[1]
X. Li,; J. G. Yu,; M. Jaroniec,; X. B. Chen, Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962-4179.
[2]
P. Zhang,; X. W. Lou, Design of heterostructured hollow photocatalysts for solar-to-chemical energy conversion. Adv. Mater. 2019, 31, 1900281.
[3]
J. W. Fu,; K. X. Jiang,; X. Q. Qiu,; J. G. Yu,; M. Liu, Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 2020, 32, 222-243.
[4]
J. J. Shan,; F. Raziq,; M. Humayun,; W. Zhou,; Y. Qu,; G. F. Wang,; Y. D. Li, Improved charge separation and surface activation via boron-doped layered polyhedron SrTiO3 for co-catalyst free photocatalytic CO2 conversion. Appl. Catal. B: Environ. 2017, 219, 10-17.
[5]
N. Nie,; L. Y. Zhang,; J. W. Fu,; B. Cheng,; J. G. Yu, Self-assembled hierarchical direct Z-scheme g-C3N4/ZnO microspheres with enhanced photocatalytic CO2 reduction performance. Appl. Surf. Sci. 2018, 441, 12-22.
[6]
Q. Li,; S. C. Wang,; Z. X. Sun,; Q. J. Tang,; Y. Q. Liu,; L. Z. Wang,; H. Q. Wang,; Z. B. Wu, Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4. Nano Res. 2019, 12, 2749-2759.
[7]
N. N. Vu,; S. Kaliaguine,; T. O. Do, Critical aspects and recent advances in structural engineering of photocatalysts for sunlight-driven photocatalytic reduction of CO2 into fuels. Adv. Funct. Mater. 2019, 29, 1901825.
[8]
S. F. Ji,; Y. Qu,; T. Wang,; Y. J. Chen,; G. F. Wang,; X. Li,; C. J. Dong,; Q. Y. Chen,; W. Y. Zhang,; Z. D. Zhang, et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651-10657.
[9]
J. Bian,; J. N. Feng,; Z. Q. Zhang,; Z. J. Li,; Y. H. Zhang,; Y. D. Liu,; S. Ali,; Y. Qu,; L. L. Bai,; J. J. Xie, et al. Dimension-matched zinc phthalocyanine/BiVO4 ultrathin nanocomposites for CO2 reduction as efficient wide-visible-light-driven photocatalysts via a cascade charge transfer. Agnew. Chem., Int. Ed. 2019, 58, 10873-10878.
[10]
Y. J. Ma,; Q. Tang,; W. Y. Sun,; Z. Y. Yao,; W. H. Zhu,; T. Li,; J. Y. Wang, Assembling ultrafine TiO2 nanoparticles on UiO-66 octahedrons to promote selective photocatalytic conversion of CO2 to CH4 at a low concentration. Appl. Catal. B: Environ. 2020, 270, 118856.
[11]
M. Tahir,; B. Tahir,; N. A. S. Amin,; Z. Y. Zakaria, Photo-induced reduction of CO2 to CO with hydrogen over plasmonic Ag-NPs/ TiO2 NWs core/shell hetero-junction under UV and visible light. J. CO2 Util. 2017, 18, 250-260.
[12]
S. Y. Zhu,; W. R. Liao,; M. Y. Zhang,; S. J. Liang, Design of spatially separated Au and CoO dual cocatalysts on hollow TiO2 for enhanced photocatalytic activity towards the reduction of CO2 to CH4. Chem. Eng. J. 2019, 361, 461-469.
[13]
Z. Z. Lou,; P. Zhang,; J. Li,; X. G. Yang,; B. B. Huang,; B. J. Li, Plasmonic heterostructure TiO2-MCs/WO3-x-NWs with continuous photoelectron injection boosting hot electron for methane generation. Adv. Funct. Mater. 2019, 29, 1808696.
[14]
Q. Q. Bi,; J. W. Wang,; J. X. Lv,; J. Wang,; W. Zhang,; T. B. Lu, Selective photocatalytic CO2 reduction in water by electrostatic assembly of CdS nanocrystals with a dinuclear cobalt catalyst. ACS Catal. 2018, 8, 11815-11821.
[15]
Z. Z. Zhu,; Y. Han,; C. P. Chen,; Z. X. Ding,; J. L. Long,; Y. D. Hou, Reduced graphene oxide-cadmium sulfide nanorods decorated with silver nanoparticles for efficient photocatalytic reduction carbon dioxide under visible light. ChemCatChem 2018, 10, 1627-1634.
