Journal Home > Volume 13 , Issue 12

Exposure to oxygen alters the physical and chemical properties of two-dimensional (2D) transition metal dichalcogenides (TMDs). In particular, oxygen in the ambient may influence the device stability of 2D TMDs over time. Engineering the doping of 2D TMDs, especially hole doping is highly desirable towards their device function. Herein, controllable oxygen-induced p-type doping in a range of hexagonal (MoTe2, WSe2, MoSe2 and PtSe2) and pentagonal (PdSe2) 2D TMDs are demonstrated. Scanning tunneling microscopy, electrical transport and X-ray photoelectron spectroscopy are used to probe the origin of oxygen-derived hole doping. Three mechanisms are postulated that contribute to the hole doping in 2D TMDs, namely charge transfer from absorbed oxygen molecules, surface oxides, and chalcogen atom substitution. This work provides insights into the doping effects of oxygen, enabling the engineering of 2D TMDs properties for nanoelectronic applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Oxygen-induced controllable p-type doping in 2D semiconductor transition metal dichalcogenides

Show Author's information Qijie Liang1,2Jian Gou2 Arramel2Qian Zhang3( )Wenjing Zhang1( )Andrew Thye Shen Wee2,4( )
SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
Centre for Advanced 2D Materials, National University of Singapore, Block S14, 6 Science Drive 2, Singapore 117546, Singapore

Abstract

Exposure to oxygen alters the physical and chemical properties of two-dimensional (2D) transition metal dichalcogenides (TMDs). In particular, oxygen in the ambient may influence the device stability of 2D TMDs over time. Engineering the doping of 2D TMDs, especially hole doping is highly desirable towards their device function. Herein, controllable oxygen-induced p-type doping in a range of hexagonal (MoTe2, WSe2, MoSe2 and PtSe2) and pentagonal (PdSe2) 2D TMDs are demonstrated. Scanning tunneling microscopy, electrical transport and X-ray photoelectron spectroscopy are used to probe the origin of oxygen-derived hole doping. Three mechanisms are postulated that contribute to the hole doping in 2D TMDs, namely charge transfer from absorbed oxygen molecules, surface oxides, and chalcogen atom substitution. This work provides insights into the doping effects of oxygen, enabling the engineering of 2D TMDs properties for nanoelectronic applications.

Keywords: charge transfer, two-dimensional, transition metal dichalcogenides, oxygen induced doping, oxygen substitution

References(36)

