Journal Home > Volume 14 , Issue 6

Metal halide perovskites, as a new generation of optoelectronic materials, have attracted a great deal of interest due to their remarkable intrinsic properties. Due to the excellent optoelectronic properties, the perovskite crystals are widely used in lasers, photodetectors, X-ray detectors and solar cells. Considering the device performance and fabrication requirements, proper thickness of the crystal is required to avoid carrier loss and simultaneously ensure sufficient light absorption, which can realize the full potential of its excellent carrier transport property. Thus, the fabrication of perovskite crystal in a thin film with an adjustable thickness is highly desirable. The space-confined method has been demonstrated to be an effective way of preparing perovskite with controlled thickness. In this method, the thickness of perovskite can be regulated flexibly in a geometric confined space. Moreover, the size, quality and architecture of perovskite crystal films are also major concerns for practical photoelectric devices, which can also be optimized by the space-confined method owing to its good adaptability towards various modified strategies. In a word, the space-confined method is not only a simple and conventional way to adjust the thickness of perovskite crystal films, but also provides a platform to optimize their size, quality and architecture through applying appropriate strategies to the confined space. Herein, we review the space-confined growth of perovskite crystal films. Particularly, various modified strategies based on the space-confined method applied to the optimization of thickness, size, quality and architecture are highlighted. Then the stability investigating and component regulating of perovskite crystal films would be also mentioned. Furthermore, the correlation between the perovskite thickness and the device performance is discussed. Finally, several key challenges and proposed solutions of perovskite thin films based on the space-confined method are discussed.


menu
Abstract
Full text
Outline
About this article

Space-confined growth of metal halide perovskite crystal films

Show Author's information Linyi LiJinxin LiuMengqi ZengLei Fu( )
Country College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China

Abstract

Metal halide perovskites, as a new generation of optoelectronic materials, have attracted a great deal of interest due to their remarkable intrinsic properties. Due to the excellent optoelectronic properties, the perovskite crystals are widely used in lasers, photodetectors, X-ray detectors and solar cells. Considering the device performance and fabrication requirements, proper thickness of the crystal is required to avoid carrier loss and simultaneously ensure sufficient light absorption, which can realize the full potential of its excellent carrier transport property. Thus, the fabrication of perovskite crystal in a thin film with an adjustable thickness is highly desirable. The space-confined method has been demonstrated to be an effective way of preparing perovskite with controlled thickness. In this method, the thickness of perovskite can be regulated flexibly in a geometric confined space. Moreover, the size, quality and architecture of perovskite crystal films are also major concerns for practical photoelectric devices, which can also be optimized by the space-confined method owing to its good adaptability towards various modified strategies. In a word, the space-confined method is not only a simple and conventional way to adjust the thickness of perovskite crystal films, but also provides a platform to optimize their size, quality and architecture through applying appropriate strategies to the confined space. Herein, we review the space-confined growth of perovskite crystal films. Particularly, various modified strategies based on the space-confined method applied to the optimization of thickness, size, quality and architecture are highlighted. Then the stability investigating and component regulating of perovskite crystal films would be also mentioned. Furthermore, the correlation between the perovskite thickness and the device performance is discussed. Finally, several key challenges and proposed solutions of perovskite thin films based on the space-confined method are discussed.

Keywords: space confinement, metal halide perovskite, thickness adjustment, controllable preparation

References(79)

[1]
Y. Ogomi,; A. Morita,; S. Tsukamoto,; T. Saitho,; N. Fujikawa,; Q. Shen,; T. Toyoda,; K. J. Yoshino,; S. S. Pandey,; T. L. Ma, et al. CH3NH3SnxPb(1-x)I3 perovskite solar cells covering up to 1,060 nm. J. Phys. Chem. Lett. 2014, 5, 1004-1011.
