Journal Home > Volume 14 , Issue 3

Electrochemical nitrogen reduction reaction (NRR) is considered as an alternative to the industrial Haber-Bosch process for NH3 production due to both low energy consumption and environment friendliness. However, the major problem of electrochemical NRR is the unsatisfied efficiency and selectivity of electrocatalyst. As one group of the cheapest and most abundant transition metals, iron-group (Fe, Co, Ni and Cu) electrocatalysts show promising potential on cost and performance advantages as ideal substitute for traditional noble-metal catalysts. In this minireview, we summarize recent advances of iron-group-based materials (including their oxides, hydroxides, nitrides, sulfides and phosphides, etc.) as non-noble metal electrocatalysts towards ambient N2-to-NH3 conversion in aqueous media. Strategies to boost NRR performances and perspectives for future developments are discussed to provide guidance for the field of NRR studies.


menu
Abstract
Full text
Outline
About this article

Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media

Show Author's information Benyuan Ma1,2Haitao Zhao1Tingshuai Li1Qian Liu1Yongsong Luo1Chengbo Li1Siyu Lu3Abdullah M. Asiri4Dongwei Ma5( )Xuping Sun1( )
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China
Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
Chemistry Department, Faculty of Science & Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China

Abstract

Electrochemical nitrogen reduction reaction (NRR) is considered as an alternative to the industrial Haber-Bosch process for NH3 production due to both low energy consumption and environment friendliness. However, the major problem of electrochemical NRR is the unsatisfied efficiency and selectivity of electrocatalyst. As one group of the cheapest and most abundant transition metals, iron-group (Fe, Co, Ni and Cu) electrocatalysts show promising potential on cost and performance advantages as ideal substitute for traditional noble-metal catalysts. In this minireview, we summarize recent advances of iron-group-based materials (including their oxides, hydroxides, nitrides, sulfides and phosphides, etc.) as non-noble metal electrocatalysts towards ambient N2-to-NH3 conversion in aqueous media. Strategies to boost NRR performances and perspectives for future developments are discussed to provide guidance for the field of NRR studies.

Keywords: ambient conditions, nitrogen reduction reaction, electrochemical NH3 synthesis, iron-group catalysts

References(122)

[1]
R. Schlögl, Catalytic synthesis of ammonia-A “never-ending story”? Angew. Chem., Int. Ed. 2003, 42, 2004-2008.
[2]
S. Y. Wang,; F. Ichihara,; H. Pang,; H. Chen,; J. H. Ye, Nitrogen fixation reaction derived from nanostructured catalytic materials. Adv. Funct. Mater. 2018, 28, 1803309.
[3]
A. Klerke,; C. H. Christensen,; J. K. Nørskov,; T. Vegge, Ammonia for hydrogen storage: Challenges and opportunities. J. Mater. Chem. 2008, 18, 2304-2310.
[4]
I. Dybkjaer, Ammonia production processes. In Ammonia, Catalysis and Manufacture. A. Nielsen,, Ed.; Springer: Heidelberg, 1995; pp 199-308.
DOI
[5]
T. Spatzal,; M. Aksoyoglu,; L. M. Zhang,; S. L. A. Andrade,; E. Schleicher,; S. Weber,; D. C. Rees,; O. Einsle, Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 2011, 334, 940.
[6]
K. M. Lancaster,; Y. L. Hu,; U. Bergmann,; M. W. Ribbe,; S. DeBeer, X-ray spectroscopic observation of an interstitial carbide in NifEN-bound FeMoco precursor. J. Am. Chem. Soc. 2013, 135, 610-612.
[7]
M. A. Shipman,; M. D. Symes, Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catal. Today 2017, 286, 57-68.
[8]
X. J. Zhu,; S. Y. Mou,; Q. L. Peng,; Q. Liu,; Y. L. Luo,; G. Chen,; S. Y. Gao,; X. P. Sun, Aqueous electrocatalytic N2 reduction for ambient NH3 synthesis: Recent advances in catalyst development and performance improvement. J. Mater. Chem. A 2020, 8, 1545-1556.
[9]
S. Y. Gao,; Y. Z. Zhu,; Y. Chen,; M. Tian,; Y. J. Yang,; T. Jiang,; Z. L. Wang, Self-power electroreduction of N2 into NH3 by 3D printed triboelectric nanogenerators. Mater. Today 2019, 28, 17-24.
[10]
R. B. Zhao,; C. W. Liu,; X. X. Zhang,; X. J. Zhu,; P. P. Wei,; L. Ji,; Y. B. Guo,; S. Y. Gao,; Y. L. Luo,; Z. M. Wang, et al. An ultrasmall Ru2P nanoparticles-reduced graphene oxide hybrid: An efficient electrocatalyst for NH3 synthesis under ambient conditions. J. Mater. Chem. A 2020, 8, 77-81.
[11]
G. R. Deng,; T. Wang,; A. A. Alshehri,; K. A. Alzahrani,; Y. Wang,; H. J. Ye,; Y. L. Luo,; X. P. Sun, Improving the electrocatalytic N2 reduction activity of Pd nanoparticles through surface modification. J. Mater. Chem. A. 2019, 7, 21674-21677.
