[1]
X. H. Liu,; J. Zhang,; L. W. Wang,; T. L. Yang,; X. Z. Guo,; S. H. Wu,; S. R. Wang, 3D hierarchically porous ZnO structures and their functionalization by Aunanoparticles for gas sensors. J. Mater. Chem. 2011, 21, 349-356.
[2]
L. C. He,; Y. Liu,; J. Z. Liu,; Y. S. Xiong,; J. Z. Zheng,; Y. L. Liu,; Z. Y. Tang, Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew. Chem., Int. Ed. 2013, 52, 3741-3745.
[3]
Z. D. Xu,; L. Z. Yang,; C. L. Xu, Pt@UiO-66 heterostructures for highly selective detection of hydrogen peroxide with an extended linear range. Anal. Chem. 2015, 87, 3438-3444.
[4]
Q. Zhang,; I. Lee,; J. B. Joo,; F. Zaera,; Y. D. Yin, Core-shell nanostructured catalysts. Acc. Chem. Res. 2013, 46, 1816-1824.
[5]
H. R. Moon,; D. W. Lim,; M. P. Suh, Fabrication of metal nanoparticles in metal-organic frameworks. Chem. Soc. Rev. 2013, 42, 1807-1824.
[6]
J. Lee,; S. M. Kim,; I. S. Lee, Functionalization of hollow nanoparticles for nanoreactor applications. Nano Today 2014, 9, 631-667.
[7]
J. C. Park,; J. U. Bang,; J. Lee,; C. H. Ko,; H. Song, Ni@SiO2 yolk-shell nanoreactor catalysts: High temperature stability and recyclability. J. Mater. Chem. 2010, 20, 1239-1246.
[8]
J. H. Koo,; S. W. Lee,; J. Y. Park,; I. S. Lee, Nanospace-confined high-temperature solid-state reactions: Versatile synthetic route for high-diversity pool of catalytic nanocrystals. Chem. Mater. 2017, 29, 9463-9471.
[9]
A. Kumar,; K. W. Jeon,; N. Kumari,; I. S. Lee, Spatially confined formation and transformation of nanocrystals within nanometer-sized reaction media. Acc. Chem. Res. 2018, 51, 2867-2879.
[10]
K. Sugikawa,; S. Nagata,; Y. Furukawa,; K. Kokado,; K. Sada, Stable and functional gold nanorod composites with a metal-organic framework crystalline shell. Chem. Mater. 2013, 25, 2565-2570.
[11]
P. Falcaro,; R. Ricco,; A. Yazdi,; I. Imaz,; S. Furukawa,; D. Maspoch,; R. Ameloot,; J. D. Evans,; C. J. Doonan, Application of metal and metal oxide nanoparticles@MOFs. Coord. Chem. Rev. 2016, 307, 237-254.
[12]
F. Ke,; J. F. Zhu,; L. G. Qiu,; X. Jiang, Controlled synthesis of novel Au@MIL-100(Fe) core-shell nanoparticles with enhanced catalytic performance. Chem. Commun. 2013, 49, 1267-1269.
[13]
J. J. Zhou,; P. Wang,; C. X. Wang,; Y. T. Goh,; Z. Fang,; P. B. Messersmith,; H. W. Duan, Versatile core-shell nanoparticle@metal-organic framework nanohybrids: Exploiting mussel-inspired polydopamine for tailored structural integration. ACS Nano 2015, 9, 6951-6960.
[14]
G. D. Li,; S. L. Zhao,; Y. Zhang,; Z. Y. Tang, Metal-organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: Recent progress and perspectives. Adv. Mater. 2018, 30, 1800702.
[15]
Y. L. Liu,; Z. Y. Tang, Multifunctional nanoparticle@MOF core-shell nanostructures. Adv. Mater. 2013, 25, 5819-5825.
[16]
J. X. Chen,; J. Feng,; F. Yang,; R. Aleisa,; Q. Zhang,; Y. D. Yin, Space-confined seeded growth of Cu nanorods with strong surface plasmon resonance for photothermal actuation. Angew. Chem., Int. Ed. 2019, 131, 9376-9382.
[17]
A. B. Grommet,; M. Feller,; R. Klajn, Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 2020, 15, 256-271.
[18]
H. K. Lee,; Y. H. Lee,; J. V Morabito,; Y. J. Liu,; C. S. L. Koh,; I. Y. Phang,; S. Pedireddy,; X. M. Han,; L. Y. Chou,; C. K. Tsung, et al. Driving CO2 to a quasi-condensed phase at the interface between a nanoparticle surface and a metal-organic framework at 1 bar and 298 K. J. Am. Chem. Soc. 2017, 139, 11513-11518.
[19]
M. N. Sanz-Ortiz,; K. Sentosun,; S. Bals,; L. M. Liz-Marzán, Templated growth of surface enhanced Raman scattering-active branched gold nanoparticles within radial mesoporous silica shells. ACS Nano 2015, 9, 10489-10497.
[20]
T. S. Deng,; J. E. S. van der Hoeven,; A. O. Yalcin,; H. W. Zandbergen,; M. A. van Huis,; A. van Blaaderen, Oxidative etching and metal overgrowth of gold nanorods within mesoporous silica shells. Chem. Mater. 2015, 27, 7196-7203.
