Journal Home > Volume 14 , Issue 1

The low specific capacity and sluggish electrochemical reaction kinetics greatly block the development of sodium-ion batteries (SIBs). New high-performance electrode materials will enhance development and are urgently required for SIBs. Herein, we report the preparation of supersaturated bridge-sulfur and vanadium co-doped MoS2 nanosheet arrays on carbon cloth (denoted as V-MoS2+x/CC). The bridge-sulfur in MoS2 has been created as a new active site for greater Na+ storage. The vanadium doping increases the density of carriers and facilitates accelerated electron transfer. The synergistic dual-doping effects endow the V-MoS2+x/CC anodes with high sodium storage performance. The optimized V-MoS2.49/CC gives superhigh capacities of 370 and 214 mAh·g-1 at 0.1 and 10 A·g-1 within 0.4-3.0 V, respectively. After cycling 3,000 times at 2 A·g-1, almost 83% of the reversible capacity is maintained. The findings indicate that the electrochemical performances of metal sulfides can be further improved by edge-engineering and lattice-doping co-modification concept.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Supersaturated bridge-sulfur and vanadium co-doped MoS2 nanosheet arrays with enhanced sodium storage capability

Show Author's information Yuru Dong1,§Zhengju Zhu1,§Yanjie Hu1( )Guanjie He2Yue Sun1Qilin Cheng1Ivan P. Parkin2Hao Jiang1( )
Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London WC1H0AJ, UK

§ Yuru Dong and Zhengju Zhu contributed equally to this work.

Abstract

The low specific capacity and sluggish electrochemical reaction kinetics greatly block the development of sodium-ion batteries (SIBs). New high-performance electrode materials will enhance development and are urgently required for SIBs. Herein, we report the preparation of supersaturated bridge-sulfur and vanadium co-doped MoS2 nanosheet arrays on carbon cloth (denoted as V-MoS2+x/CC). The bridge-sulfur in MoS2 has been created as a new active site for greater Na+ storage. The vanadium doping increases the density of carriers and facilitates accelerated electron transfer. The synergistic dual-doping effects endow the V-MoS2+x/CC anodes with high sodium storage performance. The optimized V-MoS2.49/CC gives superhigh capacities of 370 and 214 mAh·g-1 at 0.1 and 10 A·g-1 within 0.4-3.0 V, respectively. After cycling 3,000 times at 2 A·g-1, almost 83% of the reversible capacity is maintained. The findings indicate that the electrochemical performances of metal sulfides can be further improved by edge-engineering and lattice-doping co-modification concept.

Keywords: MoS2, sodium-ion battery, high specific capacity, cycle life, bridge-sulfur

References(40)