[12]
D. Bao,; Q. Zhang,; F. L. Meng,; H. X. Zhong,; M. M. Shi,; Y. Zhang,; J. M. Yan,; Q. Jiang,; X. B. Zhang, Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 2017, 29, 1604799.
[13]
H. M. Liu,; S. H. Han,; Y. Zhao,; Y. Y. Zhu,; X. L. Tian,; J. H. Zeng,; J. X. Jiang,; B. Y. Xia,; Y. Chen, Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction. J. Mater. Chem. A 2018, 6, 3211-3217.
[14]
W. Xiong,; X. Cheng,; T. Wang,; Y. S. Luo,; J. Feng,; S. Y. Lu,; A. M. Asiri,; W. Li,; Z. J. Jiang,; X. P. Sun, Co3(hexahydroxytriphenylene)2: A conductive metal-organic framework for ambient electrocatalytic N2 reduction to NH3. Nano Res. 2020, 13, 1008-1012.
[15]
Y. Wang,; M. M. Shi,; D. Bao,; F. L. Meng,; Q. Zhang,; Y. T. Zhou,; K. H. Liu,; Y. Zhang,; J. Z. Wang,; Z. W. Chen, et al. Generating defect-rich bismuth for enhancing the rate of nitrogen electroreduction to ammonia. Angew. Chem., Int. Ed. 2019, 58, 9464-9469.
[16]
J. Wang,; Y. P. Liu,; H. Zhang,; D. J. Huang,; K. Chu, Ambient electrocatalytic nitrogen reduction on a MoO2/graphene hybrid: Experimental and DFT studies. Catal. Sci. Technol. 2019, 9, 4248-4254.
[17]
X. Cheng,; J. W. Wang,; W. Xiong,; T. Wang,; T. W. Wu,; S. Y. Lu,; G. Chen,; S. Y. Gao,; X. F. Shi,; Z. J. Jiang, et al. Greatly enhanced electrocatalytic N2 reduction over V2O3/C by P doping. ChemNanoMat, in press, .
[18]
Q. Qin,; Y. Zhao,; M. Schmallegger,; T. Heil,; J. Schmidt,; R. Walczak,; G. Gescheidt-Demner,; H. J. Jiao,; M. Oschatz, Enhanced electrocatalytic N2 reduction via partial anion substitution in titanium oxide-carbon composites. Angew. Chem., Int. Ed. 2019, 58, 13101-13106.
[19]
T. Xu,; D. W. Ma,; C. B. Li,; Q. Liu,; S. Y. Lu,; A. M. Asiri,; C. Yang,; X. P. Sun, Ambient electrochemical NH3 synthesis from N2 and water enabled by ZrO2 nanoparticles. Chem. Commun. 2020, 56, 3673-3676.
[20]
T. W. Wu,; H. T. Zhao,; X. J. Zhu,; Z. Xing,; Q. Liu,; T. Liu,; S. Y. Gao,; S. Y. Lu,; G. Chen,; A. M. Asiri, et al. Identifying the origin of Ti3+ activity toward enhanced electrocatalytic N2 reduction over TiO2 nanoparticles modulated by mixed-valent copper. Adv. Mater. 2020, 32, 2000299.
[21]
Y. P. Liu,; Y. B. Li,; D. J. Huang,; H. Zhang,; K. Chu, ZnO quantum dots coupled with graphene toward electrocatalytic N2 reduction: Experimental and DFT investigations. Chem.—Eur. J. 2019, 25, 11933-11939.
[22]
L. Xia,; B. H. Li,; Y. Zhang,; R. Zhang,; L. Ji,; H. Y. Chen,; G. W. Cui,; H. G. Zheng,; X. P. Sun, et al. Cr2O3 nanoparticle-reduced graphene oxide hybrid: A highly active electrocatalyst for N2 reduction at ambient conditions. Inorg. Chem. 2019, 58, 2257-2260.
[23]
X. Lv,; F. Y. Wang,; J. Du,; Q. Liu,; Y. S. Luo,; S. Y. Lu,; G. Chen,; S. Y. Gao,; B. Z. Zheng,; X. P. Sun, Sn dendrites for electrocatalytic N2 reduction to NH3 under ambient conditions. Sustain. Energy Fuels, in press, .
[24]
L. L. Zhang,; L. X. Ding,; G. F. Chen,; X. F. Yang,; H. H. Wang, Ammonia synthesis under ambient conditions: Selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angew. Chem., Int. Ed. 2019, 58, 2612-2616.
[25]
J. X. Zhao,; B. Wang,; Q. Zhou,; H. B. Wang,; X. H. Li,; H. Y. Chen,; Q. Wei,; D. Wu,; Y. L. Luo,; J. M. You, et al. Efficient electrohydrogenation of N2 to NH3 by oxidized carbon nanotubes under ambient conditions. Chem. Commun. 2019, 55, 4997-5000.