[16]
Y. L. Men,; Y. You,; Y. X. Pan,; H. C. Gao,; Y. Xia,; D. G. Cheng,; J. Song,; D. X. Cui,; N. Wu,; Y. T. Li, et al. Selective CO evolution from photoreduction of CO2 on a metal-carbide-based composite catalyst. J. Am. Chem. Soc. 2018, 140, 13071-13077.
[17]
H. Y. Wang,; R. Hu,; Y. J. Lei,; Z. Y. Jia,; G. L. Hu,; C. B. Li,; Q. Gu, Highly efficient and selective photocatalytic CO2 reduction based on water-soluble CdS QDs modified by the mixed ligands in one pot. Catal. Sci. Technol. 2020, 10, 2821-2829.
[18]
J. N. Qin,; S. B. Wang,; H. Ren,; Y. D. Hou,; X. C. Wang, Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid. Appl. Catal. B: Environ. 2015, 179, 1-8.
[19]
J. G. Yu,; K. Wang,; W. Xiao,; B. Cheng, Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4-Pt nanocomposite photocatalysts. Phys. Chem. Chem. Phys. 2014, 16, 11492-11501.
[20]
S. F. Tian,; S. D. Chen,; X. T. Ren,; Y. Q. Hu,; H. Y. Hu,; J. J. Sun,; F. Bai, An efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding. Nano Res. 2020, 13, 2665-2672.
[21]
S. N. Talapaneni,; G. Singh,; I. Y. Kim,; K. AlBahily,; A. H. Al-Muhtaseb,; A. S. Karakoti,; E. Tavakkoli,; A. Vinu, Nanostructured carbon nitrides for CO2 capture and conversion. Adv. Mater. 2020, 32, 1904635.
[22]
J. X. Shen,; Y. Z. Li,; H. Y. Zhao,; K. Pan,; X. Li,; Y. Qu,; G. F. Wang,; D. S. Wang, Modulating the photoelectrons of g-C3N4 via coupling MgTi2O5 as appropriate platform for visible-light-driven photocatalytic solar energy conversion. Nano Res. 2019, 12, 1931-1936.
[23]
Y. D. Hou,; A. B. Laursen,; J. S. Zhang,; G. G. Zhang,; Y. S. Zhu,; X. C. Wang,; S. Dahl,; I. Chorkendorff, Layered nanojunctions for hydrogen-evolution catalysis. Angew. Chem., Int. Ed. 2013, 52, 3621-3625.
[24]
B. Xu,; P. L. He,; H. L. Liu,; P. P. Wang,; G. Zhou,; X. Wang, A 1D/2D helical CdS/ZnIn2S4 nano-heterostructure. Agnew. Chem., Int. Ed. 2014, 53, 2339-2343.
[25]
H. F. Lin,; Y. Y. Li,; H. L. Li,; X. Wang, Multi-node CdS hetero-nanowires grown with defect-rich oxygen-doped MoS2 ultrathin nanosheets for efficient visible-light photocatalytic H2 evolution. Nano Res. 2017, 10, 1377-1392.
[26]
X. D. Wang,; Y. H. Huang,; J. F. Liao,; Y. Jiang,; L. Zhou,; X. Y. Zhang,; H. Y. Chen,; D. B. Kuang, In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. J. Am. Chem. Soc. 2019, 141, 13434-13441.
[27]
S. F. Tang,; X. P. Yin,; G. Y. Wang,; X. L. Lu,; T. B. Lu, Single titanium-oxide species implanted in 2D g-C3N4 matrix as a highly efficient visible-light CO2 reduction photocatalyst. Nano Res. 2019, 12, 457-462.
[28]
S. B. Wang,; Y. Wang,; S. Q. Zang,; X. W. Lou, Hierarchical hollow heterostructures for photocatalytic CO2 reduction and water splitting. Small Methods 2020, 4, 1900586.
[29]
S. W. Cao,; B. J. Shen,; T. Tong,; J. W. Fu,; J. G. Yu, 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2018, 28, 1800136.
[30]
H. Wang,; X. D. Zhang,; Y. Xie, Recent progress in ultrathin two-dimensional semiconductors for photocatalysis. Mater. Sci. Eng. R: Rep. 2018, 130, 1-39.
