[1]
V. Rosca,; M. Duca,; M. T. de Groot,; M. T. M. Koper, Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209-2244.
[2]
B. H. R. Suryanto,; H. L. Du,; D. B. Wang,; J. Chen,; A. N. Simonov,; D. R. MacFarlane, Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290-296.
[3]
J. W. Erisman,; M. A. Sutton,; J. Galloway,; Z. Klimont,; W. Winiwarter, How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636-639.
[4]
N. Gruber,; J. N. Galloway, An earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293-296.
[5]
J. E. B. Halliday,; K. Hampson,; N Hanley,; T. Lembo,; J. P. Sharp,; D. T. Haydon,; S. Cleaveland, Driving improvements in emerging disease surveillance through locally relevant capacity strengthening. Science 2017, 357, 146-148.
[6]
Q. Liu,; X. X. Zhang,; B. Zhang,; Y. L. Luo,; G. W. Cui,; F. Y. Xie,; X. P. Sun, Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod. Nanoscale 2018, 10, 14386-14389.
[7]
N. Lazouski,; M. Chung,; K. Williams,; M. L. Gala,; K. Manthiram, Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen. Nat. Catal. 2020, 3, 463-469.
[8]
J. Wang,; L. Yu,; L. Hu,; G. Chen,; H. L. Xin,; X. F. Feng, Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 2018, 9, 1795.
[9]
S. J. Li,; D. Bao,; M. M. Shi,; B. R. Wulan,; J. M. Yan,; Q. Jiang, Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001.
[10]
M. T. Nguyen,; N. Seriani,; R. Gebauer, Nitrogen electrochemically reduced to ammonia with hematite: Density-functional insights. Phys. Chem. Chem. Phys. 2015, 17, 14317-14322.
[11]
Á. B. Höskuldsson,; Y. Abghoui,; A. B. Gunnarsdóttir,; E. Skúlason, Computational screening of rutile oxides for electrochemical ammonia formation. ACS Sustainable Chem. Eng. 2017, 5, 10327-10333.
[12]
Y. Abghoui,; A. L. Garden,; J. G. Howalt,; T. Vegge,; E. Skúlason, Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: A DFT guide for experiments. ACS Catal. 2016, 6, 635-646.
[13]
Y. Abghoui,; E. Skúlason, Computational predictions of catalytic activity of zincblende (110) surfaces of metal nitrides for electrochemical ammonia synthesis. J. Phys. Chem. C 2017, 121, 6141-6151.
[14]
Q. Y. Li,; L. Z. He,; C. H. Sun,; X. W. Zhang, Computational study of MoN2 monolayer as electrochemical catalysts for nitrogen reduction. J. Phys. Chem. C 2017, 121, 27563-27568.
[15]
L. M. Azofra,; N. Li,; D. R. MacFarlane,; C. H. Sun, Promising prospects for 2D d2-d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia. Energy Environ. Sci. 2016, 9, 2545-2549.
[16]
M. F. Wang,; S. S. Liu,; T. Qian,; J. Liu,; J. Q. Zhou,; H. Q. Ji,; J. Xiong,; J. Zhong,; C. L. Yan, Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat. Commun. 2019, 10, 341.
[17]
J. X. Zhao,; Z. F. Chen, Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480-12487.
[18]
N. Cao,; G. F. Zheng, Aqueous electrocatalytic N2 reduction under ambient conditions. Nano Res. 2018, 11, 2992-3008.
[19]
L. P. Yuan,; Z. Y. Wu,; W. J. Jiang,; T. Tang,; S. Niu,; J. S. Hu, Phosphorus-doping activates carbon nanotubes for efficient electroreduction of nitrogen to ammonia. Nano Res. 2020, 13, 1376-1382.
[20]
Y. Q. Du,; C. Jiang,; L. Song,; B. Gao,; H. Gong,; W. Xia,; L. Sheng,; T. Wang,; J. P. He, Regulating surface state of WO3 nanosheets by gamma irradiation for suppressing hydrogen evolution reaction in electrochemical N2 fixation. Nano Res. 2020, 13, 2784-2790.