[26]
W. B. Qiu,; X. Y. Xie,; J. D. Qiu,; W. H. Fang,; R. P. Liang,; X. Ren,; X. Q. Ji,; G. W. Cui,; A. M. Asiri,; G. L. Cui, et al. High- performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun. 2018, 9, 3485.
[27]
X. J. Zhu,; T. W. Wu,; L. Ji,; C. B. Li,; T. Wang,; S. H. Wen,; S. Y. Gao,; X. F. Shi,; Y. L. Luo,; Q. L. Peng, et al. Ambient electrohydrogenation of N2 for NH3 synthesis on non-metal boron phosphide nanoparticles: The critical role of P in boosting the catalytic activity. J. Mater. Chem. A 2019, 7, 16117-16121.
[28]
X. X. Zhang,; T. W. Wu,; H. B. Wang,; R. B. Zhao,; H. Y. Chen,; T. Wang,; P. P. Wei,; Y. L. Luo,; Y. N. Zhang,; X. P. Sun, Boron nanosheet: An elemental two-dimensional (2D) material for ambient electrocatalytic N2-to-NH3 fixation in neutral media. ACS Catal. 2019, 9, 4609-4615.
[29]
Y. Zhang,; H. T. Du,; Y. J. Ma,; L. Ji,; H. R. Guo,; Z. Q. Tian,; H. Y. Chen,; H. Huang,; G. W. Cui,; A. M. Asiri, et al. Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3. Nano Res. 2019, 12, 919-924.
[30]
C. Y. Ling,; X. W. Bai,; Y. X. Ouyang,; A. J. Du,; J. L. Wang, Single molybdenum atom anchored on N-doped carbon as a promising electrocatalyst for nitrogen reduction into ammonia at ambient conditions. J. Phys. Chem. C 2018, 122, 16842-16847.
[31]
H. P. Jia,; E. A. Quadrelli, Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: Relevance of metal hydride bonds and dihydrogen. Chem. Soc. Rev. 2014, 43, 547-564.
[32]
V. Jaccarino,; R. G. Shulman,; J. W. Stou, Nuclear magnetic resonance in paramagnetic iron group fluorides. Phys. Rev. 1957, 106, 602-603.
[33]
L. L. Zhang,; G. F. Chen,; L. X. Ding,; H. H. Wang, Advanced non-metallic catalysts for electrochemical nitrogen reduction under ambient conditions. Chem.—Eur. J. 2019, 25, 12464-12485.
[34]
C. S. Huang,; Y. J. Li,; N. Wang,; Y. R. Xue,; Z. C. Zuo,; H. B. Liu,; Y. L. Li, Progress in research into 2D graphdiyne-based materials. Chem. Rev. 2018, 118, 7744-7803.
[35]
Y. C. Wan,; J. C. Xu,; R. T. Lv, Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater. Today 2019, 27, 69-90.
[36]
X. F. Li,; Q. K. Li,; J. Cheng,; L. L. Liu,; Q. Yan,; Y. C. Wu,; X. H. Zhang,; Z. Y. Wang,; Q. Qiu,; Y. Luo, Conversion of dinitrogen to ammonia by FeN3-embedded graphene. J. Am. Chem. Soc. 2016, 138, 8706-8709.
[37]
X. Y. Cui,; C. Tang,; Q. Zhang, A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.
[38]
K. A. Brown,; D. F. Harris,; M. B. Wilker,; A. Rasmussen,; N. Khadka,; H. Hamby,; S. Keable,; G. Dukovic,; J. W. Peters,; L. C. Seefeldt, et al. Light-driven dinitrogen reduction catalyzed by a CdS: Nitrogenase MoFe protein biohybrid. Science 2016, 352, 448-450.
[39]
J. S. Anderson,; G. E. Cutsail III,; J. Rittle,; B. A. Connor,; W. A. Gunderson,; L. M. Zhang,; B. M. Hoffman,; J. C. Peters, Characterization of an Fe≡N-NH2 intermediate relevant to catalytic N2 reduction to NH3. J. Am. Chem. Soc. 2015, 137, 7803-7809.
[40]
Z. Wang,; F. Gong,; L. Zhang,; R. Wang,; L. Ji,; Q. Liu,; Y. L. Luo,; H. R. Guo,; Y. H. Li,; P. Gao, et al. Electrocatalytic hydrogenation of N2 to NH3 by MnO: Experimental and theoretical investigations. Adv. Sci. 2019, 6, 1801182.
[41]
P. P. Wei,; H. T. Xie,; X. J. Zhu,; R. B. Zhao,; L. Ji,; X. Tong,; Y. S. Luo,; G. W. Cui,; Z. M. Wang,; X. P. Sun, CoS2 nanoparticles- embedded N-doped carbon nanobox derived from ZIF-67 for electrocatalytic N2-to-NH3 fixation under ambient conditions. ACS Sustainable Chem. Eng. 2020, 8, 29-33.