[31]
X. C. Jiao,; Z. W. Chen,; X. D. Li,; Y. F. Sun,; S. Gao,; W. S. Yan,; C. M. Wang,; Q. Zhang,; Y. Lin,; Y. Luo, et al. Defect-mediated electron-hole separation in one-unit-cell ZnIn2S4 layers for boosted solar-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 7586-7594.
[32]
X. Wang,; J. Lv,; J. X. Zhang,; X. L. Wang,; C. Z. Xue,; G. Q. Bian,; D. S. Li,; Y. Wang,; T. Wu, Hierarchical heterostructure of SnO2 confined on CuS nanosheets for efficient electrocatalytic CO2 reduction. Nanoscale 2020, 12, 772-784.
[33]
Z. L. Xu,; C. S. Zhuang,; Z. J. Zou,; J. Y. Wang,; X. C. Xu,; T. Y. Peng, Enhanced photocatalytic activity by the construction of a TiO2/carbon nitride nanosheets heterostructure with high surface area via direct interfacial assembly. Nano Res. 2017, 10, 2193-2209.
[34]
J. Xiong,; P. Song,; J. Di,; H. M. Li, Ultrathin structured photocatalysts: A versatile platform for CO2 reduction. Appl. Catal. B: Environ. 2019, 256, 117788.
[35]
A. Li,; T. Wang,; C. C. Li,; Z. Q. Huang,; Z. B. Luo,; J. L. Gong, Adjusting the reduction potential of electrons by quantum confinement for selective photoreduction of CO2 to methanol. Agnew. Chem., Int. Ed. 2019, 58, 3804-3808.
[36]
M. Q. Yang,; Y. J. Xu,; W. H. Lu,; K. Y. Zeng,; H. Zhu,; Q. H. Xu,; G. W. Ho, Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids. Nat. Commun. 2017, 8, 14224.
[37]
T. Wang,; Y. Y. Chai,; D. K. Ma,; W. Chen,; W. W. Zheng,; S. M. Huang, Multidimensional CdS nanowire/CdIn2S4 nanosheet heterostructure for photocatalytic and photoelectrochemical applications. Nano Res. 2017, 10, 2699-2711.
[38]
H. Y. Li,; X. Z. Liu,; S. M. Chen,; D. R. Yang,; Q. Zhang,; L. Song,; H. Xiao,; Q. H. Zhang,; L. Gu,; X. Wang, Edge-exposed molybdenum disulfide with N-doped carbon hybridization: A hierarchical hollow electrocatalyst for carbon dioxide reduction. Adv. Energy Mater. 2019, 9, 1900072.
[39]
S. B. Wang,; B. Y. Guan,; X. W. Lou, Construction of ZnIn2S4-In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction. J. Am. Chem. Soc. 2018, 140, 5037-5040.
[40]
Y. Q. He,; H. Rao,; K. P. Song,; J. X. Li,; Y. Yu,; Y. Lou,; C. G. Li,; Y. Han,; Z. Shi,; S. H. Feng, 3D hierarchical ZnIn2S4 nanosheets with rich Zn vacancies boosting photocatalytic CO2 reduction. Adv. Funct. Mater. 2019, 29, 1905153.
[41]
Y. Xia,; B. Cheng,; J. J. Fan,; J. G. Yu,; G. Liu, Near-infrared absorbing 2D/3D ZnIn2S4/N-doped graphene photocatalyst for highly efficient CO2 capture and photocatalytic reduction. Sci. China Mater. 2020, 63, 552-565.
[42]
M. Zhou,; S. B. Wang,; P. J. Yang,; C. J. Huang,; X. C. Wang, Boron carbon nitride semiconductors decorated with CdS nanoparticles for photocatalytic reduction of CO2. ACS Catal. 2018, 8, 4928-4936.
[43]
A. H. Yan,; X. W. Shi,; F. Huang,; M. Fujitsuka,; T. Majima, Efficient photocatalytic H2 evolution using NiS/ZnIn2S4 heterostructures with enhanced charge separation and interfacial charge transfer. Appl. Catal. B: Environ. 2019, 250, 163-170.
[44]
H. Li,; W. J. Li,; W. Li,; M. F. Chen,; R. Snyders,; C. Bittencourt,; Z. H. Yuan, Engineering crystal phase of polytypic CuInS2 nanosheets for enhanced photocatalytic and photoelectrochemical performance. Nano Res. 2020, 13, 583-590.
[45]
S. B. Wang,; B. Y. Guan,; Y. Lu,; X. W. Lou, Formation of hierarchical In2S3-CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction. J. Am. Chem. Soc. 2017, 139, 17305-17308.
