Journal Home > Volume 14 , Issue 2

In order to sustainably transform N2 to ammonia (NRR) using electrocatalysts under mild ambient condition, it is urgent to design and develop non-nobel metal nanocatalysts that are inexpensive and suitable for mass-production. Herein, a calcium metalate catalyst CaCoOx with oxygen vacancies was synthesized and used as an electrocatalyst for NRR for the first time, whose morphology can be controlled by the calcination temperature and the heating rate. Under the optimal conditions, the CaCoOx catalyst achieved the yield of nitrogen conversion to ammonia of 16.25 μg·h-1·mgcat.-1 at the potential of -0.3 V relative to the reversible hydrogen electrode (RHE) with a Faraday efficiency of 20.51%. The electrocatalyst showed good stability even after 12 times recyclability under environmental conditions and neutral electrolyte. Later, the electrocatalytic nitrogen reduction performance of CaFeOx, CaNiOx, CaCuOx was investigated. These earth-rich transition metals also exhibited certain NRR electrocatalytic capabilities, which provided a door for further development of inexpensive and easily available transition metal as nitrogen reduction electrocatalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Oxygen vacancy engineering of calcium cobaltate: A nitrogen fixation electrocatalyst at ambient condition in neutral electrolyte

Show Author's information Xinyu Chen§Ke Li§Xiaoxuan YangJiaqi LvSai SunSiqi LiDongming ChengBo LiYang-Guang LiHong-Ying Zang ( )
Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China

§Xinyu Chen and Ke Li contributed equally to this work.

Abstract

In order to sustainably transform N2 to ammonia (NRR) using electrocatalysts under mild ambient condition, it is urgent to design and develop non-nobel metal nanocatalysts that are inexpensive and suitable for mass-production. Herein, a calcium metalate catalyst CaCoOx with oxygen vacancies was synthesized and used as an electrocatalyst for NRR for the first time, whose morphology can be controlled by the calcination temperature and the heating rate. Under the optimal conditions, the CaCoOx catalyst achieved the yield of nitrogen conversion to ammonia of 16.25 μg·h-1·mgcat.-1 at the potential of -0.3 V relative to the reversible hydrogen electrode (RHE) with a Faraday efficiency of 20.51%. The electrocatalyst showed good stability even after 12 times recyclability under environmental conditions and neutral electrolyte. Later, the electrocatalytic nitrogen reduction performance of CaFeOx, CaNiOx, CaCuOx was investigated. These earth-rich transition metals also exhibited certain NRR electrocatalytic capabilities, which provided a door for further development of inexpensive and easily available transition metal as nitrogen reduction electrocatalysts.

Keywords: oxygen vacancy, electrocatalysis, nanoplates, nitrogen fixation, calcium cobaltate

References(64)