[42]
P. Zhao,; Z. S. Lu,; S. T. Liu, Manganese-doped CeO2 nanocubes for catalytic combustion of chlorobenzene: An experimental and density functional theory study. J. Nanosci. Nanotechnol. 2018, 18, 3348-3355.
[43]
C. Y. Ling,; Y. X. Ouyang,; Q. Li,; X. W. Bai,; X. Mao,; A. J. Du,; J. L. Wang, A general two-step strategy-based high-throughput screening of single atom catalysts for nitrogen fixation. Small Methods 2019, 3, 1800376.
[44]
F. L. Lai,; J. R. Feng,; X. B. Ye,; W. Zong,; G. J. He,; C. Yang,; W. Wang,; Y. E. Miao,; B. C. Pan,; W. S. Yan, et al. Oxygen vacancy engineering in spinel-structured nanosheet wrapped hollow polyhedra for electrochemical nitrogen fixation under ambient conditions. J. Mater. Chem. A 2020, 8, 1652-1659.
[45]
X. Y. Cui,; C. Tang,; X. M. Liu,; C. Wang,; W. J. Ma,; Q. Zhang, Highly selective electrochemical reduction of dinitrogen to ammonia at ambient temperature and pressure over iron oxide catalysts. Chem.—Eur. J. 2018, 24, 18494-18501.
[46]
B. Xu,; L. Xia,; F. L. Zhou,; R. B. Zhao,; H. Y. Chen,; T. Wang,; Q. Zhou,; Q. Liu,; G. W. Cui,; X. L. Xiong, et al. Enhancing electrocatalytic N2 reduction to NH3 by CeO2 nanorod with oxygen vacancies. ACS Sustainable Chem. Eng. 2019, 7, 2889-2893.
[47]
L. Zhang,; X. Q. Ji,; X. Ren,; Y. J. Ma,; X. F. Shi,; Z. Q. Tian,; A. M. Asiri,; L. Chen,; B. Tang,; X. P. Sun, Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies. Adv. Mater. 2018, 30, 1800191.
[48]
Y. T. Luo,; X. X. Chen,; J. Y. Yu,; B. Ding, Carbon-nanoplated CoS@TiO2 nanofibrous membrane: An interface-engineered heterojunction for high-efficiency electrocatalytic nitrogen reduction. Angew. Chem., Int. Ed. 2019, 131, 19079-19083.
[49]
T. W. Wu,; W. H. Kong,; Y. Zhang,; Z. Xing,; J. X. Zhao,; T. Wang,; X. F. Shi,; Y. L. Luo,; X. P. Sun, Greatly enhanced electrocatalytic N2 reduction on TiO2 via V doping. Small Methods 2019, 3, 1900356.
[50]
Q. Q. Li,; Y. L. Guo,; Y. Tian,; W. M. Liu,; K. Chu, Activating VS2 basal planes for enhanced NRR electrocatalysis: The synergistic role of S-vacancies and B dopants. J. Mater. Chem. A, in press, .
[51]
Y. Wang,; K. Jia,; Q. Pan,; Y. D. Xu,; Q. Liu,; G. W. Cui,; X. D. Guo,; X. P. Sun, Boron-doped TiO2 for efficient electrocatalytic N2 fixation to NH3 at ambient conditions. ACS Sustainable Chem. Eng. 2019, 7, 117-122.
[52]
B. Y. Li,; X. J. Zhu,; J. W. Wang,; R. M. Xing,; Q. Liu,; X. F. Shi,; Y. L. Luo,; S. H. Liu,; X. B. Niu,; X. P. Sun, Ti3+ self-doped TiO2−x nanowires for efficient electrocatalytic N2 reduction to NH3. Chem. Commun. 2020, 56, 1074-1077.
[53]
W. Tong,; B. L. Huang,; P. T. Wang,; Q. Shao,; X. Q. Huang, Exposed facet-controlled N2 electroreduction on distinct Pt3Fe nanostructures of nanocubes, nanorods and nanowires. Natl. Sci. Rev., in press, .
[54]
X. X. Zhang,; Q. Liu,; X. F. Shi,; A. M. Asiri,; Y. L. Luo,; X. P. Sun,; T. S. Li, TiO2 nanoparticles-reduced graphene oxide hybrid: An efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions. J. Mater. Chem. A 2018, 6, 17303-17306.
[55]
J. R. Han,; Z. C. Liu,; Y. J. Ma,; G. W. Cui,; F. Y. Xie,; F. X. Wang,; Y. P. Wu,; S. Y. Gao,; Y. H. Xu,; X. P. Sun, Ambient N2 fixation to NH3 at ambient conditions: Using Nb2O5 nanofiber as a high- performance electrocatalyst. Nano Energy 2018, 52, 264-270.
[56]
Y. Zhang,; W. B. Qiu,; Y. J. Ma,; Y. L. Luo,; Z. Q. Tian,; G. W. Cui,; F. Y. Xie,; L. Chen,; T. S. Li,; X. P. Sun, High-performance electrohydrogenation of N2 to NH3 catalyzed by multishelled hollow Cr2O3 microspheres under ambient conditions. ACS Catal. 2018, 8, 8540-8544.