[1]
K. K. Li,; J. Zhang,; D. M. Lin,; D. W. Wang,; B. H. Li,; W. Lv,; S. Sun,; Y. B. He,; F. Y. Kang,; Q. H. Yang, et al. Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes. Nat. Commun. 2019, 10, 725.
[2]
Y. X. Wang,; S. L. Chou,; D. Wexler,; H. K. Liu,; S. X. Dou, High-performance sodium-ion batteries and sodium-ion pseudocapacitors based on MoS2/Graphene Composites. Chem.—Eur. J. 2014, 20, 9607-9612.
[3]
X. L. Song,; H. Wang,; S. M. Jin,; M. Lv,; Y. Zhang,; X. D. Kong,; H. M. Xu,; T. Ma,; X. Y. Luo,; H. F. Tan, et al. Oligolayered Ti3C2Tx MXene towards high performance lithium/sodium storage. Nano Res. 2020, 13, 1659-1667.
[4]
J. M. Lu,; S. Y. Zhao,; S. X. Fan,; Q. Lv,; J. Li,; R. T. Lv, Hierarchical SnS/SnS2 heterostructures grown on carbon cloth as binder-free anode for superior sodium-ion storage. Carbon 2019, 148, 525-531.
[5]
E. Edison,; P. K. Gogoi,; Y. Zheng,; S. Sreejith,; S. J. Pennycook,; C. T. Lim,; M. Srinivasan, Electrochemically induced amorphization and unique lithium and sodium storage pathways in FeSbO4 nanocrystals. ACS Appl. Mater. Interfaces 2019, 11, 20082-20090.
[6]
P. Ge,; M. Fouletier, Electrochemical intercalation of sodium in graphite. Solid State Ionics 1988, 28-30, 1172-1175.
[7]
M. D. Slater,; D. Kim,; E. Lee,; C. S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947-958.
[8]
D. Sun,; D. L. Ye,; P. Liu,; Y. G. Tang,; J. Guo,; L. Z. Wang,; H. Y. Wang, MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702383.
[9]
Z. N. Deng,; H. Jiang,; C. Z. Li, 2D metal chalcogenides incorporated into carbon and their assembly for energy storage applications. Small 2018, 14, 1800148.
[10]
X. J. Zhao,; G. Wang,; X. J. Liu,; X. L. Zheng,; H. Wang, Ultrathin MoS2 with expanded interlayers supported on hierarchical polypyrrole-derived amorphous N-doped carbon tubular structures for high-performance Li/Na-ion batteries. Nano Res. 2018, 11, 3603-3618.
[11]
L. Chen,; Y. Liu,; Z. N. Deng,; H. Jiang,; C. Z. Li, Edge-enriched MoS2@C/rGO film as self-standing anodes for high-capacity and long-life lithium-ion batteries. Sci. China Mater., in press, .
[12]
H. Yang,; M. Wang,; X. W. Liu,; Y. Jiang,; Y. Yu, MoS2 embedded in 3D interconnected carbon nanofiber film as a free-standing anode for sodium-ion batteries. Nano Res. 2018, 11, 3844-3853.
[13]
Z. Hu,; L. X. Wang,; K. Zhang,; J. B. Wang,; F. Y. Cheng,; Z. L. Tao,; J. Chen, MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem., Int. Ed. 2014, 53, 12794-12798.
[14]
J. Park,; J. S. Kim,; J. W. Park,; T. H. Nam,; K. W. Kim,; J. H. Ahn,; G. X. Wang,; H. J. Ahn, Discharge mechanism of MoS2 for sodium ion battery: Electrochemical measurements and characterization. Electrochim. Acta 2013, 92, 427-432.
[15]
X. Xu,; R. C. Zhao,; W. Ai,; B. Chen,; H. F. Du,; L. S. Wu,; H. Zhang,; W. Huang,; T. Yu, Controllable design of MoS2 nanosheets anchored on nitrogen-doped graphene: Toward fast sodium storage by tunable pseudocapacitance. Adv. Mater. 2018, 30, 1800658.
[16]
Y. L. Ding,; P. Kopold,; K. Hahn,; P. A. Van Aken,; J. Maier,; Y. Yu, A lamellar hybrid assembled from metal disulfide nanowall arrays anchored on a carbon layer: In situ hybridization and improved sodium storage. Adv. Mater. 2016, 28, 7774-7782.
[17]
H. Y. Wang,; H. Jiang,; Y. J. Hu,; P. Saha,; Q. L. Cheng,; C. Z. Li, Interface-engineered MoS2/C nanosheet heterostructure arrays for ultra-stable sodium-ion batteries. Chem. Eng. Sci. 2017, 174, 104-111.
[18]
Y. X. Wang,; K. H. Seng,; S. L. Chou,; J. Z. Wang,, Z. P. Guo,; D. Wexler,, H. K. Liu,; S. X. Dou, Reversible sodium storage via conversion reaction of a MoS2-C composite. Chem. Commun., 2014, 50, 10730-10733.
[19]
Z. D. Lei,; J. Zhan,; L. Tang,; Y. Zhang,; Y. Wang, Recent development of metallic (1T) phase of molybdenum disulfide for energy conversion and storage. Adv. Energy Mater. 2018, 8, 1703482.
[20]
Y. Liu,; X. Z. Wang,; X. D. Song,; Y. F. Dong,; L. Yang,; L. X. Wang,; D. Z. Jia,; Z. B. Zhao,; J. S. Qiu, Interlayer expanded MoS2 enabled by edge effect of graphene nanoribbons for high performance lithium and sodium ion batteries. Carbon 2016, 109, 461-471.
[21]
Y. P. Li,; Y. F. Yu,; Y. F. Huang,; R. A. Nielsen,; W. A. Goddard III,; Y. Li,; L. Y. Cao, Engineering the composition and crystallinity of molybdenum sulfide for high-performance electrocatalytic hydrogen evolution. ACS Catal. 2015, 5, 448-455.
[22]
C. H. Lee,; S. Lee,; G. S. Kang,; Y. K. Lee,; G. G. Park,; D. C. Lee,; H. I. Joh, Insight into the superior activity of bridging sulfur-rich amorphous molybdenum sulfide for electrochemical hydrogen evolution reaction. Appl. Catal. B: Environ. 2019, 258, 117995.