[1]
V. Rosca,; M. Duca,; M. T. de Groot,; M. T. M. Koper, Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209-2244.
[2]
B. H. R. Suryanto,; H. L. Du,; D. B. Wang,; J. Chen,; A. N. Simonov,; D. R. MacFarlane, Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290-296.
[3]
J. W. Erisman,; M. A. Sutton,; J. Galloway,; Z. Klimont,; W. Winiwarter, How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636-639.
[4]
N. Gruber,; J. N. Galloway, An earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293-296.
[5]
J. E. B. Halliday,; K. Hampson,; N Hanley,; T. Lembo,; J. P. Sharp,; D. T. Haydon,; S. Cleaveland, Driving improvements in emerging disease surveillance through locally relevant capacity strengthening. Science 2017, 357, 146-148.
[6]
Q. Liu,; X. X. Zhang,; B. Zhang,; Y. L. Luo,; G. W. Cui,; F. Y. Xie,; X. P. Sun, Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod. Nanoscale 2018, 10, 14386-14389.
[7]
N. Lazouski,; M. Chung,; K. Williams,; M. L. Gala,; K. Manthiram, Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen. Nat. Catal. 2020, 3, 463-469.
[8]
J. Wang,; L. Yu,; L. Hu,; G. Chen,; H. L. Xin,; X. F. Feng, Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 2018, 9, 1795.
[9]
S. J. Li,; D. Bao,; M. M. Shi,; B. R. Wulan,; J. M. Yan,; Q. Jiang, Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001.
[10]
M. T. Nguyen,; N. Seriani,; R. Gebauer, Nitrogen electrochemically reduced to ammonia with hematite: Density-functional insights. Phys. Chem. Chem. Phys. 2015, 17, 14317-14322.
[11]
Á. B. Höskuldsson,; Y. Abghoui,; A. B. Gunnarsdóttir,; E. Skúlason, Computational screening of rutile oxides for electrochemical ammonia formation. ACS Sustainable Chem. Eng. 2017, 5, 10327-10333.
[12]
Y. Abghoui,; A. L. Garden,; J. G. Howalt,; T. Vegge,; E. Skúlason, Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: A DFT guide for experiments. ACS Catal. 2016, 6, 635-646.
[13]
Y. Abghoui,; E. Skúlason, Computational predictions of catalytic activity of zincblende (110) surfaces of metal nitrides for electrochemical ammonia synthesis. J. Phys. Chem. C 2017, 121, 6141-6151.
[14]
Q. Y. Li,; L. Z. He,; C. H. Sun,; X. W. Zhang, Computational study of MoN2 monolayer as electrochemical catalysts for nitrogen reduction. J. Phys. Chem. C 2017, 121, 27563-27568.
[15]
L. M. Azofra,; N. Li,; D. R. MacFarlane,; C. H. Sun, Promising prospects for 2D d2-d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia. Energy Environ. Sci. 2016, 9, 2545-2549.
[16]
M. F. Wang,; S. S. Liu,; T. Qian,; J. Liu,; J. Q. Zhou,; H. Q. Ji,; J. Xiong,; J. Zhong,; C. L. Yan, Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat. Commun. 2019, 10, 341.
[17]
J. X. Zhao,; Z. F. Chen, Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480-12487.
[18]
N. Cao,; G. F. Zheng, Aqueous electrocatalytic N2 reduction under ambient conditions. Nano Res. 2018, 11, 2992-3008.
[19]
L. P. Yuan,; Z. Y. Wu,; W. J. Jiang,; T. Tang,; S. Niu,; J. S. Hu, Phosphorus-doping activates carbon nanotubes for efficient electroreduction of nitrogen to ammonia. Nano Res. 2020, 13, 1376-1382.
[20]
Y. Q. Du,; C. Jiang,; L. Song,; B. Gao,; H. Gong,; W. Xia,; L. Sheng,; T. Wang,; J. P. He, Regulating surface state of WO3 nanosheets by gamma irradiation for suppressing hydrogen evolution reaction in electrochemical N2 fixation. Nano Res. 2020, 13, 2784-2790.