[2]
S. Kazim,; M. K. Nazeeruddin,; M. Grätzel,; S. Ahmad, Perovskite as light harvester: A game changer in photovoltaics. Angew. Chem., Int. Ed. 2014, 53, 2812-2824.
[3]
Q. F. Dong,; Y. J. Fang,; Y. C. Shao,; P. Mulligan,; J. Qiu,; L. Cao,; J. S. Huang, Electron-hole diffusion lengths >175 μm in solution- grown CH3NH3PbI3 single crystals. Science 2015, 347, 967-970.
[4]
H. Xu,; R. F. Chen,; Q. Sun,; W. Y. Lai,; Q. Q. Su,; W. Huang,; X. G. Liu, Recent progress in metal-organic complexes for optoelectronic applications. Chem. Soc. Rev. 2014, 43, 3259-3302.
[5]
T. C. Sum,; N. Mathews, Advancements in perovskite solar cells: Photophysics behind the photovoltaics. Energy Environ. Sci. 2014, 7, 2518-2534.
[6]
W. S. Yang,; J. H. Noh,; N. J. Jeon,; Y. C. Kim,; S. Ryu,; J. Seo,; S. I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234-1237.
[7]
D. Q. Bi,; W. Tress,; M. I. Dar,; P. Gao,; J. S. Luo,; C. Renevier,; K. Schenk,; A. Abate,; F. Giordano,; J. P. Correa Baena, et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2016, 2, e1501170.
[8]
L. T. Dou,; Y. Yang,; J. B. You,; Z. R. Hong,; W. H. Chang,; G. Li,; Y. Yang, Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 2014, 5, 5404.
[9]
Q. R. Lv,; Z. P. Lian,; W. H. He,; J. L. Sun,; Q. Li,; Q. F. Yan, A universal top-down approach toward thickness-controllable perovskite single-crystalline thin films. J. Mater. Chem. C 2018, 6, 4464-4470.
[10]
L. P. Han,; C. Liu,; L. L. Wu,; J. Q. Zhang, Observation of the growth of MAPbBr3 single-crystalline thin film based on space-limited method. J. Cryst. Growth 2018, 501, 27-33.
[11]
Z. Q. Yang,; Y. H. Deng,; X. W. Zhang,; S. Wang,; H. Z. Chen,; S. Yang,; J. Khurgin,; N. X. Fang,; X. Zhang,; R. M. Ma, High- performance single-crystalline perovskite thin-film photodetector. Adv. Mater. 2018, 30, 1704333.
[12]
W. Peng,; L. F. Wang,; B. Murali,; K. T. Ho,; A. Bera,; N. Cho,; C. F. Kang,; V. M. Burlakov,; J. Pan,; L. Sinatra, et al. Solution-grown monocrystalline hybrid perovskite films for hole-transporter-free solar cells. Adv. Mater. 2016, 28, 3383-3390.
[13]
J. Chen,; D. J. Morrow,; Y. P. Fu,; W. H. Zheng,; Y. Z. Zhao,; L. N. Dang,; M. J. Stolt,; D. D. Kohler,; X. X. Wang,; K. J. Czech, et al. Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3). J. Am. Chem. Soc. 2017, 139, 13525-13532.
[14]
Y. P. Wang,; X. Sun,; Z. Z. Chen,; Y. Y. Sun,; S. B. Zhang,; T. M. Lu,; E. Wertz,; J. Shi, High-temperature ionic epitaxy of halide perovskite thin film and the hidden carrier dynamics. Adv. Mater. 2017, 29, 1702643.
[15]
Y. C. Liu,; J. K. Sun,; Z. Yang,; D. Yang,; X. D. Ren,; H. Xu,; Z. P. Yang,; S. Z. Liu, 20-mm-large single-crystalline formamidinium- perovskite wafer for mass production of integrated photodetectors. Adv. Opt. Mater. 2016, 4, 1829-1837.