[21]
Z. H. Wu,; Y. L. Liang,; Q. Guo,; K. Q. Zhang,; S. F. Liang,; L. Y. Yang,; Q. Xiao,; D. Wang, Study on selective oxidations of gold nanorod and mesoporous silica-coated gold nanorod. J. Mater. Sci. 2019, 54, 8133-8147.
[22]
H. Furukawa,; K. E. Cordova,; M. O’Keeffe,; O. M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
[23]
K. S. Park,; Z. Ni,; A. P. Côté,; J. Y. Choi,; R. D. Huang,; F. J. Uribe-Romo,; H. K. Chae,; M. O’Keeffe,; O. M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186-10191.
[24]
X. C. Huang,; Y. Y. Lin,; J. P. Zhang,; X. M. Chen, Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem., Int. Ed. 2006, 45, 1557-1559.
[25]
J. Rodríguez-Fernández,; J. Pérez-Juste,; P. Mulvaney,; L. M. Liz-Marzán, Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes. J. Phys. Chem. B 2005, 109, 14257-14261.
[26]
M. N. O’Brien,; M. R. Jones,; K. A. Brown,; C. A. Mirkin, Universal noble metal nanoparticle seeds realized through iterative reductive growth and oxidative dissolution reactions. J. Am. Chem. Soc. 2014, 136, 7603-7606.
[27]
S. Underwood,; P. Mulvaney, Effect of the solution refractive index on the color of gold colloids. Langmuir 1994, 10, 3427-3430.
[28]
M. R. Hauwiller,; J. C. Ondry,; C. M. Chan,; P. Khandekar,; J. Yu,; A. P. Alivisatos, Gold nanocrystal etching as a means of probing the dynamic chemical environment in graphene liquid cell electron microscopy. J. Am. Chem. Soc. 2019, 141, 4428-4437.
[29]
T. Hirakawa,; P. V. Kamat, Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. J. Am. Chem. Soc. 2005, 127, 3928-3934.
[30]
Y. C. Pan,; Y. Y. Liu,; G. F. Zeng,; L. Zhao,; Z. P. Lai, Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun. 2011, 47, 2071-2073.
[31]
S. Ayyappan,; R. S. Gopalan,; G. N. Subbanna,; C. N. R. Rao, Nanoparticles of Ag, Au, Pd, and Cu produced by alcohol reduction of the salts. J. Mater. Res. 1997, 12, 398-401.
[32]
B. D. Cullity,; S. R. Stock, Elements of X-ray Diffraction; 3rd ed. Prentice Hall: Upper Saddle River, 2001; pp 96-102.
[33]
C. W. Tsai,; E. H. G. Langner, The effect of synthesis temperature on the particle size of nano-ZIF-8. Micropor. Mesopor. Mater. 2016, 221, 8-13.
[34]
P. Vijayaraghavan,; C. H. Liu,; K. C. Hwang, Synthesis of multibranched gold nanoechinus using a gemini cationic surfactant and its application for surface enhanced Raman scattering. ACS Appl. Mater. Interfaces 2016, 8, 23909-23919.
[35]
Z. Y. Ong,; S. Chen,; E. Nabavi,; A. Regoutz,; D. J. Payne,; D. S. Elson,; D. T. Dexter,; I. E. Dunlop,; A. E. Porter, Multibranched gold nanoparticles with intrinsic LAT-1 targeting capabilities for selective photothermal therapy of breast cancer. ACS Appl. Mater. Interfaces 2017, 9, 39259-39270.
[36]
C. H. Kuo,; M. H. Huang, Synthesis of branched gold nanocrystals by a seeding growth approach. Langmuir 2005, 21, 2012-2016.
[37]
H. Y. F. Sim,; H. K. Lee,; X. M. Han,; C. S. L. Koh,; G. C. Phan-Quang,; C. L. Lay,; Y. C. Kao,; I. Y. Phang,; E. K. L. Yeow,; X. Y. Ling, Concentrating immiscible molecules at solid@MOF interfacial nanocavities to drive an inert gas-liquid reaction at ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 17058-17062.
[38]
S. Zhou,; Y. Y. Wei,; L. B. Li,; Y. F. Duan,; Q. Q. Hou,; L. L. Zhang,; L. X. Ding,; J. Xue,; H. H. Wang,; J. Caro, Paralyzed membrane: Current-driven synthesis of a metal-organic framework with sharpened propene/propane separation. Sci. Adv. 2018, 4, eaau1393.
[39]
S. H. Pang,; C. Han,; D. S. Sholl,; C. W. Jones,; R. P. Lively, Facet-specific stability of ZIF-8 in the presence of acid gases dissolved in aqueous solutions. Chem. Mater. 2016, 28, 6960-6967.
[40]
J. Kim,; X. H. Song,; A. Kim,; B. B. Luo,; J. W. Smith,; Z. H. Ou,; Z. X. Wu,; Q. Chen, Reconfigurable polymer shells on shape-anisotropic gold nanoparticle cores. Macromol. Rapid Commun. 2018, 39, 1800101.
[41]
G. C. Zheng,; S. de Marchi,; V. López-Puente,; K. Sentosun,; L. Polavarapu,; I. Pérez-Juste,; E. H. Hill,; S. Bals,; L. M. Liz-Marzán,; I. Pastoriza-Santos,; J. Pérez-Juste, Encapsulation of single plasmonic nanoparticles within ZIF-8 and SERS analysis of the MOF flexibility. Small 2016, 12, 3935-3943.