[21]
X. X. Yang,; K. Li,; D. M. Cheng,; W. L. Pang,; J. Q. Lv,; X. Y. Chen,; H. Y. Zang,; X. L. Wu,; H. Q. Tan,; Y. H. Wang, et al. Nitrogen-doped porous carbon: Highly efficient trifunctional electrocatalyst for oxygen reversible catalysis and nitrogen reduction reaction. J. Mater. Chem. A 2018, 6, 7762-7769.
[22]
D. F. Yan,; H. Li,; C. Chen,; Y. Q. Zou,; S. Y. Wang, Defect engineering strategies for nitrogen reduction reactions under ambient conditions. Small Methods 2019, 3, 1800331.
[23]
S. Dou,; X. Y. Li,; L. Tao,; J. Huo,; S. Y. Wang, Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated Co3O4 for oxygen electrocatalysis. Chem. Commun. 2016, 52, 9727-9730.
[24]
Y. W. Cheng,; J. H. Dai,; Y. Song,; Y. M. Zhang, Nanostructure of Cr2CO2 MXene supported single metal atom as an efficient bifunctional electrocatalyst for overall water splitting. ACS Appl. Energy Mater. 2019, 2, 6851-6859.
[25]
X. S. Lv,; W. Wei,; F. P. Li,; B. B. Huang,; Y. Dai, Metal-free B@g-CN: Visible/infrared light-driven single atom photocatalyst enables spontaneous dinitrogen reduction to ammonia. Nano Lett. 2019, 19, 6391-6399.
[26]
P. Xu,; Z. M. Zhou,; C. J. Zhao,; Z. M. Cheng, Catalytic performance of Ni/CaO-Ca5Al6O14 bifunctional catalyst extrudate in sorption-enhanced steam methane reforming. Catal. Today 2016, 259, 347-353.
[27]
H. M. Sun,; Z. H. Yan,; F. M. Liu,; W. C. Xu,; F. Y. Cheng,; J. Chen, Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.
[28]
J. J. Ye,; D. Y. Zhao,; Q. Hao,; C. X. Xu, Facile fabrication of hierarchical manganese-cobalt mixed oxide microspheres as high-performance anode material for lithium storage. Electrochim. Acta 2016, 222, 1402-1409.
[29]
S. F. Wu,; L. L. Wang, Improvement of the stability of a ZrO2- modified Ni-nano-CaO sorption complex catalyst for ReSER hydrogen production. Int. J. Hydrogen Energy 2010, 35, 6518-6524.
[30]
H. R. Radfarnia,; M. C. Iliuta, Hydrogen production by sorption-enhanced steam methane reforming process using CaO-Zr/Ni bifunctional sorbent-catalyst. Chem. Eng. Process. 2014, 86, 96-103.
[31]
W. Li,; W. Ding,; Y. Nie,; X. Q. Qi,; G. P. Wu,; L. Li,; J. H. Liao,; S. G. Chen,; Z. D. Wei, Enhancing the stability and activity by anchoring Pt nanoparticles between the layers of etched montmorillonite for oxygen reduction reaction. Sci. Bull. 2016, 61, 1435-1439.
[32]
B. Y. Xia,; H. B. Wu,; X. Wang,; X. W. Lou, One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934-13937.
[33]
Y. Q. Zhang,; Y. L. Shi,; R. Chen,; L. Tao,; C. Xie,; D. D. Liu,; D. F. Yan,; S. Y. Wang, Enriched nucleation sites for Pt deposition on ultrathin WO3 nanosheets with unique interactions for methanol oxidation J. Mater. Chem. A 2018, 6, 23028-23033.
[34]
S. Mukherjee,; X. X. Yang,; W. T. Shan,; W. Samarakoon,; S. Karakalos,; D. A. Cullen,; K. More,; M. Y. Wang,; Z. X. Feng,; G. F. Wang, et al. Atomically dispersed single Ni site catalysts for nitrogen reduction toward electrochemical ammonia synthesis using N2 and H2O. Small Methods 2020, 4, 1900821.
[35]
H. T. Xie,; H. B. Wang,; Q. Geng,; Z. Xing,; W. Wang,; J. Y. Chen,; L. Ji,; L. Chang,; Z. M. Wang,; J. Mao, Oxygen vacancies of Cr-doped CeO2 nanorods that efficiently enhance the performance of electrocatalytic N2 fixation to NH3 under ambient conditions. Inorg. Chem. 2019, 58, 5423-5427.
