[1]
K. K. Li,; J. Zhang,; D. M. Lin,; D. W. Wang,; B. H. Li,; W. Lv,; S. Sun,; Y. B. He,; F. Y. Kang,; Q. H. Yang, et al. Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes. Nat. Commun. 2019, 10, 725.
[2]
Y. X. Wang,; S. L. Chou,; D. Wexler,; H. K. Liu,; S. X. Dou, High-performance sodium-ion batteries and sodium-ion pseudocapacitors based on MoS2/Graphene Composites. Chem.—Eur. J. 2014, 20, 9607-9612.
[3]
X. L. Song,; H. Wang,; S. M. Jin,; M. Lv,; Y. Zhang,; X. D. Kong,; H. M. Xu,; T. Ma,; X. Y. Luo,; H. F. Tan, et al. Oligolayered Ti3C2Tx MXene towards high performance lithium/sodium storage. Nano Res. 2020, 13, 1659-1667.
[4]
J. M. Lu,; S. Y. Zhao,; S. X. Fan,; Q. Lv,; J. Li,; R. T. Lv, Hierarchical SnS/SnS2 heterostructures grown on carbon cloth as binder-free anode for superior sodium-ion storage. Carbon 2019, 148, 525-531.
[5]
E. Edison,; P. K. Gogoi,; Y. Zheng,; S. Sreejith,; S. J. Pennycook,; C. T. Lim,; M. Srinivasan, Electrochemically induced amorphization and unique lithium and sodium storage pathways in FeSbO4 nanocrystals. ACS Appl. Mater. Interfaces 2019, 11, 20082-20090.
[6]
P. Ge,; M. Fouletier, Electrochemical intercalation of sodium in graphite. Solid State Ionics 1988, 28-30, 1172-1175.
[7]
M. D. Slater,; D. Kim,; E. Lee,; C. S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947-958.
[8]
D. Sun,; D. L. Ye,; P. Liu,; Y. G. Tang,; J. Guo,; L. Z. Wang,; H. Y. Wang, MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702383.
[9]
Z. N. Deng,; H. Jiang,; C. Z. Li, 2D metal chalcogenides incorporated into carbon and their assembly for energy storage applications. Small 2018, 14, 1800148.
[10]
X. J. Zhao,; G. Wang,; X. J. Liu,; X. L. Zheng,; H. Wang, Ultrathin MoS2 with expanded interlayers supported on hierarchical polypyrrole-derived amorphous N-doped carbon tubular structures for high-performance Li/Na-ion batteries. Nano Res. 2018, 11, 3603-3618.
[11]
L. Chen,; Y. Liu,; Z. N. Deng,; H. Jiang,; C. Z. Li, Edge-enriched MoS2@C/rGO film as self-standing anodes for high-capacity and long-life lithium-ion batteries. Sci. China Mater., in press, .
[12]
H. Yang,; M. Wang,; X. W. Liu,; Y. Jiang,; Y. Yu, MoS2 embedded in 3D interconnected carbon nanofiber film as a free-standing anode for sodium-ion batteries. Nano Res. 2018, 11, 3844-3853.
[13]
Z. Hu,; L. X. Wang,; K. Zhang,; J. B. Wang,; F. Y. Cheng,; Z. L. Tao,; J. Chen, MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem., Int. Ed. 2014, 53, 12794-12798.
[14]
J. Park,; J. S. Kim,; J. W. Park,; T. H. Nam,; K. W. Kim,; J. H. Ahn,; G. X. Wang,; H. J. Ahn, Discharge mechanism of MoS2 for sodium ion battery: Electrochemical measurements and characterization. Electrochim. Acta 2013, 92, 427-432.
[15]
X. Xu,; R. C. Zhao,; W. Ai,; B. Chen,; H. F. Du,; L. S. Wu,; H. Zhang,; W. Huang,; T. Yu, Controllable design of MoS2 nanosheets anchored on nitrogen-doped graphene: Toward fast sodium storage by tunable pseudocapacitance. Adv. Mater. 2018, 30, 1800658.