[21]
X. X. Yang,; K. Li,; D. M. Cheng,; W. L. Pang,; J. Q. Lv,; X. Y. Chen,; H. Y. Zang,; X. L. Wu,; H. Q. Tan,; Y. H. Wang, et al. Nitrogen-doped porous carbon: Highly efficient trifunctional electrocatalyst for oxygen reversible catalysis and nitrogen reduction reaction. J. Mater. Chem. A 2018, 6, 7762-7769.
[22]
D. F. Yan,; H. Li,; C. Chen,; Y. Q. Zou,; S. Y. Wang, Defect engineering strategies for nitrogen reduction reactions under ambient conditions. Small Methods 2019, 3, 1800331.
[23]
S. Dou,; X. Y. Li,; L. Tao,; J. Huo,; S. Y. Wang, Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated Co3O4 for oxygen electrocatalysis. Chem. Commun. 2016, 52, 9727-9730.
[24]
Y. W. Cheng,; J. H. Dai,; Y. Song,; Y. M. Zhang, Nanostructure of Cr2CO2 MXene supported single metal atom as an efficient bifunctional electrocatalyst for overall water splitting. ACS Appl. Energy Mater. 2019, 2, 6851-6859.
[25]
X. S. Lv,; W. Wei,; F. P. Li,; B. B. Huang,; Y. Dai, Metal-free B@g-CN: Visible/infrared light-driven single atom photocatalyst enables spontaneous dinitrogen reduction to ammonia. Nano Lett. 2019, 19, 6391-6399.
[26]
P. Xu,; Z. M. Zhou,; C. J. Zhao,; Z. M. Cheng, Catalytic performance of Ni/CaO-Ca5Al6O14 bifunctional catalyst extrudate in sorption-enhanced steam methane reforming. Catal. Today 2016, 259, 347-353.
[27]
H. M. Sun,; Z. H. Yan,; F. M. Liu,; W. C. Xu,; F. Y. Cheng,; J. Chen, Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.
[28]
J. J. Ye,; D. Y. Zhao,; Q. Hao,; C. X. Xu, Facile fabrication of hierarchical manganese-cobalt mixed oxide microspheres as high-performance anode material for lithium storage. Electrochim. Acta 2016, 222, 1402-1409.
[29]
S. F. Wu,; L. L. Wang, Improvement of the stability of a ZrO2- modified Ni-nano-CaO sorption complex catalyst for ReSER hydrogen production. Int. J. Hydrogen Energy 2010, 35, 6518-6524.
[30]
H. R. Radfarnia,; M. C. Iliuta, Hydrogen production by sorption-enhanced steam methane reforming process using CaO-Zr/Ni bifunctional sorbent-catalyst. Chem. Eng. Process. 2014, 86, 96-103.
[31]
W. Li,; W. Ding,; Y. Nie,; X. Q. Qi,; G. P. Wu,; L. Li,; J. H. Liao,; S. G. Chen,; Z. D. Wei, Enhancing the stability and activity by anchoring Pt nanoparticles between the layers of etched montmorillonite for oxygen reduction reaction. Sci. Bull. 2016, 61, 1435-1439.
[32]
B. Y. Xia,; H. B. Wu,; X. Wang,; X. W. Lou, One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934-13937.
[33]
Y. Q. Zhang,; Y. L. Shi,; R. Chen,; L. Tao,; C. Xie,; D. D. Liu,; D. F. Yan,; S. Y. Wang, Enriched nucleation sites for Pt deposition on ultrathin WO3 nanosheets with unique interactions for methanol oxidation J. Mater. Chem. A 2018, 6, 23028-23033.
[34]
S. Mukherjee,; X. X. Yang,; W. T. Shan,; W. Samarakoon,; S. Karakalos,; D. A. Cullen,; K. More,; M. Y. Wang,; Z. X. Feng,; G. F. Wang, et al. Atomically dispersed single Ni site catalysts for nitrogen reduction toward electrochemical ammonia synthesis using N2 and H2O. Small Methods 2020, 4, 1900821.