[36]
L. Yang,; T. W. Wu,; R. Zhang,; H. Zhou,; L. Xia,; X. F. Shi,; H. G. Zheng,; Y. N. Zhang,; X. P. Sun, Insights into defective TiO2 in electrocatalytic N2 reduction: Combining theoretical and experimental studies. Nanoscale 2019, 11, 1555-1562.
[37]
W. Z. Fu,; P. Y. Zhuang,; M. OliverLam Chee,; P. Dong,; M. X. Ye,; J. F. Shen, Oxygen vacancies in Ta2O5 nanorods for highly efficient electrocatalytic N2 reduction to NH3 under ambient conditions. ACS Sustainable Chem. Eng. 2019, 7, 9622-9628.
[38]
X. Y. Cui,; C. Tang,; Q. Zhang, A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.
[39]
X. L. Xue,; R. P. Chen,; C. Z. Yan,; P. Y. Zhao,; Y. Hu,; W. J. Zhang,; S. Y. Yang,; Z. Jin, Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229-1249.
[40]
Y. J. Yang,; S. Q. Wang,; H. M. Wen,; T. Ye,; J. Chen,; C. P. Li,; M. Du, Nanoporous gold embedded ZIF composite for enhanced electrochemical nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 15362-15366.
[41]
M. M. Shi,; D. Bao,; B. R. Wulan,; Y. H. Li,; Y. F. Zhang,; J. M. Yan,; Q. Jiang, Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 2017, 29, 1606550.
[42]
K. Chu,; Y. P. Liu,; Y. B. Li,; J. Wang,; H. Zhang, Electronically coupled SnO2 quantum dots and graphene for efficient nitrogen reduction reaction. ACS Appl. Mater. Interfaces 2019, 11, 31806-31815.
[43]
X. S. Xu,; B. T. Sun,; Z. Q. Liang,; H. Z. Cui,; T. Jian, High-performance electrocatalytic conversion of N2 to NH3 using 1T-MoS2 anchored on Ti3C2 MXene under ambient conditions. ACS Appl. Mater. Interfaces 2020, 12, 26060-26067.
[44]
L. L. Zhang,; L. X. Ding,; G. F. Chen,; X. F. Yang,; H. H. Wang, Ammonia synthesis under ambient conditions: Selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angew. Chem., Int. Ed. 2019, 58, 2612-2616.
[45]
L. Q. Li,; C. Tang,; B. Q. Xia,; H. Y. Jin,; Y. Zheng,; S. Z. Qiao,; Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal. 2019, 9, 2902-2908.
[46]
P. F. Song,; L. Kang,; H. Wang,; R. Guo,; R. M. Wang, Nitrogen (N), phosphorus (P)-codoped porous carbon as a metal-free electrocatalyst for N2 reduction under ambient conditions. ACS Appl. Mater. Interfaces 2019, 11, 12408-12414.
[47]
Y. F. Zhang,; J. X. Zhang,; Q. M. Lu,; Q. Y. Zhang, Synthesis and characterization of Ca3Co4O9 nanoparticles by citrate sol-gel method. Mater. Lett. 2006, 60, 2443-2446.
[48]
J. Pei,; G. Chen,; X. Li,; Y. X. Li,; N. Zhou, Molten salt synthesis and thermoelectric properties of Ca2Co2O5. Mater. Lett. 2009, 63, 1459-1461.
[49]
M. G. Kang,; K. H. Cho,; J. S. Kim,; S. Nahm,; S. J. Yoon,; C. Y. Kang, Post-calcination, a novel method to synthesize cobalt oxide-based thermoelectric materials. Acta Mater. 2014, 73, 251-258.
[50]
X. Y. Song,; D. McIntyre,; X. Q. Chen,; E. J. Barbero,; Y. Chen, Phase evolution and thermoelectric performance of calcium cobaltite upon high temperature aging. Ceram. Int. 2015, 41, 11069-11074.
[51]
X. Kong,; H. Q. Peng,; S. Y. Bu,; Q. L. Gao,; T. P. Jiao,; J. Y. Cheng,; B. Liu,; G. Hong,; C. H. Lee,; W. J. Zhang, Defect engineering of nanostructured electrocatalysts for enhancing nitrogen reduction J. Mater. Chem. A 2020, 8, 7457-7473.
