AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Mechanistic insight into gold nanorod transformation in nanoscale confinement of ZIF-8

Cheongwon Bae1Jaedeok Lee1Lehan Yao2Suhyeon Park1Yeonju Lee1Jieun Lee1Qian Chen2,3,4,5Juyeong Kim1( )
Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Show Author Information

Graphical Abstract

Abstract

Core-shell hybrid nanomaterials have shown new properties and functions that are not attainable by their single counterparts. Nanoscale confinement effect by porous inorganic shells in the hybrid nanostructures plays an important role for chemical transformation of the core nanoparticles. However, metal-organic frameworks (MOFs) have been rarely applied for understanding mechanical insight into such nanoscale phenomena in confinement, although MOFs would provide a variety of properties for the confining environment than other inorganic shells such as silica and zeolite. Here, we examine chemical transformation of a gold nanorod core enclosed by a zeolitic imidazolate framework (ZIF) through chemical etching and regrowth, followed by quantitative analysis in the core dimension and curvature. We find the nanorod core shows template-effective behavior in its morphological transformation. In the etching event, the nanorod core is spherically carved from its tips. The regrowth on the spherically etched core inside the ZIF gives rise to formation of a raspberry-like branched nanostructure in contrast to the growth of an octahedral shape in bulk condition. We attribute the shell-directed regrowth to void space generated at the interfaces between the etched core and the ZIF shell, intercrystalline gaps in multi-domain ZIF shells, and local structural deformation from the acidic reaction conditions.

Electronic Supplementary Material

Video
12274_2020_3042_MOESM2_ESM.avi
Download File(s)
12274_2020_3042_MOESM1_ESM.pdf (6.7 MB)