[16]
Y. C. Liu,; X. D. Ren,; J. Zhang,; Z. Yang,; D. Yang,; F. Y. Yu,; J. K. Sun,; C. M. Zhao,; Z. Yao,; B. Wang, et al. 120 mm single-crystalline perovskite and wafers: Towards viable applications. Sci. China Chem. 2017, 60, 1367-1376.
[17]
Z. L. Chen,; B. Turedi,; A. Y. Alsalloum,; C. Yang,; X. P. Zheng,; I. Gereige,; A. AlSaggaf,; O. F. Mohammed,; O. M. Bakr, Single- crystal MAPbI3 perovskite solar cells exceeding 21% power conversion efficiency. ACS Energy Lett. 2019, 4, 1258-1259.
[18]
Z. L. Chen,; Q. F. Dong,; Y. Liu,; C. X. Bao,; Y. J. Fang,; Y. Lin,; S. Tang,; Q. Wang,; X. Xiao,; Y. Bai, et al. Thin single crystal perovskite solar cells to harvest below-bandgap light absorption. Nat. Commun. 2017, 8, 1890.
[19]
X. D. Wang,; W. G. Li,; J. F. Liao,; D. B. Kuang, Recent advances in halide perovskite single-crystal thin films: Fabrication methods and optoelectronic applications. Sol. RRL 2019, 3, 1800294.
[20]
M. I. Saidaminov,; A. L. Abdelhady,; B. Murali,; E. Alarousu,; V. M. Burlakov,; W. Peng,; I. Dursun,; L. F. Wang,; Y. He,; G. Maculan, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 2015, 6, 7586.
[21]
G. Maculan,; A. D. Sheikh,; A. L. Abdelhady,; M. I. Saidaminov,; M. A. Haque,; B. Murali,; E. Alarousu,; O. F. Mohammed,; T. Wu,; O. M. Bakr, CH3NH3PbCl3 single crystals: Inverse temperature crystallization and visible-blind UV-photodetector. J. Phys. Chem. Lett. 2015, 6, 3781-3786.
[22]
Y. Y. Dang,; Y. Liu,; Y. X. Sun,; D. S. Yuan,; X. L. Liu,; W. Q. Lu,; G. F. Liu,; H. B. Xia,; X. T. Tao, Bulk crystal growth of hybrid perovskite material CH3NH3PbI3. CrystEngComm 2015, 17, 665-670.
[23]
D. Shi,; V. Adinolfi,; R. Comin,; M. J. Yuan,; E. Alarousu,; A. Buin,; Y. Chen,; S. Hoogland,; A. Rothenberger,; K. Katsiev, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519-522.
[24]
Y. X. Chen,; Q. Q. Ge,; Y. Shi,; J. Liu,; D. J. Xue,; J. Y. Ma,; J. Ding,; H. J. Yan,; J. S. Hu,; L. J. Wan, General space-confined on-substrate fabrication of thickness-adjustable hybrid perovskite single-crystalline thin films. J. Am. Chem. Soc. 2016, 138, 16196-16199.
[25]
X. Xiao,; J. Dai,; Y. J. Fang,; J. J. Zhao,; X. P. Zheng,; S. Tang,; P. N. Rudd,; X. C. Zeng,; J. S. Huang, Suppressed ion migration along the in-plane direction in layered perovskites. ACS Energy Lett. 2018, 3, 684-688.
[26]
Q. Wang,; D. L. Bai,; Z. W. Jin,; S. Z. Liu, Single-crystalline perovskite wafers with a Cr blocking layer for broad and stable light detection in a harsh environment. RSC Adv. 2018, 8, 14848-14853.
[27]
Y. C. Liu,; Y. X. Zhang,; Z. Yang,; D. Yang,; X. D. Ren,; L. Q. Pang,; S. Z. Liu, Thinness- and shape-controlled growth for ultrathin single-crystalline perovskite wafers for mass production of superior photoelectronic devices. Adv. Mater. 2016, 28, 9204-9209.