[52]
Y. Y. Tong,; H. P. Guo,; D. L. Liu,; X. Yan,; P. P. Su,; J. Liang,; S. Zhou,; J. Liu,; G. Q. Lu,; S. X. Dou, Vacancy engineering of iron-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction. Angew. Chem., Int. Ed. 2020, 59, 7356-7361.
[53]
L. L. Zhang,; M. Y. Cong,; X. Ding,; Y. Jin,; F. F. Xu,; Y. Wang,; L. Chen,; L. X. Zhang, A Janus Fe-SnO2 catalyst that enables bifunctional electrochemical nitrogen fixation. Angew. Chem., Int. Ed. 2020, 59, 10888-10893.
[54]
C. Qiao,; S. Rafai,; T. Cao,; Z. T. Wang,; H. Y. Wang,; Y. Q. Zhu,; X. L. Ma,; P. C. Xu,; C. B. Cao, Tuning surface electronic structure of two-dimensional cobalt-based hydroxide nanosheets for highly efficient water oxidation. ChemCatChem. 2020, 12, 2823-2832.
[55]
Y. C. Wang,; T. Zhou,; K. Jiang,; P. M. Da,; Z. Peng,; J. Tang,; B. Kong,; W. B. Cai,; Z. Q. Yang,; G. F. Zheng, Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv. Energy Mater. 2014, 4, 1400696.
[56]
J. Bao,; X. D. Zhang,; B. Fan,; J. J. Zhang,; M. Zhou,; W. L. Yang,; X. Hu,; H. Wang,; B. C. Pan,; Y. Xie, Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2015, 54, 7399-7404.
[57]
J. Q. Lv,; X. X. Yang,; K. Li, X. Y. Chen,; S. Sun,; H. Y. Zang,; Y. F. Chang,; Y. H. Wang,; Y. G. Li, Introduction of Mn(III) to regulate the electronic structure of fluorine-doped nickel hydroxide for efficient water oxidation. Nanoscale Adv. 2019, 1, 4099-4108.
[58]
L. Z. Zhuang,; Y. Jia,; T. W. He,; A. J. Du,; X. C. Yan,; L. Ge,; Z. H. Zhu,; X. D. Yao, Tuning oxygen vacancies in two-dimensional iron-cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity. Nano Res. 2018, 11, 3509-3518.
[59]
L. Xu,; Q. Q. Jiang,; Z. H. Xiao,; X. Y. Li,; J. Huo,; S. Y. Wang,; L. M. Dai, Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277-5281.
[60]
W. Q. Song,; Z. Ren,; S. Y. Chen,; Y. T. Meng,; S. Biswas,; P. Nandi,; H. A. Elsen,; P. X. Gao,; S. L. Suib, Ni- and Mn-promoted mesoporous Co3O4: A stable bifunctional catalyst with surface-structure-dependent activity for oxygen reduction reaction and oxygen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 20802-20813.
[61]
B. S. Yeo,; A. T. Bell, Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2011, 133, 5587-5593.
[62]
Y. L. Zhu,; W. Zhou,; J. Yu,; Y. B. Chen,; M. L. Liu,; Z. P. Shao, Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem. Mater. 2016, 28, 1691-1697.
[63]
S. M. Chen,; S. Perathoner,; C. Ampelli,; C. Mebrahtu,; D. S. Su,; G. Centi, Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 2699-2703.
[64]
R. Zhang,; Y. Zhang,; X. Ren,; G. W. Cui,; A. M. Asiri,; B. Z. Zheng,; X. P. Sun, High-efficiency electrosynthesis of ammonia with high selectivity under ambient conditions enabled by VN nanosheet array. ACS Sustainable Chem. Eng. 2018, 6, 9545-9549.
File
12274_2020_3043_MOESM1_ESM.pdf (8.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 May 2020
Revised: 27 July 2020
Accepted: 07 August 2020
Published: 05 September 2020
Issue date: February 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21871042, 21471028 and 21671036), Changbai Mountain Scholarship, Natural Science Foundation of Jilin Province (No. 20200201083JC), and Natural Science Foundation of Department of education of Jilin Province (No. JJKH20201169KJ).

Return