[46]
H. Q. Xu,; S. Z. Yang,; X. Ma,; J. E. Huang,; H. L. Jiang, Unveiling charge-separation dynamics in CdS/metal-organic framework composites for enhanced photocatalysis. ACS Catal. 2018, 8, 11615-11621.
[47]
S. Q. Zhang,; X. Liu,; C. B. Liu,; S. L. Luo,; L. L. Wang,; T. Cai,; Y. X. Zeng,; J. L. Yuan,; W. Y. Dong,; Y. Pei, et al. MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: Atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano 2018, 12, 751-758.
[48]
J. Wang,; T. Xia,; L. Wang,; X. S. Zheng,; Z. M. Qi,; C. Gao,; J. F. Zhu,; Z. Q. Li,; H. X. Xu,; Y. J. Xiong, Enabling visible-light-driven selective CO2 reduction by doping quantum dots: Trapping electrons and suppressing H2 evolution. Angew. Chem., Int. Ed. 2018, 57, 16447-16451.
[49]
M. Zhou,; S. B. Wang,; P. J. Yang,; Z. S. Luo,; R. S. Yuan,; A. M. Asiri,; M. Wakeel,; X. C. Wang, Layered heterostructures of ultrathin polymeric carbon nitride and ZnIn2S4 nanosheets for photocatalytic CO2 reduction. Chem. —Eur. J. 2018, 24, 18529-18534.
[50]
L. Ye,; Z. H. Li, Rapid microwave-assisted syntheses of reduced graphene oxide (RGO)/ZnIn2S4 microspheres as superior noble-metal-free photocatalyst for hydrogen evolutions under visible light. Appl. Catal. B: Environ. 2014, 160-161, 552-557.
[51]
Y. Wu,; H. Wang,; W. G. Tu,; S. Y. Wu,; J. W. Chew, Effects of composition faults in ternary metal chalcogenides (ZnxIn2S3+x, x = 1-5) layered crystals for visible-light-driven catalytic hydrogen generation and carbon dioxide reduction. Appl. Catal. B: Environ. 2019, 256, 117810.
[52]
Y. G. Chao,; P. Zhou,; N. Li,; J. P. Lai,; Y. Yang,; Y. L. Zhang,; Y. H. Tang,; W. X. Yang,; Y. P. Du,; D. Su, et al. Ultrathin visible-light-driven Mo incorporating In2O3-ZnIn2Se4 Z-scheme nanosheet photocatalysts. Adv. Mater. 2019, 31, 1807226.
[53]
D. N. Liu,; D. Y. Chen,; N. J. Li,; Q. F. Xu,; H. Li,; J. H. He,; J. M. Lu, Surface engineering of g-C3N4 by stacked BiOBr sheets rich in oxygen vacancies for boosting photocatalytic performance. Angew. Chem., Int. Ed. 2020, 59, 4519-4524.
[54]
L. Q. Shao,; D. L. Jiang,; P. Xiao,; L. M. Zhu,; S. C. Meng,; M. Chen, Enhancement of g-C3N4 nanosheets photocatalysis by synergistic interaction of ZnS microsphere and RGO inducing multistep charge transfer. Appl. Catal. B: Environ. 2016, 198, 200-210.
[55]
M. Xiao,; Z. L. Wang,; M. Q. Lyu,; B. Luo,; S. C. Wang,; G. Liu,; H. M. Cheng,; L. Z. Wang, Hollow nanostructures for photocatalysis: Advantages and challenges. Adv. Mater. 2019, 31, 1801369.
[56]
Y. Z. Wei,; J. Y. Wang,; R. B. Yu,; J. W. Wan,; D. Wang, Constructing SrTiO3-TiO2 heterogeneous hollow multi-shelled structures for enhanced solar water splitting. Angew. Chem., Int. Ed. 2019, 58, 1422-1426.
[57]
Y. K. Zhu,; C, X. Lv,; Z. C. Yin,; J. Ren,; X. F. Yang,; C. L. Dong,; H. W. Liu,; R. S. Cai,; Y. C. Huang,; W. Theis, et al. A [001]-oriented Hittorf’s phosphorus nanorods/polymeric carbon nitride heterostructure for boosting wide-spectrum-responsive photocatalytic hydrogen evolution from pure water. Angew. Chem., Int. Ed. 2020, 59, 868-873.