[28]
H. S. Rao,; W. G. Li,; B. X. Chen,; D. B. Kuang,; C. Y. Su, In situ growth of 120 cm2 CH3NH3PbBr3 perovskite crystal film on FTO glass for narrowband-photodetectors. Adv. Mater. 2017, 29, 1602639.
[29]
N. Yantara,; S. Bhaumik,; F. Yan,; D. Sabba,; H. A. Dewi,; N. Mathews,; P. P. Boix,; H. V. Demir,; S. Mhaisalkar, Inorganic halide perovskites for efficient light-emitting diodes. J. Phys. Chem. Lett. 2015, 6, 4360-4364.
[30]
H. J. Zhang,; X. Liu,; J. P. Dong,; H. Yu,; C. Zhou,; B. B. Zhang,; Y. D. Xu,; W. Q. Jie, Centimeter-sized inorganic lead halide perovskite CsPbBr3 crystals grown by an improved solution method. Cryst. Growth Des. 2017, 17, 6426-6431.
[31]
W. Kim,; M. S. Jung,; S. Lee,; Y. J. Choi,; J. K. Kim,; S. U. Chai,; W. Kim,; D. G. Choi,; H. Ahn,; J. H. Cho, et al. Oriented grains with preferred low-angle grain boundaries in halide perovskite films by pressure-induced crystallization. Adv. Energy Mater. 2018, 8, 1702369.
[32]
H. L. Yue,; H. H. Sung,; F. C. Chen, Seeded space-limited crystallization of CH3NH3PbI3 single-crystal plates for perovskite solar cells. Adv. Electron. Mater. 2018, 4, 1700655.
[33]
J. Gao,; Q. B. Liang,; G. H. Li,; T. Ji,; Y. C. Liu,; M. M. Fan,; Y. Y. Hao,; S. Z. Liu,; Y. C. Wu,; Y. X. Cui, Single-crystalline lead halide perovskite wafers for high performance photodetectors. J. Mater. Chem. C 2019, 7, 8357-8363.
[34]
Z. K. Gu,; Z. D. Huang,; C. Li,; M. Z. Li,; Y. L. Song, A general printing approach for scalable growth of perovskite single-crystal films. Sci. Adv. 2018, 4, eaat2390.
[35]
H. S. Rao,; B. X. Chen,; X. D. Wang,; D. B. Kuang,; C. Y. Su, A micron-scale laminar MAPbBr3 single crystal for an efficient and stable perovskite solar cell. Chem. Commun. 2017, 53, 5163-5166.
[36]
E. Edri,; S. Kirmayer,; A. Henning,; S. Mukhopadhyay,; K. Gartsman,; Y. Rosenwaks,; G. Hodes,; D. Cahen, Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett. 2014, 14, 1000-1004.
[37]
X. X. He,; Y. G. Wang,; K. Li,; X. Wang,; P. Liu,; Y. J. Yang,; Q. Liao,; T. Y. Zhai,; J. N. Yao,; H. B. Fu, Oriented growth of ultrathin single crystals of 2D Ruddlesden-Popper hybrid lead iodide perovskites for high-performance photodetectors. ACS Appl. Mater. Interfaces 2019, 11, 15905-15912.
[38]
Y. Huang,; Y. Zhang,; J. L. Sun,; X. G. Wang,; J. L. Sun,; Q. Chen,; C. F. Pan,; H. P. Zhou, The exploration of carrier behavior in the inverted mixed perovskite single-crystal solar cells. Adv. Mater. Interfaces 2018, 5, 1800224.
[39]
M. He,; B. Li,; X. Cui,; B. B. Jiang,; Y. J. He,; Y. H. Chen,; D. O’Neil,; P. Szymanski,; M. A. Ei-Sayed,; J. S. Huang, et al. Meniscus- assisted solution printing of large-grained perovskite films for high- efficiency solar cells. Nat. Commun. 2017, 8, 16045.