References

[1]
X. H. Liu,; J. Zhang,; L. W. Wang,; T. L. Yang,; X. Z. Guo,; S. H. Wu,; S. R. Wang, 3D hierarchically porous ZnO structures and their functionalization by Aunanoparticles for gas sensors. J. Mater. Chem. 2011, 21, 349-356.
[2]
L. C. He,; Y. Liu,; J. Z. Liu,; Y. S. Xiong,; J. Z. Zheng,; Y. L. Liu,; Z. Y. Tang, Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew. Chem., Int. Ed. 2013, 52, 3741-3745.
[3]
Z. D. Xu,; L. Z. Yang,; C. L. Xu, Pt@UiO-66 heterostructures for highly selective detection of hydrogen peroxide with an extended linear range. Anal. Chem. 2015, 87, 3438-3444.
[4]
Q. Zhang,; I. Lee,; J. B. Joo,; F. Zaera,; Y. D. Yin, Core-shell nanostructured catalysts. Acc. Chem. Res. 2013, 46, 1816-1824.
[5]
H. R. Moon,; D. W. Lim,; M. P. Suh, Fabrication of metal nanoparticles in metal-organic frameworks. Chem. Soc. Rev. 2013, 42, 1807-1824.
[6]
J. Lee,; S. M. Kim,; I. S. Lee, Functionalization of hollow nanoparticles for nanoreactor applications. Nano Today 2014, 9, 631-667.
[7]
J. C. Park,; J. U. Bang,; J. Lee,; C. H. Ko,; H. Song, Ni@SiO2 yolk-shell nanoreactor catalysts: High temperature stability and recyclability. J. Mater. Chem. 2010, 20, 1239-1246.
[8]
J. H. Koo,; S. W. Lee,; J. Y. Park,; I. S. Lee, Nanospace-confined high-temperature solid-state reactions: Versatile synthetic route for high-diversity pool of catalytic nanocrystals. Chem. Mater. 2017, 29, 9463-9471.
[9]
A. Kumar,; K. W. Jeon,; N. Kumari,; I. S. Lee, Spatially confined formation and transformation of nanocrystals within nanometer-sized reaction media. Acc. Chem. Res. 2018, 51, 2867-2879.
[10]
K. Sugikawa,; S. Nagata,; Y. Furukawa,; K. Kokado,; K. Sada, Stable and functional gold nanorod composites with a metal-organic framework crystalline shell. Chem. Mater. 2013, 25, 2565-2570.
[11]
P. Falcaro,; R. Ricco,; A. Yazdi,; I. Imaz,; S. Furukawa,; D. Maspoch,; R. Ameloot,; J. D. Evans,; C. J. Doonan, Application of metal and metal oxide nanoparticles@MOFs. Coord. Chem. Rev. 2016, 307, 237-254.
[12]
F. Ke,; J. F. Zhu,; L. G. Qiu,; X. Jiang, Controlled synthesis of novel Au@MIL-100(Fe) core-shell nanoparticles with enhanced catalytic performance. Chem. Commun. 2013, 49, 1267-1269.
[13]
J. J. Zhou,; P. Wang,; C. X. Wang,; Y. T. Goh,; Z. Fang,; P. B. Messersmith,; H. W. Duan, Versatile core-shell nanoparticle@metal-organic framework nanohybrids: Exploiting mussel-inspired polydopamine for tailored structural integration. ACS Nano 2015, 9, 6951-6960.
[14]
G. D. Li,; S. L. Zhao,; Y. Zhang,; Z. Y. Tang, Metal-organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: Recent progress and perspectives. Adv. Mater. 2018, 30, 1800702.
[15]
Y. L. Liu,; Z. Y. Tang, Multifunctional nanoparticle@MOF core-shell nanostructures. Adv. Mater. 2013, 25, 5819-5825.
[16]
J. X. Chen,; J. Feng,; F. Yang,; R. Aleisa,; Q. Zhang,; Y. D. Yin, Space-confined seeded growth of Cu nanorods with strong surface plasmon resonance for photothermal actuation. Angew. Chem., Int. Ed. 2019, 131, 9376-9382.
[17]
A. B. Grommet,; M. Feller,; R. Klajn, Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 2020, 15, 256-271.
[18]
H. K. Lee,; Y. H. Lee,; J. V Morabito,; Y. J. Liu,; C. S. L. Koh,; I. Y. Phang,; S. Pedireddy,; X. M. Han,; L. Y. Chou,; C. K. Tsung, et al. Driving CO2 to a quasi-condensed phase at the interface between a nanoparticle surface and a metal-organic framework at 1 bar and 298 K. J. Am. Chem. Soc. 2017, 139, 11513-11518.
[19]
M. N. Sanz-Ortiz,; K. Sentosun,; S. Bals,; L. M. Liz-Marzán, Templated growth of surface enhanced Raman scattering-active branched gold nanoparticles within radial mesoporous silica shells. ACS Nano 2015, 9, 10489-10497.
[20]
T. S. Deng,; J. E. S. van der Hoeven,; A. O. Yalcin,; H. W. Zandbergen,; M. A. van Huis,; A. van Blaaderen, Oxidative etching and metal overgrowth of gold nanorods within mesoporous silica shells. Chem. Mater. 2015, 27, 7196-7203.
[21]
Z. H. Wu,; Y. L. Liang,; Q. Guo,; K. Q. Zhang,; S. F. Liang,; L. Y. Yang,; Q. Xiao,; D. Wang, Study on selective oxidations of gold nanorod and mesoporous silica-coated gold nanorod. J. Mater. Sci. 2019, 54, 8133-8147.
[22]
H. Furukawa,; K. E. Cordova,; M. O’Keeffe,; O. M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
[23]