[16]
Y. L. Ding,; P. Kopold,; K. Hahn,; P. A. Van Aken,; J. Maier,; Y. Yu, A lamellar hybrid assembled from metal disulfide nanowall arrays anchored on a carbon layer: In situ hybridization and improved sodium storage. Adv. Mater. 2016, 28, 7774-7782.
[17]
H. Y. Wang,; H. Jiang,; Y. J. Hu,; P. Saha,; Q. L. Cheng,; C. Z. Li, Interface-engineered MoS2/C nanosheet heterostructure arrays for ultra-stable sodium-ion batteries. Chem. Eng. Sci. 2017, 174, 104-111.
[18]
Y. X. Wang,; K. H. Seng,; S. L. Chou,; J. Z. Wang,, Z. P. Guo,; D. Wexler,, H. K. Liu,; S. X. Dou, Reversible sodium storage via conversion reaction of a MoS2-C composite. Chem. Commun., 2014, 50, 10730-10733.
[19]
Z. D. Lei,; J. Zhan,; L. Tang,; Y. Zhang,; Y. Wang, Recent development of metallic (1T) phase of molybdenum disulfide for energy conversion and storage. Adv. Energy Mater. 2018, 8, 1703482.
[20]
Y. Liu,; X. Z. Wang,; X. D. Song,; Y. F. Dong,; L. Yang,; L. X. Wang,; D. Z. Jia,; Z. B. Zhao,; J. S. Qiu, Interlayer expanded MoS2 enabled by edge effect of graphene nanoribbons for high performance lithium and sodium ion batteries. Carbon 2016, 109, 461-471.
[21]
Y. P. Li,; Y. F. Yu,; Y. F. Huang,; R. A. Nielsen,; W. A. Goddard III,; Y. Li,; L. Y. Cao, Engineering the composition and crystallinity of molybdenum sulfide for high-performance electrocatalytic hydrogen evolution. ACS Catal. 2015, 5, 448-455.
[22]
C. H. Lee,; S. Lee,; G. S. Kang,; Y. K. Lee,; G. G. Park,; D. C. Lee,; H. I. Joh, Insight into the superior activity of bridging sulfur-rich amorphous molybdenum sulfide for electrochemical hydrogen evolution reaction. Appl. Catal. B: Environ. 2019, 258, 117995.
[23]
C. L. Wang,; H. Wang,; X. F. Hu,; E. Matios,; J. M. Luo,; Y. W. Zhang,; X. Lu,; W. Y. Li, Frogspawn-coral-like hollow sodium sulfide nanostructured cathode for high-rate performance sodium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1803251.
[24]
W. Z. Bao,; C. E. Shuck,; W. X. Zhang,; X. Guo,; Y. Gogotsi,; G. X. Wang, Boosting performance of Na-S batteries using sulfur-doped Ti3C2Tx MXene nanosheets with a strong affinity to sodium polysulfides. ACS Nano 2019, 13, 11500-11509.
[25]
T. T. Yang,; B. S. Guo,; W. Y. Du,; M. K. Aslam,; M. L. Tao,; W. Zhong,; Y. M. Chen,; S. J. Bao,; X. Zhang,; M. W. Xu, Design and construction of sodium polysulfides defense system for room-temperature Na-S battery. Adv. Sci. 2019, 6, 1901557.
[26]
Y. J. Fang,; X. Y. Yu,; X. W. Lou, Formation of hierarchical Cu-doped CoSe2 microboxes via sequential ion exchange for high-performance sodium-ion batteries. Adv. Mater. 2018, 30, 1706668.
[27]
Q. Z. Xiong,; Y. Wang,; P. F. Liu,; L. R. Zheng,; G. Z. Wang,; H. G. Yang,; P. K. Wong,; H. M. Zhang,; H. J. Zhao, Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting. Adv. Mater. 2018, 30, 1801450.