[40]
Z. G. Xiao,; Q. F. Dong,; C. Bi,; Y. C. Shao,; Y. B. Yuan,; J. S. Huang, Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 2014, 26, 6503-6509.
[41]
N. J. Jeon,; J. H. Noh,; Y. C. Kim,; W. S. Yang,; S. Ryu,; S. I. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897-903.
[42]
S. T. Ha,; C. Shen,; J. Zhang,; Q. H. Xiong, Laser cooling of organic- inorganic lead halide perovskites. Nat. Photonics 2016, 10, 115-121.
[43]
M. E. Kamminga,; H. H. Fang,; M. R. Filip,; F. Giustino,; J. Baas,; G. R. Blake,; M. A. Loi,; T. T. M. Palstra, Confinement effects in low-dimensional lead iodide perovskite hybrids. Chem. Mater. 2016, 28, 4554-4562.
[44]
L. Gan,; H. P. He,; S. X. Li,; J. Li,; Z. Z. Ye, Distinctive excitonic recombination in solution-processed layered organic-inorganic hybrid two-dimensional perovskites. J. Mater. Chem. C 2016, 4, 10198-10204.
[45]
D. B. Mitzi, A layered solution crystal growth technique and the crystal structure of (C6H5C2H4NH3)2PbCl4. J. Solid State Chem. 1999, 145, 694-704.
[46]
F. Lédée,; G. Trippé-Allard,; H. Diab,; P. Audebert,; D. Garrot,; J. S. Lauret,; E. Deleporte, Fast growth of monocrystalline thin films of 2D layered hybrid perovskite. CrystEngComm 2017, 19, 2598-2602.
[47]
D. Giovanni,; W. K. Chong,; H. A. Dewi,; K. Thirumal,; I. Neogi,; R. Ramesh,; S. Mhaisalkar,; N. Mathews,; T. C. Sum, Tunable room-temperature spin-selective optical Stark effect in solution- processed layered halide perovskites. Sci. Adv. 2016, 2, e1600477.
[48]
J. Calabrese,; N. L. Jones,; R. L. Harlow,; N. Herron,; D. L. Thorn,; Y. Wang, Preparation and characterization of layered lead halide compounds. J. Am. Chem. Soc. 1991, 113, 2328-2330.
[49]
R. L. Milot,; R. J. Sutton,; G. E. Eperon,; A. A. Haghighirad,; J. Martinez Hardigree,; L. Miranda,; H. J. Snaith,; M. B. Johnston,; L. M. Herz, Charge-carrier dynamics in 2D hybrid metal-halide perovskites. Nano Lett. 2016, 16, 7001-7007.
[50]
X. W. Fu,; N. Dong,; G. Lian,; S. Lv,; T. Y. Zhao,; Q. L. Wang,; D. L. Cui,; C. P. Wong, High-quality CH3NH3PbI3 films obtained via a pressure-assisted space-confined solvent-engineering strategy for ultrasensitive photodetectors. Nano Lett. 2018, 18, 1213-1220.
[51]
Y. F. Wang,; D. T. Liu,; P. Zhang,; T. Zhang,; W. Ahmad,; X. X. Ying,; F. Wang,; J. Li,; L. Chen,; J. Wu, et al. Reveal the growth mechanism in perovskite films via weakly coordinating solvent annealing. Sci. China Mater. 2018, 61, 1536-1548.
[52]
W. H. Wang,; Y. R. Ma,; L. M. Qi, High-performance photodetectors based on organometal halide perovskite nanonets. Adv. Funct. Mater. 2017, 27, 1603653.
[53]
P. C. Zhu,; S. Gu,; X. P. Shen,; N. Xu,; Y. L. Tan,; S. D. Zhuang,; Y. Deng,; Z. D. Lu,; Z. L. Wang,; J. Zhu, Direct conversion of perovskite thin films into nanowires with kinetic control for flexible optoelectronic devices. Nano Lett. 2016, 16, 871-876.