[23]
C. L. Wang,; H. Wang,; X. F. Hu,; E. Matios,; J. M. Luo,; Y. W. Zhang,; X. Lu,; W. Y. Li, Frogspawn-coral-like hollow sodium sulfide nanostructured cathode for high-rate performance sodium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1803251.
[24]
W. Z. Bao,; C. E. Shuck,; W. X. Zhang,; X. Guo,; Y. Gogotsi,; G. X. Wang, Boosting performance of Na-S batteries using sulfur-doped Ti3C2Tx MXene nanosheets with a strong affinity to sodium polysulfides. ACS Nano 2019, 13, 11500-11509.
[25]
T. T. Yang,; B. S. Guo,; W. Y. Du,; M. K. Aslam,; M. L. Tao,; W. Zhong,; Y. M. Chen,; S. J. Bao,; X. Zhang,; M. W. Xu, Design and construction of sodium polysulfides defense system for room-temperature Na-S battery. Adv. Sci. 2019, 6, 1901557.
[26]
Y. J. Fang,; X. Y. Yu,; X. W. Lou, Formation of hierarchical Cu-doped CoSe2 microboxes via sequential ion exchange for high-performance sodium-ion batteries. Adv. Mater. 2018, 30, 1706668.
[27]
Q. Z. Xiong,; Y. Wang,; P. F. Liu,; L. R. Zheng,; G. Z. Wang,; H. G. Yang,; P. K. Wong,; H. M. Zhang,; H. J. Zhao, Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting. Adv. Mater. 2018, 30, 1801450.
[28]
H. J. Liu,; Q. He,; H. L. Jiang,; Y. X. Lin,; Y. K. Zhang,; M. Habib,; S. M. Chen,; L. Song, Electronic structure reconfiguration toward pyrite NiS2 via engineered heteroatom defect boosting overall water splitting. ACS Nano 2017, 11, 11574-11583.
[29]
D. Higgins,; M. A. Hoque,; M. H. Seo,; R. Y. Wang,; F. Hassan,; J. Y. Choi,; M. Pritzker,; A. P. Yu,; J. J. Zhang,; Z. W. Chen, Development and simulation of sulfur-doped graphene supported platinum with exemplary stability and activity towards oxygen reduction. Adv. Funct. Mater. 2014, 24, 4325-4336.
[30]
X. L. Wang,; G. Li,; M. H. Seo,; F. M. Hassan,; M. A. Hoque,; Z. W. Chen, Sulfur atoms bridging few-layered MoS2 with S-doped graphene enable highly robust anode for lithium-ion batteries. Adv. Energy Mater. 2015, 5, 1501106.
[31]
M. Acerce,; D. Voiry,; M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313-318.
[32]
Q. C. Xu,; Y. Liu,; H. Jiang,, Y. J. Hu,; H. L. Liu,; C. Z. Li, Unsaturated sulfur edge engineering of strongly coupled MoS2 nanosheet-carbon macroporous hybrid catalyst for enhanced hydrogen generation. Adv. Energy Mater. 2019, 9, 1802553.
[33]
P. He,; M. Y. Yan,; G. B. Zhang,; R. M. Sun,; L. N. Chen,; Q. Y. An,; L. Q. Mai, Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 2017, 7, 1601920.
[34]
S. S. Xia,; Y. R. Wang,; Y. Liu,; C. H. Wu,; M. H. Wu,; H. J. Zhang, Ultrathin MoS2 nanosheets tightly anchoring onto nitrogen-doped graphene for enhanced lithium storage properties. Chem. Eng. J. 2018, 332, 431-439.
[35]
B. B. Li,; S. Z. Qiao,; X. R. Zheng,; X. J. Yang,; Z. D. Cui,; S. L. Zhu,; Z. Y. Li,; Y. Q. Liang, Pd coated MoS2 nanoflowers for highly efficient hydrogen evolution reaction under irradiation. J. Power Sources 2015, 284, 68-76.
[36]
W. Y. Du,; Y. K. Wu,; T. T. Yang,; B. S. Guo,; D. Y. Liu,; S. J. Bao,; M. W. Xu, Rational construction of rGO/VO2 nanoflowers as sulfur multifunctional hosts for room temperature Na-S batteries. Chem. Eng. J. 2020, 379, 122359.
[37]
Y. X. Wang,; J. P. Yang,; W. H. Lai,; S. L. Chou,; Q. F. Gu,; H. K. Liu,; D. Y. Zhao,; S. X. Dou, Achieving high-performance room-temperature sodium-sulfur batteries with S@interconnected mesoporous carbon hollow nanospheres. J. Am. Chem. Soc. 2016, 138, 16576-16579.
[38]
S. H. Choi,; Y. N. Ko,; J. K. Lee,; Y. C. Kang, 3D MoS2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv. Funct. Mater. 2015, 25, 1780-1788.
[39]
L. Chen,; H. Jiang,; Y. J. Hu,; H. Y. Wang,; C. Z. Li, In-situ growth of ultrathin MoS2 nanosheets on sponge-like carbon nanospheres for lithium-ion batteries. Sci. China Mater. 2018, 61, 1049-1056.
[39]
Y. Ma,; Y. J. Ma,; D. Bresser,; Y. C. Ji,; D. Geiger,; U. Kaiser,; C. Streb,; A. Varzi,; S. Passerini, Cobalt disulfide nanoparticles embedded in porous carbonaceous micro-polyhedrons interlinked by carbon nanotubes for superior lithium and sodium storage. ACS Nano 2018, 12, 7220-7231.
File
12274_2020_3044_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 June 2020
Revised: 04 August 2020
Accepted: 07 August 2020
Published: 05 January 2021
Issue date: January 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51672082, 21975074, and 91534202), the Basic Research Program of Shanghai (No. 17JC1402300), the Shanghai Scientific and Technological Innovation Project (No. 18JC1410500), and the Fundamental Research Funds for the Central Universities (No. 222201718002).

Return