[57]
M. Ali,; F. L. Zhou,; K. Chen,; C. Kotzur,; C. L. Xiao,; L. Bourgeois,; X. Y. Zhang,; D. R. MacFarlane, Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nat. Commun. 2016, 7, 11335.
[58]
C. Y. Ling,; X. H. Niu,; Q. Li,; A. J. Du,; J. L. Wang, Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 2018, 140, 14161-14168.
[59]
S. Linic,; P. Christopher,; D. B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911-921.
[60]
C. X. Guo,; J. R. Ran,; A. Vasileff,; S. Z. Qiao, Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45-56.
[61]
J. X. Zhao,; Z. F. Chen, Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480-12487.
[62]
M. Kitano,; S. Kanbara,; Y. Inoue,; N. Kuganathan,; P. Sushko,; T. Yokoyama,; M. Hara,; H. Hosono, Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis. Nat. Commun. 2015, 6, 6731.
[63]
J. X. Zhao,; L. Zhang,; X. Y. Xie,; X. H. Li,; Y. J. Ma,; Q. Liu,; W. H. Fang,; X. F. Shi,; G. L. Cui,; X. P. Sun, Ti3C2Tx (T = F, OH) MXene nanosheets: Conductive 2D catalysts for ambient electrohydrogenation of N2 to NH3. J. Mater. Chem. A 2018, 6, 24031-24035.
[64]
I. Roger,; M. A. Shipman,; M. D. Symes, Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 0003.
[65]
S. L. Zhao,; X. Y. Lu,; L. Z. Wang,; J. Gale,; R. Amal, Carbon-based metal-free catalysts for electrocatalytic reduction of nitrogen for synthesis of ammonia at ambient conditions. Adv. Mater. 2019, 31, 1805367.
[66]
K. Chu,; Y. P. Liu,; Y. B. Li,; H. Zhang,; Y. Tian, Efficient electrocatalytic N2 reduction on CoO quantum dots. J. Mater. Chem. A 2019, 7, 4389-4394.
[67]
M. T. Nguyen,; N. Seriani,; R. Gebauer, Nitrogen electrochemically reduced to ammonia with hematite: Density-functional insights. Phys. Chem. Chem. Phys. 2015, 17, 14317-14322.
[68]
J. M. Kong,; A. Lim,; C. Yoon,; J. H. Jang,; H. C. Ham,; J. Han,; S. Nam,; D. Kim,; Y. E. Sung,; J. Choi, et al. Electrochemical synthesis of NH3 at low temperature and atmospheric pressure using a γ-Fe2O3 catalyst. ACS Sustainable Chem. Eng. 2017, 5, 10986-10995.
[69]
C. W. Liu,; Q. Y. Li,; C. Z. Wu,; J. Zhang,; Y. G. Jin,; D. R. MacFarlane,; C. H. Sun, Single-boron catalysts for nitrogen reduction reaction. J. Am. Chem. Soc. 2019, 141, 2884-2888.
[70]
S. M. Chen,; S. Perathoner,; C. Ampelli,; C. Mebrahtu,; D. S. Su,; G. Centi, Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon- nanotube-based electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 2699-2703.
[71]
X. J. Xiang,; Z. Wang,; X. F. Shi,; M. K. Fan,; X. P. Sun, Ammonia synthesis from electrocatalytic N2 reduction under ambient conditions by Fe2O3 nanorods. ChemCatChem 2018, 10, 4530-4535.
[72]
J. Li,; X. J. Zhu,; T. Wang,; Y. L. Luo,; X. P. Sun, An Fe2O3 nanoparticle-reduced graphene oxide composite for ambient electrocatalytic N2 reduction to NH3. Inorg. Chem. Front. 2019, 6, 2682-2685.
[73]
X. J. Zhu,; Z. C. Liu,; Q. Liu,; Y. L. Luo,; X. F. Shi,; A. M. Asiri,; Y. P. Wu,; X. P. Sun, Efficient and durable N2 reduction electrocatalysis under ambient conditions: β-FeOOH nanorods as a non-noble-metal catalyst. Chem. Commun. 2018, 54, 11332-11335.
[74]
Y. Song,; D. Johnson,; R. Peng,; D. K. Hensley,; P. V. Bonnesen,; L. B. Liang,; J. S. Huang,; F. C. Yang,; F. Zhang,; R. Qiao, et al. A physical catalyst for the electrolysis of nitrogen to ammonia. Sci. Adv.. 2018, 4, e1700336.
[75]
X. J. Zhu,; Z. C. Liu,; H. B. Wang,; R. B. Zhao,; H. Y. Chen,; T. Wang,; F. X. Wang,; Y. L. Luo,; Y. P. Wu,; X. P. Sun, Boosting electrocatalytic N2 reduction to NH3 on β-FeOOH by fluorine doping. Chem. Commun. 2019, 55, 3987-3990.