[54]
W. Deng,; X. J. Zhang,; L. M. Huang,; X. Z. Xu,; L. Wang,; J. C. Wang,; Q. X. Shang,; S. T. Lee,; J. S. Jie, Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability. Adv. Mater. 2016, 28, 2201-2208.
[55]
S. F. Zhuo,; J. F. Zhang,; Y. M. Shi,; Y. Huang,; B. Zhang, Self- template-directed synthesis of porous perovskite nanowires at room temperature for high-performance visible-light photodetectors. Angew. Chem., Int. Ed. 2015, 54, 5693-5696.
[56]
Y. Zhang,; J. Du,; X. H. Wu,; G. Q. Zhang,; Y. L. Chu,; D. P. Liu,; Y. X. Zhao,; Z. Q. Liang,; J. Huang, Ultrasensitive photodetectors based on island-structured CH3NH3PbI3 thin films. ACS Appl. Mater. Interfaces 2015, 7, 21634-21638.
[57]
K. Chen,; H. Tüysüz, Morphology-controlled synthesis of organometal halide perovskite inverse opals. Angew. Chem., Int. Ed. 2015, 54, 13806-13810.
[58]
J. P. Zeng,; X. M. Li,; Y. Wu,; D. D. Yang,; Z. G. Sun,; Z. H. Song,; H. Wang,; H. B. Zeng, Space-confined growth of CsPbBr3 film achieving photodetectors with high performance in all figures of merit. Adv. Funct. Mater. 2018, 28, 1804394.
[59]
R. H. Liu,; H. Zhou,; Z. N. Song,; X. H. Yang,; D. J. Wu,; Z. H. Song,; H. Wang,; Y. F. Yan, Low-reflection, (110)-orientation-preferred CsPbBr3 nanonet films for application in high-performance perovskite photodetectors. Nanoscale 2019, 11, 9302-9309.
[60]
R. J. Sutton,; G. E. Eperon,; L. Miranda,; E. S. Parrott,; B. A. Kamino,; J. B. Patel,; M. T. Hörantner,; M. B. Johnston,; A. A. Haghighirad,; D. T. Moore, et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 2016, 6, 1502458.
[61]
X. W. Chang,; W. P. Li,; L. Q. Zhu,; H. C. Liu,; H. F. Geng,; S. S. Xiang,; J. M. Liu,; H. N. Chen, Carbon-based CsPbBr3 perovskite solar cells: All-ambient processes and high thermal stability. ACS Appl. Mater. Interfaces 2016, 8, 33649-33655.
[62]
Z. Y. Zuo,; J. X. Ding,; Y. Zhao,; S. J. Du,; Y. F. Li,; X. Y. Zhan,; H. Z. Cui, Enhanced optoelectronic performance on the (110) lattice plane of an MAPbBr3 single crystal. J. Phys. Chem. Lett. 2017, 8, 684-689.
[63]
J. Mao,; W. E. I. Sha,; H. Zhang,; X. G. Ren,; J. Q. Zhuang,; V. A. L. Roy,; K. S. Wong,; W. C. H. Choy, Novel direct nanopatterning approach to fabricate periodically nanostructured perovskite for optoelectronic applications. Adv. Funct. Mater. 2017, 27, 1606525.
[64]
L. Lee,; J. M. Baek,; K. S. Park,; Y. E. Lee,; N. K. Shrestha,; M. M. Sung, Wafer-scale single-crystal perovskite patterned thin films based on geometrically-confined lateral crystal growth. Nat. Commun. 2017, 8, 15882.
[65]
J. L. Yang,; B. D. Siempelkamp,; D. Y. Liu,; T. L. Kelly, Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 2015, 9, 1955-1963.
[66]
S. Yang,; Y. Wang,; P. R. Liu,; Y. B. Cheng,; H. J. Zhao,; H. G. Yang, Functionalization of perovskite thin films with moisture-tolerant molecules. Nat. Energy 2016, 1, 15016.