[28]
H. J. Liu,; Q. He,; H. L. Jiang,; Y. X. Lin,; Y. K. Zhang,; M. Habib,; S. M. Chen,; L. Song, Electronic structure reconfiguration toward pyrite NiS2 via engineered heteroatom defect boosting overall water splitting. ACS Nano 2017, 11, 11574-11583.
[29]
D. Higgins,; M. A. Hoque,; M. H. Seo,; R. Y. Wang,; F. Hassan,; J. Y. Choi,; M. Pritzker,; A. P. Yu,; J. J. Zhang,; Z. W. Chen, Development and simulation of sulfur-doped graphene supported platinum with exemplary stability and activity towards oxygen reduction. Adv. Funct. Mater. 2014, 24, 4325-4336.
[30]
X. L. Wang,; G. Li,; M. H. Seo,; F. M. Hassan,; M. A. Hoque,; Z. W. Chen, Sulfur atoms bridging few-layered MoS2 with S-doped graphene enable highly robust anode for lithium-ion batteries. Adv. Energy Mater. 2015, 5, 1501106.
[31]
M. Acerce,; D. Voiry,; M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313-318.
[32]
Q. C. Xu,; Y. Liu,; H. Jiang,, Y. J. Hu,; H. L. Liu,; C. Z. Li, Unsaturated sulfur edge engineering of strongly coupled MoS2 nanosheet-carbon macroporous hybrid catalyst for enhanced hydrogen generation. Adv. Energy Mater. 2019, 9, 1802553.
[33]
P. He,; M. Y. Yan,; G. B. Zhang,; R. M. Sun,; L. N. Chen,; Q. Y. An,; L. Q. Mai, Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 2017, 7, 1601920.
[34]
S. S. Xia,; Y. R. Wang,; Y. Liu,; C. H. Wu,; M. H. Wu,; H. J. Zhang, Ultrathin MoS2 nanosheets tightly anchoring onto nitrogen-doped graphene for enhanced lithium storage properties. Chem. Eng. J. 2018, 332, 431-439.
[35]
B. B. Li,; S. Z. Qiao,; X. R. Zheng,; X. J. Yang,; Z. D. Cui,; S. L. Zhu,; Z. Y. Li,; Y. Q. Liang, Pd coated MoS2 nanoflowers for highly efficient hydrogen evolution reaction under irradiation. J. Power Sources 2015, 284, 68-76.
[36]
W. Y. Du,; Y. K. Wu,; T. T. Yang,; B. S. Guo,; D. Y. Liu,; S. J. Bao,; M. W. Xu, Rational construction of rGO/VO2 nanoflowers as sulfur multifunctional hosts for room temperature Na-S batteries. Chem. Eng. J. 2020, 379, 122359.
[37]
Y. X. Wang,; J. P. Yang,; W. H. Lai,; S. L. Chou,; Q. F. Gu,; H. K. Liu,; D. Y. Zhao,; S. X. Dou, Achieving high-performance room-temperature sodium-sulfur batteries with S@interconnected mesoporous carbon hollow nanospheres. J. Am. Chem. Soc. 2016, 138, 16576-16579.
[38]
S. H. Choi,; Y. N. Ko,; J. K. Lee,; Y. C. Kang, 3D MoS2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv. Funct. Mater. 2015, 25, 1780-1788.
[39]
L. Chen,; H. Jiang,; Y. J. Hu,; H. Y. Wang,; C. Z. Li, In-situ growth of ultrathin MoS2 nanosheets on sponge-like carbon nanospheres for lithium-ion batteries. Sci. China Mater. 2018, 61, 1049-1056.
[39]
Y. Ma,; Y. J. Ma,; D. Bresser,; Y. C. Ji,; D. Geiger,; U. Kaiser,; C. Streb,; A. Varzi,; S. Passerini, Cobalt disulfide nanoparticles embedded in porous carbonaceous micro-polyhedrons interlinked by carbon nanotubes for superior lithium and sodium storage. ACS Nano 2018, 12, 7220-7231.