[35]
H. T. Xie,; H. B. Wang,; Q. Geng,; Z. Xing,; W. Wang,; J. Y. Chen,; L. Ji,; L. Chang,; Z. M. Wang,; J. Mao, Oxygen vacancies of Cr-doped CeO2 nanorods that efficiently enhance the performance of electrocatalytic N2 fixation to NH3 under ambient conditions. Inorg. Chem. 2019, 58, 5423-5427.
[36]
L. Yang,; T. W. Wu,; R. Zhang,; H. Zhou,; L. Xia,; X. F. Shi,; H. G. Zheng,; Y. N. Zhang,; X. P. Sun, Insights into defective TiO2 in electrocatalytic N2 reduction: Combining theoretical and experimental studies. Nanoscale 2019, 11, 1555-1562.
[37]
W. Z. Fu,; P. Y. Zhuang,; M. OliverLam Chee,; P. Dong,; M. X. Ye,; J. F. Shen, Oxygen vacancies in Ta2O5 nanorods for highly efficient electrocatalytic N2 reduction to NH3 under ambient conditions. ACS Sustainable Chem. Eng. 2019, 7, 9622-9628.
[38]
X. Y. Cui,; C. Tang,; Q. Zhang, A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.
[39]
X. L. Xue,; R. P. Chen,; C. Z. Yan,; P. Y. Zhao,; Y. Hu,; W. J. Zhang,; S. Y. Yang,; Z. Jin, Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229-1249.
[40]
Y. J. Yang,; S. Q. Wang,; H. M. Wen,; T. Ye,; J. Chen,; C. P. Li,; M. Du, Nanoporous gold embedded ZIF composite for enhanced electrochemical nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 15362-15366.
[41]
M. M. Shi,; D. Bao,; B. R. Wulan,; Y. H. Li,; Y. F. Zhang,; J. M. Yan,; Q. Jiang, Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 2017, 29, 1606550.
[42]
K. Chu,; Y. P. Liu,; Y. B. Li,; J. Wang,; H. Zhang, Electronically coupled SnO2 quantum dots and graphene for efficient nitrogen reduction reaction. ACS Appl. Mater. Interfaces 2019, 11, 31806-31815.
[43]
X. S. Xu,; B. T. Sun,; Z. Q. Liang,; H. Z. Cui,; T. Jian, High-performance electrocatalytic conversion of N2 to NH3 using 1T-MoS2 anchored on Ti3C2 MXene under ambient conditions. ACS Appl. Mater. Interfaces 2020, 12, 26060-26067.
[44]
L. L. Zhang,; L. X. Ding,; G. F. Chen,; X. F. Yang,; H. H. Wang, Ammonia synthesis under ambient conditions: Selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angew. Chem., Int. Ed. 2019, 58, 2612-2616.
[45]
L. Q. Li,; C. Tang,; B. Q. Xia,; H. Y. Jin,; Y. Zheng,; S. Z. Qiao,; Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal. 2019, 9, 2902-2908.
[46]
P. F. Song,; L. Kang,; H. Wang,; R. Guo,; R. M. Wang, Nitrogen (N), phosphorus (P)-codoped porous carbon as a metal-free electrocatalyst for N2 reduction under ambient conditions. ACS Appl. Mater. Interfaces 2019, 11, 12408-12414.
[47]
Y. F. Zhang,; J. X. Zhang,; Q. M. Lu,; Q. Y. Zhang, Synthesis and characterization of Ca3Co4O9 nanoparticles by citrate sol-gel method. Mater. Lett. 2006, 60, 2443-2446.
[48]
J. Pei,; G. Chen,; X. Li,; Y. X. Li,; N. Zhou, Molten salt synthesis and thermoelectric properties of Ca2Co2O5. Mater. Lett. 2009, 63, 1459-1461.
[49]
M. G. Kang,; K. H. Cho,; J. S. Kim,; S. Nahm,; S. J. Yoon,; C. Y. Kang, Post-calcination, a novel method to synthesize cobalt oxide-based thermoelectric materials. Acta Mater. 2014, 73, 251-258.
[50]
X. Y. Song,; D. McIntyre,; X. Q. Chen,; E. J. Barbero,; Y. Chen, Phase evolution and thermoelectric performance of calcium cobaltite upon high temperature aging. Ceram. Int. 2015, 41, 11069-11074.