[67]
J. A. Christians,; P. A. Miranda Herrera,; P. V. Kamat, Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 2015, 137, 1530-1538.
[68]
W. R. Mateker,; M. D. McGehee, Progress in understanding degradation mechanisms and improving stability in organic photovoltaics. Adv. Mater. 2017, 29, 1603940.
[69]
Y. Han,; S. Meyer,; Y. Dkhissi,; K. Weber,; J. M. Pringle,; U. Bach,; L. Spiccia,; Y. B. Cheng, Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 2015, 3, 8139-8147.
[70]
X. Li,; M. Tschumi,; H. W. Han,; S. S. Babkair,; R. A. Alzubaydi,; A. A. Ansari,; S. S. Habib,; M. K. Nazeeruddin,; S. M. Zakeeruddin,; M. Grätzel, Outdoor performance and stability under elevated temperatures and long-term light soaking of triple-layer mesoporous perovskite photovoltaics. Energy Technol. 2015, 3, 551-555.
[71]
N. Aristidou,; C. Eames,; I. Sanchez-Molina,; X. N. Bu,; J. Kosco,; M. S. Islam,; S. A. Haque, Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 2017, 8, 15218.
[72]
J. J. Zhao,; Y. H. Deng,; H. T. Wei,; X. P. Zheng,; Z. H. Yu,; Y. C. Shao,; J. E. Shield,; J. S. Huang, Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 2017, 3, eaao5616.
[73]
Y. Z. Wu,; X. D. Yang,; W. Chen,; Y. F. Yue,; M. L. Cai,; F. X. Xie,; E. B. Bi,; A. Islam,; L. Y. Han, Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering. Nat. Energy 2016, 1, 16148.
[74]
B. Li,; Y. N. Zhang,; L. Y. Zhang,; L. W. Yin, Graded heterojunction engineering for hole-conductor-free perovskite solar cells with high hole extraction efficiency and conductivity. Adv. Mater. 2017, 29, 1701221.
[75]
W. G. Li,; X. D. Wang,; J. F. Liao,; Z. F. Wei,; Y. F. Xu,; H. Y. Chen,; D. B. Kuang, A laminar MAPbBr3/MAPbBr3-xIx graded heterojunction single crystal for enhancing charge extraction and optoelectronic performance. J. Mater. Chem. C 2019, 7, 5670-5676.
[76]
W. Wei,; Y. Zhang,; Q. Xu,; H. T. Wei,; Y. J. Fang,; Q. Wang,; Y. H. Deng,; T. Li,; A. Gruverman,; L. Cao, et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photonics 2017, 11, 315-321.
[77]
P. A. Shaikh,; D. Shi,; J. R. D. Retamal,; A. D. Sheikh,; M. A. Haque,; C. F. Kang,; J. H. He,; O. M. Bakr,; T. Wu, Schottky junctions on perovskite single crystals: Light-modulated dielectric constant and self-biased photodetection. J. Mater. Chem. C 2016, 4, 8304-8312.
[78]
Y. Bai,; H. X. Zhang,; M. J. Zhang,; D. Wang,; H. Zeng,; J. Zhao,; H. Xue,; G. Z. Wu,; J. Su,; Y. Xie, et al. Liquid-phase growth and optoelectronic properties of two-dimensional hybrid perovskites CH3NH3PbX3 (X = Cl, Br, I). Nanoscale 2020, 12, 1100-1108.
[79]
P. B. Gui,; H. Zhou,; F. Yao,; Z. H. Song,; B. R. Li,; G. J. Fang, Space-confined growth of individual wide bandgap single crystal CsPbCl3 microplatelet for near-ultraviolet photodetection. Small 2019, 15, 1902618.
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 June 2020
Revised: 09 August 2020
Accepted: 10 August 2020
Published: 21 September 2020
Issue date: June 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21673161 and 21905210), the Sino-German Center for Research Promotion (1400), and the Postdoctoral Innovation Talent Support Program of China (No. BX20180224).

Return