[76]
X. J. Zhu,; J. X. Zhao,; L. Ji,; T. W. Wu,; T. Wang,; S. Y. Gao,; A. A. Alshehri,; K. A. Alzahrani,; Y. L. Luo,; Y. M. Xiang, et al. FeOOH quantum dots decorated graphene sheet: An efficient electrocatalyst for ambient N2 reduction. Nano Res. 2020, 13, 209-214.
[77]
Q. Liu,; X. X. Zhang,; B. Zhang,; Y. L. Luo,; G. W. Cui,; F. Y. Xie,; X. P. Sun, Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod. Nanoscale 2018, 10, 14386-14389.
[78]
B. H. R. Suryanto,; C. S. M. Kang,; D. B. Wang,; C. L. Xiao,; F. L. Zhou,; L. M. Azofra,; L. Cavallo,; X. Y. Zhang,; D. R. MacFarlane, Rational electrode-electrolyte design for efficient ammonia electrosynthesis under ambient conditions. ACS Energy Lett. 2018, 3, 1219-1224.
[79]
L. Hu,; A. Khaniya,; J. Wang,; G. Chen,; W. E. Kaden,; X. F. Feng, Ambient electrochemical ammonia synthesis with high selectivity on Fe/Fe oxide catalyst. ACS Catal. 2018, 8, 9312-9319.
[80]
T. W. Wu,; X. J. Zhu,; Z. Xing,; S. Y. Mou,; C. B. Li,; Y. X. Qiao,; Q. Liu,; Y. L. Luo,; X. F. Shi,; Y. N. Zhang, et al. Greatly improving electrochemical N2 reduction over TiO2 nanoparticles by iron doping. Angew. Chem., Int. Ed. 2019, 58, 18449-18453.
[81]
S. Zhang,; G. Y. Duan,; L. L. Qiao,; Y. Tang,; Y. M. Chen,; Y. Z. Sun,; P. Y. Wan,; S. J. Zhang, Electrochemical ammonia synthesis from N2 and H2O catalyzed by doped LaFeO3 perovskite under mild conditions. Ind. Eng. Chem. Res. 2019, 58, 8935-8939.
[82]
C. B. Li,; D. W. Ma,; S. Y. Mou,; Y. S. Luo,; B. Y. Ma,; S. Y. Lu,; G. W. Cui,; Q. Li,; Q. Liu,; X. P. Sun, Porous LaFeO3 nanofiber with oxygen vacancies as an efficient electrocatalyst for N2 conversion to NH3 under ambient conditions. J. Energy Chem. 2020, 50, 402-408.
[83]
Y. Wang,; X. Q. Cui,; J. X. Zhao,; G. R. Jia,; L. Gu,; Q. H. Zhang,; L. K. Meng,; Z. Shi,; L. R. Zheng,; C. Y. Wang, et al. Rational design of Fe-N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution. ACS Catal. 2019, 9, 336-344.
[84]
C. He,; Z. Y. Wu,; L. Zhao,; M. Ming,; Y. Zhang,; Y. P. Yi,; J. S. Hu, Identification of FeN4 as an efficient active site for electrochemical N2 reduction. ACS Catal. 2019, 9, 7311-7317.
[85]
X. R. Zhao,; F. X. Yin,; N. Liu,; G. R. Li,; T. X. Fan,; B. H. Chen, Highly efficient metal-organic-framework catalysts for electrochemical synthesis of ammonia from N2 (air) and water at low temperature and ambient pressure. J. Mater. Sci. 2017, 52, 10175-10185.
[86]
Z. W. Chen,; J. M. Yan,; Q. Jiang, Single or double: Which is the altar of atomic catalysts for nitrogen reduction reaction? Small Methods 2019, 3, 1800291.
[87]
F. Lü,; S. Z. Zhao,; R. J. Guo,; J. He,; X. Y. Peng,; H. H. Bao,; J. T. Fu,; L. L. Han,; G. C. Qi,; J. Luo, et al. Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media. Nano Energy 2019, 61, 420-427.
[88]
X. H. Zhao,; X. Lan,; D. K. Yu,; H. Fu,; Z. M. Liu,; T. C. Mu, Deep eutectic-solvothermal synthesis of nanostructured Fe3S4 for electrochemical N2 fixation under ambient conditions. Chem. Commun. 2018, 54, 13010-13013.
[89]
W. Xiong,; Z. Guo,; S. J. Zhao,; Q. Wang,; Q. Y. Xu,; X. W. Wang, Facile, cost-effective plasma synthesis of self-supportive FeSx on Fe foam for efficient electrochemical reduction of N2 under ambient conditions. J. Mater. Chem. A 2019, 7, 19977-19983.
[90]
X. J. Zhu,; T. W. Wu,; L. Ji,; Q. Liu,; Y. L. Luo,; G. W. Cui,; Y. M. Xiang,; Y. N. Zhang,; B. Z. Zheng,; X. P. Sun, Unusual electrochemical N2 reduction activity in an earth-abundant iron catalyst via phosphorous modulation. Chem. Commun. 2020, 56, 731-734.
