials with favorable characteristics. Adv. Mater. 2015, 27, 7101-7108.
[13]
T. T. Xuan,; X. F. Yang,; S. Q. Lou,; J. J. Huang,; Y. Liu,; J. B. Yu,; H. L. Li,; K. L. Wong,; C. X. Wang,; J. Wang, Highly stable CsPbBr3 quantum dots coated with alkyl phosphate for white light-emitting diodes. Nanoscale 2017, 9, 15286-15290.
[14]
X. Chen,; H. W. Hu,; Z. M. Xia,; W. Gao,; W. Y. Gou,; Y. Q. Qu,; Y. Y. Ma, CsPbBr3 perovskite nanocrystals as highly selective and sensitive spectrochemical probes for gaseous HCl detection. J. Mater. Chem. C 2017, 5, 309-313.
[15]
A. Swarnkar,; R. Chulliyil,; V. K. Ravi,; M. Irfanullah,; A. Chowdhury,; A. Nag, Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional Quantum dots. Angew. Chem., Int. Ed. 2015, 127, 15644-15648.
[16]
C. C. Stoumpos,; C. D. Malliakas,; J. A. Peters,; Z. F. Liu,; M. Sebastian,; J. Im,; T. C. Chasapis,; A. C. Wibowo,; D. Y. Chung,; A. J. Freeman, et al. Crystal growth of the perovskite semiconductor CsPbBr3: A new material for high-energy radiation detection. Cryst. Growth Des. 2013, 13, 2722-2727.
[17]
X. X. Di,; Z. M. Hu,; J. T. Jiang,; M. L. He,; L. Zhou,; W. D. Xiang,; X. J. Liang, Use of long-term stable CsPbBr3 perovskite quantum dots in phospho-silicate glass for highly efficient white LEDs. Chem. Commun. 2017, 53, 11068-11071.
[18]
Z. Y. Dang,; J. Shamsi,; F. Palazon,; M. Imran,; Q. A. Akkerman,; S. Park,; G. Bertoni,; O. Prato,; R. Brescia,; L. Manna, In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals. ACS Nano 2017, 11, 2124-2132.
[19]
H. M. Zhu,; Y. P. Fu,; F. Meng,; X. X. Wu,; Z. Z. Gong,; Q. Ding,; M. V. Gustafsson,; M. T. Trinh,; S. Jin,; X. Y. Zhu, Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 2015, 14, 636-642.
[20]
M. A. Becker,; R. Vaxenburg,; G. Nedelcu,; P. C. Sercel,; A. Shabaev,; M. J. Mehl,; J. G. Michopoulos,; S. G. Lambrakos,; N. Bernstein,; J. L. Lyons, et al. Bright triplet excitons in caesium lead halide perovskites. Nature 2018, 553, 189-193.
[21]
G. Rainò,; M. A. Becker,; M. I. Bodnarchuk,; R. F. Mahrt,; M. V. Kovalenko,; T. Stöferle, Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 2018, 563, 671-675.
[22]
J. Enderlein,; F. Pampaloni, Unified operator approach for deriving Hermite-Gaussian and Laguerre-Gaussian laser modes. J. Opt. Soc. Am. A 2004, 21, 1553-1558.
[23]
C. Zhou,; Y. C. Zhong,; H. X. Dong,; W. B. Zheng,; J. Q. Tan,; Q. Jie,; A. L. Pan,; L. Zhang,; W. Xie, Cooperative excitonic quantum ensemble in perovskite-assembly superlattice microcavities. Nat. Commun. 2020, 11, 329.
[24]
J. H. Fu,; Q. Xu,; G. F. Han,; B. Wu,; C. H. A. Huan,; M. L. Leek,; T. C. Sum, Hot carrier cooling mechanisms in halide perovskites. Nat. Commun. 2017, 8, 1300.
[25]
H. H. Fang,; S. Adjokatse,; S. Y. Shao,; J. Even,; M. A. Loi, Long-lived hot-carrier light emission and large blue shift in formamidinium tin triiodide perovskites. Nat. Commun. 2018, 9, 243.
[26]
Y. F. Jia,; R. A. Kerner,; A. J. Grede,; B. P. Rand,; N. C. Giebink, Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor. Nat. Photonics 2017, 11, 784-788.
[27]
C. Dang,; J. Lee,; C. Breen,; J. S. Steckel,; S. Coe-Sullivan,; A. Nurmikko, Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat. Nanotechnol. 2012, 7, 335-339.
[28]
V. I. Klimov,; A. A. Mikhailovsky,; S. Xu,; A. Malko,; J. A. Hollingsworth,; C. A. Leatherdale,; H. J. Eisler,; M. G. Bawendi, Optical gain and stimulated emission in nanocrystal quantum dots. Science 2000, 290, 314-317.
[29]
N. Yantara,; S. Bhaumik,; F. Yan,; D. Sabba,; H. A. Dewi,; N. Mathews,; P. P. Boix,; H. V. Demir,; S. Mhaisalkar, Inorganic halide perovskites for efficient light-emitting diodes. J. Phys. Chem. Lett. 2015, 6, 4360-4364.
File
12274_2020_3051_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 20 May 2020
Revised: 10 August 2020
Accepted: 11 August 2020
Published: 05 January 2021
Issue date: January 2021

Copyright

© The Author(s) 2020

Acknowledgements

This work was supported by Basic Science Research Program and National Honor Scientist Program through the National Research Foundation of Korea (NRF) (Nos. 2010-0020414 and 2018R1D1A1B07043676). T. F. acknowledges support from the Centre for Quantum Technologies, National University of Singapore.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return