K. S. Park,; Z. Ni,; A. P. Côté,; J. Y. Choi,; R. D. Huang,; F. J. Uribe-Romo,; H. K. Chae,; M. O’Keeffe,; O. M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186-10191.
[24]
X. C. Huang,; Y. Y. Lin,; J. P. Zhang,; X. M. Chen, Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem., Int. Ed. 2006, 45, 1557-1559.
[25]
J. Rodríguez-Fernández,; J. Pérez-Juste,; P. Mulvaney,; L. M. Liz-Marzán, Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes. J. Phys. Chem. B 2005, 109, 14257-14261.
[26]
M. N. O’Brien,; M. R. Jones,; K. A. Brown,; C. A. Mirkin, Universal noble metal nanoparticle seeds realized through iterative reductive growth and oxidative dissolution reactions. J. Am. Chem. Soc. 2014, 136, 7603-7606.
[27]
S. Underwood,; P. Mulvaney, Effect of the solution refractive index on the color of gold colloids. Langmuir 1994, 10, 3427-3430.
[28]
M. R. Hauwiller,; J. C. Ondry,; C. M. Chan,; P. Khandekar,; J. Yu,; A. P. Alivisatos, Gold nanocrystal etching as a means of probing the dynamic chemical environment in graphene liquid cell electron microscopy. J. Am. Chem. Soc. 2019, 141, 4428-4437.
[29]
T. Hirakawa,; P. V. Kamat, Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. J. Am. Chem. Soc. 2005, 127, 3928-3934.
[30]
Y. C. Pan,; Y. Y. Liu,; G. F. Zeng,; L. Zhao,; Z. P. Lai, Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun. 2011, 47, 2071-2073.
[31]
S. Ayyappan,; R. S. Gopalan,; G. N. Subbanna,; C. N. R. Rao, Nanoparticles of Ag, Au, Pd, and Cu produced by alcohol reduction of the salts. J. Mater. Res. 1997, 12, 398-401.
[32]
B. D. Cullity,; S. R. Stock, Elements of X-ray Diffraction; 3rd ed. Prentice Hall: Upper Saddle River, 2001; pp 96-102.
[33]
C. W. Tsai,; E. H. G. Langner, The effect of synthesis temperature on the particle size of nano-ZIF-8. Micropor. Mesopor. Mater. 2016, 221, 8-13.
[34]
P. Vijayaraghavan,; C. H. Liu,; K. C. Hwang, Synthesis of multibranched gold nanoechinus using a gemini cationic surfactant and its application for surface enhanced Raman scattering. ACS Appl. Mater. Interfaces 2016, 8, 23909-23919.
[35]
Z. Y. Ong,; S. Chen,; E. Nabavi,; A. Regoutz,; D. J. Payne,; D. S. Elson,; D. T. Dexter,; I. E. Dunlop,; A. E. Porter, Multibranched gold nanoparticles with intrinsic LAT-1 targeting capabilities for selective photothermal therapy of breast cancer. ACS Appl. Mater. Interfaces 2017, 9, 39259-39270.
[36]
C. H. Kuo,; M. H. Huang, Synthesis of branched gold nanocrystals by a seeding growth approach. Langmuir 2005, 21, 2012-2016.
[37]
H. Y. F. Sim,; H. K. Lee,; X. M. Han,; C. S. L. Koh,; G. C. Phan-Quang,; C. L. Lay,; Y. C. Kao,; I. Y. Phang,; E. K. L. Yeow,; X. Y. Ling, Concentrating immiscible molecules at solid@MOF interfacial nanocavities to drive an inert gas-liquid reaction at ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 17058-17062.
[38]
S. Zhou,; Y. Y. Wei,; L. B. Li,; Y. F. Duan,; Q. Q. Hou,; L. L. Zhang,; L. X. Ding,; J. Xue,; H. H. Wang,; J. Caro, Paralyzed membrane: Current-driven synthesis of a metal-organic framework with sharpened propene/propane separation. Sci. Adv. 2018, 4, eaau1393.
[39]
S. H. Pang,; C. Han,; D. S. Sholl,; C. W. Jones,; R. P. Lively, Facet-specific stability of ZIF-8 in the presence of acid gases dissolved in aqueous solutions. Chem. Mater. 2016, 28, 6960-6967.
[40]
J. Kim,; X. H. Song,; A. Kim,; B. B. Luo,; J. W. Smith,; Z. H. Ou,; Z. X. Wu,; Q. Chen, Reconfigurable polymer shells on shape-anisotropic gold nanoparticle cores. Macromol. Rapid Commun. 2018, 39, 1800101.
[41]
G. C. Zheng,; S. de Marchi,; V. López-Puente,; K. Sentosun,; L. Polavarapu,; I. Pérez-Juste,; E. H. Hill,; S. Bals,; L. M. Liz-Marzán,; I. Pastoriza-Santos,; J. Pérez-Juste, Encapsulation of single plasmonic nanoparticles within ZIF-8 and SERS analysis of the MOF flexibility. Small 2016, 12, 3935-3943.
Nano Research
Pages 66-73
Cite this article:
Bae C, Lee J, Yao L, et al. Mechanistic insight into gold nanorod transformation in nanoscale confinement of ZIF-8. Nano Research, 2021, 14(1): 66-73. https://doi.org/10.1007/s12274-020-3042-z
Topics:

797

Views

10

Crossref

0

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 17 May 2020
Revised: 05 August 2020
Accepted: 07 August 2020
Published: 05 January 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return