[58]
P. Zhang,; S. B. Wang,; B. Y. Guan,; X. W. Lou, Fabrication of CdS hierarchical multi-cavity hollow particles for efficient visible light CO2 reduction. Energy Environ. Sci. 2019, 12, 164-168.
[59]
H. T. Li,; X. Y. Zhang,; D. R. MacFarlane, Carbon quantum dots/ Cu2O heterostructures for solar-light-driven conversion of CO2 to methanol. Adv. Energy Mater. 2015, 5, 1401077.
[60]
Z. P. Zeng,; Y. B. Yan,; J. Chen,; P. Zan,; Q. H. Tian,; P. Chen, Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots. Adv. Funct. Mater. 2019, 29, 1806500.
[61]
Z. Z. Zhu,; J. N. Qin,; M. Jiang,; Z. X. Ding,; Y. D. Hou, Enhanced selective photocatalytic CO2 reduction into CO over Ag/CdS nanocomposites under visible light. Appl. Surf. Sci. 2017, 391, 572-579.
[62]
X. X. Chang,; T. Wang,; P. Zhang,; J. J. Zhang,; A. Li,; J. L. Gong, Enhanced surface reaction kinetics and charge separation of p-n heterojunction Co3O4/BiVO4 photoanodes. J. Am. Chem. Soc. 2015, 137, 8356-8359.
[63]
Y. Z. Wei,; J. W. Wan,; N. L. Yang,; Y. Yang,; Y. W. Ma,; S. C. Wang,; J. Y. Wang,; R. B. Yu,; L. Gu, L. H. Wang, et al. Efficient sequential harvesting of solar light by heterogeneous hollow shells with hierarchical pores. Natl. Sci. Rev., in press, .
[64]
F. C. Lei,; L. Zhang,; Y. F. Sun,; L. Liang,; K. T. Liu,; J. Q. Xu,; Q. Zhang,; B. C. Pan,; Y. Lu,; Y. Xie, Atomic-layer-confined doping for atomic-level insights into visible-light water splitting. Angew. Chem., Int. Ed. 2015, 54, 9266-9270.
[65]
W. L. Yang,; L. Zhang,; J. F. Xie,; X. D. Zhang,; Q. H. Liu,; T. Yao,; S. Q. Wei,; Q. Zhang,; Y. Xie, Enhanced photoexcited carrier separation in oxygen-doped ZnIn2S4 nanosheets for hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 6716-6720.
[66]
W. Shao,; L. Wang,; H. Wang,; Z. Zhao,; X. D. Zhang,; S. L. Jiang,; S. C. Chen,; X. S. Sun,; Q. Zhang,; Y. Xie, Efficient exciton dissociation in heterojunction interfaces realizing enhanced photoresponsive performance. J. Phys. Chem. Lett. 2019, 10, 2904-2910.
[67]
X. Deng,; R. Li,; S. K. Wu,; L. Wang,; J. H. Hu,; J. Ma,; W. B. Jiang,; N. Zhang, X. S. Zheng,; C. Gao, et al. Metal-organic framework coating enhances the performance of Cu2O in photoelectrochemical CO2 reduction. J. Am. Chem. Soc. 2019, 141, 10924-10929.
[68]
J. L. Lin,; Y. D. Hou,; Y. Zheng,; X. C. Wang Integration of [(Co(bpy)3]2+ electron mediator with heterogeneous photocatalysts for CO2 conversion. Chem. Asian J. 2014, 9, 2468-2474.
[69]
L. J. Huang,; B. F. Li,; B. Su,; Z. Xiong,; C. J. Zhang,; Y. D. Hou,; Z. X. Ding,; S. B. Wang, Fabrication of hierarchical Co3O4@CdIn2S4 p-n heterojunction photocatalysts for improved CO2 reduction with visible light. J. Mater. Chem. A 2020, 8, 7177-7183.
[70]
G. X. Zhao,; W. Zhou,; Y. B. Sun,; X. K. Wang,; H. M. Liu,; X. G. Meng,; K. Chang,; J. H. Ye Efficient photocatalytic CO2 reduction over Co(II) species modified CdS in aqueous solution. Appl. Catal. B: Envirmon. 2018, 226, 252-257.
[71]
B. Su,; L. J. Huang,; Z. Xiong,; Y. C. Yang,; Y. D. Hou,; Z. X. Ding,; S. B. Wang, Branch-like ZnS-DETA/CdS hierarchical heterostructures as an efficient photocatalyst for visible light CO2 reduction. J. Mater. Chem. A 2019, 7, 26877-26883.