[91]
B. Liu,; X. B. Zhang,; H. Shioyama,; T. Mukai,; T. Sakai,; Q. Xu, Converting cobalt oxide subunits in cobalt metal-organic framework into agglomerated Co3O4 nanoparticles as an electrode material for lithium ion battery. J. Power Sources 2010, 195, 857-861.
[92]
Y. Y. Liang,; Y. G. Li,; H. L. Wang,; J. G. Zhou,; J. Wang,; T. Regier,; H. J. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780-786.
[93]
J. Yang,; C. Yu,; X. M. Fan,; S. X. Liang,; S. F. Li,; H. W. Huang,; Z. Ling,; C. Hao,; J. S. Qiu, Electroactive edge site-enriched nickel-cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy Environ. Sci. 2016, 9, 1299-1307.
[94]
J. H. Wang,; W. Cui,; Q. Liu,; Z. C. Xing,; A. M. Asiri,; X. P. Sun, Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215-230.
[95]
S. J. Luo,; X. M. Li,; B. H. Zhang,; Z. L. Luo,; M. Luo, MOF-derived Co3O4@NC with core-shell structures for N2 electrochemical reduction under ambient conditions. ACS Appl. Mater. Interface 2019, 11, 26891-26897.
[96]
J. Zhang,; X. Y. Tian,; M. J. Liu,; H. Guo,; J. D. Zhou,; Q. Y. Fang,; Z. Liu,; Q. Wu,; J. Lou, Cobalt-modulated molybdenum-dinitrogen interaction in MoS2 for catalyzing ammonia synthesis. J. Am. Chem. Soc. 2019, 141, 19269-19275.
[97]
H. Wang,; S. F. Zhuo,; Y. Liang,; X. L. Han,; B. Zhang, General self-template synthesis of transition-metal oxide and chalcogenide mesoporous nanotubes with enhanced electrochemical performances. Angew. Chem., Int. Ed. 2016, 55, 9055-9059.
[98]
P. Z. Chen,; N. Zhang,; S. B. Wang,; T. P. Zhou,; Y. Tong,; C. C. Ao,; W. S. Yan,; L. D. Zhang,; W. S. Chu,; C. Z. Wu, et al. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. Proc. Natl. Acad. Sci. USA 2019, 116, 6635-6640.
[99]
W. H. Guo,; Z. B. Liang,; J. L. Zhao,; B. J. Zhu,; K. T. Cai,; R. Q. Zou,; Q. Xu, Hierarchical cobalt phosphide hollow nanocages toward electrocatalytic ammonia synthesis under ambient pressure and room temperature. Small Methods 2018, 2, 1800204.
[100]
S. B. Zhang,; W. B. Gong,; Y. Lv,; H. J. Wang,; M. M. Han,; G. Z. Wang,; T. F. Shi,; H. M. Zhang, A pyrolysis-phosphorization approach to fabricate carbon nanotubes with embedded CoP nanoparticles for ambient electrosynthesis of ammonia. Chem. Commun. 2019, 55, 12376-12379.
[101]
K. Chu,; Y. P. Liu,; J. Wang,; H. Zhang, NiO nanodots on graphene for efficient electrochemical N2 reduction to NH3. ACS Appl. Energy Mater. 2019, 2, 2288-2295.
[102]
N. Zhang,; A. Jalil,; D. X. Wu,; S. M. Chen,; Y. F. Liu,; C. Gao,; W. Ye,; Z. M. Qi,; H. X. Ju,; C. M. Wang, et al. Refining defect states in W18O49 by Mo doping: A strategy for tuning N2 activation towards solar-driven nitrogen fixation. J. Am. Chem. Soc. 2018, 140, 9434-9443.
[103]
Y. B. Li,; Y. P. Liu,; J. Wang,; Y. L. Guo,; K. Chu, Plasma-engineered NiO nanosheets with enriched oxygen vacancies for enhanced electrocatalytic nitrogen fixation. Inorg. Chem. Front. 2020, 7, 455-463.
[104]
X. H. Wang,; J. Wang,; Y. B. Li,; K. Chu, Nitrogen-doped NiO nanosheet array for boosted electrocatalytic N2 reduction. ChemCatChem 2019, 11, 4529-4536.
[105]
Y. J. Chen,; B. Wu,; B. L. Sun,; N. Wang,; W. C. Hu,; S. Komarneni, N-Doped porous carbon self-generated on nickel oxide nanosheets for electrocatalytic N2 fixation with a faradaic efficiency beyond 30%. ACS Sustainable Chem. Eng. 2019, 7, 18874-18883.
[106]
J. Wang,; H. Jang,; G. K. Li,; M. G. Kim,; Z. X. Wu,; X. E. Liu,; J. Cho, Efficient electrocatalytic conversion of N2 to NH3 on NiWO4 under ambient conditions. Nanoscale 2020, 12, 1478-1483.
[107]
X. X. Guo,; W. C. Yi,; F. L. Qu,; L. M. Lu, New insights into mechanisms on electrochemical N2 reduction reaction driven by efficient zero-valence Cu nanoparticles. J. Power Sources 2020, 448, 227417.