[51]
X. Kong,; H. Q. Peng,; S. Y. Bu,; Q. L. Gao,; T. P. Jiao,; J. Y. Cheng,; B. Liu,; G. Hong,; C. H. Lee,; W. J. Zhang, Defect engineering of nanostructured electrocatalysts for enhancing nitrogen reduction J. Mater. Chem. A 2020, 8, 7457-7473.
[52]
Y. Y. Tong,; H. P. Guo,; D. L. Liu,; X. Yan,; P. P. Su,; J. Liang,; S. Zhou,; J. Liu,; G. Q. Lu,; S. X. Dou, Vacancy engineering of iron-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction. Angew. Chem., Int. Ed. 2020, 59, 7356-7361.
[53]
L. L. Zhang,; M. Y. Cong,; X. Ding,; Y. Jin,; F. F. Xu,; Y. Wang,; L. Chen,; L. X. Zhang, A Janus Fe-SnO2 catalyst that enables bifunctional electrochemical nitrogen fixation. Angew. Chem., Int. Ed. 2020, 59, 10888-10893.
[54]
C. Qiao,; S. Rafai,; T. Cao,; Z. T. Wang,; H. Y. Wang,; Y. Q. Zhu,; X. L. Ma,; P. C. Xu,; C. B. Cao, Tuning surface electronic structure of two-dimensional cobalt-based hydroxide nanosheets for highly efficient water oxidation. ChemCatChem. 2020, 12, 2823-2832.
[55]
Y. C. Wang,; T. Zhou,; K. Jiang,; P. M. Da,; Z. Peng,; J. Tang,; B. Kong,; W. B. Cai,; Z. Q. Yang,; G. F. Zheng, Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv. Energy Mater. 2014, 4, 1400696.
[56]
J. Bao,; X. D. Zhang,; B. Fan,; J. J. Zhang,; M. Zhou,; W. L. Yang,; X. Hu,; H. Wang,; B. C. Pan,; Y. Xie, Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem., Int. Ed. 2015, 54, 7399-7404.
[57]
J. Q. Lv,; X. X. Yang,; K. Li, X. Y. Chen,; S. Sun,; H. Y. Zang,; Y. F. Chang,; Y. H. Wang,; Y. G. Li, Introduction of Mn(III) to regulate the electronic structure of fluorine-doped nickel hydroxide for efficient water oxidation. Nanoscale Adv. 2019, 1, 4099-4108.
[58]
L. Z. Zhuang,; Y. Jia,; T. W. He,; A. J. Du,; X. C. Yan,; L. Ge,; Z. H. Zhu,; X. D. Yao, Tuning oxygen vacancies in two-dimensional iron-cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity. Nano Res. 2018, 11, 3509-3518.
[59]
L. Xu,; Q. Q. Jiang,; Z. H. Xiao,; X. Y. Li,; J. Huo,; S. Y. Wang,; L. M. Dai, Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277-5281.
[60]
W. Q. Song,; Z. Ren,; S. Y. Chen,; Y. T. Meng,; S. Biswas,; P. Nandi,; H. A. Elsen,; P. X. Gao,; S. L. Suib, Ni- and Mn-promoted mesoporous Co3O4: A stable bifunctional catalyst with surface-structure-dependent activity for oxygen reduction reaction and oxygen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 20802-20813.
[61]
B. S. Yeo,; A. T. Bell, Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2011, 133, 5587-5593.
[62]
Y. L. Zhu,; W. Zhou,; J. Yu,; Y. B. Chen,; M. L. Liu,; Z. P. Shao, Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem. Mater. 2016, 28, 1691-1697.
[63]
S. M. Chen,; S. Perathoner,; C. Ampelli,; C. Mebrahtu,; D. S. Su,; G. Centi, Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 2699-2703.
[64]
R. Zhang,; Y. Zhang,; X. Ren,; G. W. Cui,; A. M. Asiri,; B. Z. Zheng,; X. P. Sun, High-efficiency electrosynthesis of ammonia with high selectivity under ambient conditions enabled by VN nanosheet array. ACS Sustainable Chem. Eng. 2018, 6, 9545-9549.