[108]
C. B. Li,; S. Y. Mou,; X. J. Zhu,; F. Y. Wang,; Y. T. Wang,; Y. X. Qiao,; X. F. Shi,; Y. L. Luo,; B. Z. Zheng,; Q. Li, et al. Dendritic Cu: A high-efficiency electrocatalyst for N2 fixation to NH3 under ambient conditions. Chem. Commun. 2019, 55, 14474-14477.
[109]
Y. X. Lin,; S. N. Zhang,; Z. H. Xue,; J. J. Zhang,; H. Su,; T. J. Zhao,; G. Y. Zhai,; X. H. Li,; M. Antonietti,; J. S. Chen, Boosting selective nitrogen reduction to ammonia on electron-deficient copper nanoparticles. Nat. Commun. 2019, 10, 4380.
[110]
W. Tong,; B. L. Huang,; P. T. Wang,; L. G. Li,; Q. Shao,; X. Q. Huang, Crystal-phase-engineered PdCu electrocatalyst for enhanced ammonia synthesis. Angew. Chem., Int. Ed. 2020, 59, 2649-2653.
[111]
Y. Q. Liu,; L. Huang,; X. Y. Zhu,; Y. X. Fang,; S. J. Dong, Coupling Cu with Au for enhanced electrocatalytic activity of nitrogen reduction reaction. Nanoscale 2020, 12, 1811-1816.
[112]
Y. M. Cao,; P. P. Li,; T. T. Wu,; M. L. Liu,; Y. Y. Zhang, Electrocatalysis of N2 to NH3 by HKUST-1 with high NH3 yield. Chem.—Asian J. 2020, 15, 1272-1276.
[113]
F. Wang,; Y. P. Liu,; H. Zhang,; K. Chu, CuO/graphene nanocomposite for nitrogen reduction reaction. ChemCatChem 2019, 11, 1441-1447.
[114]
S. B. Zhang,; C. J. Zhao,; Y. Y. Liu,; W. Y. Li,; J. L. Wang,; G. Z. Wang,; Y. X. Zhang,; H. M. Zhang,; H. J. Zhao, Cu doping in CeO2 to form multiple oxygen vacancies for dramatically enhanced ambient N2 reduction performance. Chem. Commun. 2019, 55, 2952-2955.
[115]
H. Huang,; F. M. Li,; Q. Xue,; Y. Zhang,; S. W. Yin,; Y. Chen, Salt- templated construction of ultrathin cobalt doped iron thiophosphite nanosheets toward electrochemical ammonia synthesis. Small 2019, 15, 1903500.
[116]
M. I. Ahmed,; S. Chen,; W. H. Ren,; X. J. Chen,; C. Zhao, Synergistic bimetallic CoFe2O4 clusters supported on graphene for ambient electrocatalytic reduction of nitrogen to ammonia. Chem. Commun. 2019, 55, 12184-12187.
[117]
X. K. Wu,; Z. C. Wang,; Y. Han,; D. Zhang,; M. H. Wang,; H. D. Li,; H. Zhao,; Y. Pan,; J. P. Lai,; L. Wang, Chemically coupled NiCoS/C nanocages as efficient electrocatalysts for nitrogen reduction reactions. J. Mater. Chem. A 2020, 8, 543-547.
[118]
W. Z. Fu,; Y. D. Cao,; Q. Y. Feng,; W. R. Smith,; P. Dong,; M. X. Ye,; J. F. Shen, Pd-Co nanoalloys nested on CuO nanosheets for efficient electrocatalytic N2 reduction and room-temperature Suzuki-Miyaura coupling reaction. Nanoscale 2019, 11, 1379-1385.
[119]
L. P. Yuan,; Z. Y. Wu,; W. J. Jiang,; T. Tang,; S. Niu,; J. S. Hu, Phosphorus-doping activates carbon nanotubes for efficient electroreduction of nitrogen to ammonia. Nano Res. 2020, 13, 1376-1382.
[120]
C. Tang,; R. Zhang,; W. B. Lu,; Z. Wang,; D. N. Liu,; S. Hao,; G. Du,; A. M. Asiri,; X. P. Sun, Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 842-846.
[121]
J. M. Wang,; X. Ma,; T. T. Liu,; D. N. Liu,; S. Hao,; G. Du,; R. M. Kong,; A. M. Asiri,; X. P. Sun, NiS2 nanosheet array: A high-active bifunctional electrocatalyst for hydrazine oxidation and water reduction toward energy-efficient hydrogen production. Mater. Today Energy 2017, 3, 9-14.
[122]
D. N. Liu,; T. T. Liu,; L. X. Zhang,; F. L. Qu,; G. Du,; A. M. Asiri,; X. P. Sun, High-performance urea electrolysis towards less energy- intensive electrochemical hydrogen production using a bifunctional catalyst electrode. J. Mater. Chem. A 2017, 5, 3208-3213.
Publication history
Copyright

Publication history

Received: 29 June 2020
Revised: 02 August 2020
Accepted: 10 August 2020
Published: 01 March 2021
Issue date: March 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return