[1]
K. F. Mak,; J. Shan, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 2016, 10, 216-226.
[2]
A. Y. Lu,; H. Y. Zhu,; J. Xiao,; C. P. Chuu,; Y. M. Han,; M. H. Chiu,; C. C. Cheng,; C. W. Yang,; K. H. Wei,; Y. M. Yang, et al. Janus monolayers of transition metal dichalcogenides. Nat. Nanotech. 2017, 12, 744-749.
[3]
G. Berghäuser,; I. Bernal-Villamil,; R. Schmidt,; R. Schneider,; I. Niehues,; P. Erhart,; S. M. De Vasconcellos,; R. Bratschitsch,; A. Knorr,; E. Malic, Inverted valley polarization in optically excited transition metal dichalcogenides. Nat. Commun. 2018, 9, 971.
[4]
B. Sipos,; A. F. Kusmartseva,; A. Akrap,; H. Berger,; L. Forró,; E. Tutiš, From Mott state to superconductivity in 1T-TaS2. Nat. Mater. 2008, 7, 960-965.
[5]
X. F. Qian,; J. W. Liu,; L. Fu,; J. Li, Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 2014, 346, 1344-1347.
[6]
Z. Zhang,; P. Lin,; Q. L. Liao,; Z. Kang,; H. N. Si,; Y. Zhang, Graphene-based mixed-dimensional van der Waals heterostructures for advanced optoelectronics. Adv. Mater. 2019, 31, 1806411.
[7]
B. S. Liu,; Q. L. Liao,; X. K. Zhang,; J. L. Du,; Y. Ou,; J. K. Xiao,; Z. Kang,; Z. Zhang,; Y. Zhang, Strain-engineered van der waals interfaces of mixed-dimensional heterostructure arrays. ACS Nano 2019, 13, 9057-9066.
[8]
L. Gao,; Q. L. Liao,; X. K. Zhang,; X. Z. Liu,; L. Gu,; B. S. Liu,; J. L. Du,; Y. Ou,; J. K. Xiao,; Z. Kang, et al. Defect-engineered atomically thin MoS2 homogeneous electronics for logic inverters. Adv. Mater. 2020, 32, 1906646.
[9]
Y. T. Zhao,; H. Y. Wang,; H. Huang,; Q. L. Xiao,; Y. H. Xu,; Z. N. Guo,; H. H. Xie,; J. D. Shao,; Z. B. Sun,; W. J. Han, Surface coordination of black phosphorus for robust air and water stability. Angew. Chem., Int. Ed. 2016, 55, 5003-5007.
[10]
G. López-Polín,; C. Gómez-Navarro,; V. Parente,; F. Guinea,; M. I. Katsnelson,; F. Pérez-Murano,; J. Gómez-Herrero, Increasing the elastic modulus of graphene by controlled defect creation. Nat. Phys. 2015, 11, 26-31.
[11]
L. Z. Zhuang,; L. Ge,; Y. S. Yang,; M. R. Li,; Y. Jia,; X. D. Yao,; Z. H. Zhu, Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 2017, 29, 1606793.
[12]
N. Kang,; H. P. Paudel,; M. N. Leuenberger,; L. Tetard,; S. I. Khondaker, Photoluminescence quenching in single-layer MoS2 via oxygen plasma treatment. J. Phys. Chem. C 2014, 118, 21258-21263.
[13]
J. Shim,; A. Oh,; D. H. Kang,; S. Oh,; S. K. Jang,; J. Jeon,; M. H. Jeon,; M. Kim,; C. Choi,; J. Lee, et al. High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment. Adv. Mater. 2016, 28, 6985-6992.
[14]
H. Y. Nan,; Z. L. Wang,; W. H. Wang,; Z. Liang,; Y. Lu,; Q. Chen,; D. W. He,; P. H. Tan,; F. Miao,; X. R. Wang, et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 2014, 8, 5738-5745.
[15]
J. Pető,; T. Ollár,; P. Vancsó,; Z. I. Popov,; G. Z. Magda,; G. Dobrik,; C. Hwang,; P. B. Sorokin,; L. Tapaszto, Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions. Nat. Chem. 2018, 10, 1246-1251.
[16]
W. Luo,; M. J. Zhu,; G. Peng,; X. M. Zheng,; F. Miao,; S. X. Bai,; X. A. Zhang,; S. Q. Qin, Carrier modulation of ambipolar few-layer MoTe2 transistors by MgO surface charge transfer doping. Adv. Funct. Mater. 2018, 28, 1704539.
[17]
Y. M. Chang,; S. H. Yang,; C. Y. Lin,; C. H. Chen,; C. H. Lien,; W. B. Jian,; K. Ueno,; Y. W. Suen,; K. Tsukagoshi,; Y. F. Lin, Reversible and precisely controllable p/n-Type doping of MoTe2 transistors through electrothermal doping. Adv. Mater. 2018, 30, 1706995.
[18]
H. Y. Park,; S. R. Dugasani,; D. H. Kang,; J. Jeon,; S. K. Jang,; S. Lee,; Y. Roh,; S. H. Park,; J. H. Park, N-and P-type doping phenomenon by artificial DNA and M-DNA on two-dimensional transition metal dichalcogenides. ACS Nano 2014, 8, 11603-11613.
[19]
X. K. Zhang,; Q. L. Liao,; S. Liu,; Z. Kang,; Z. Zhang,; J. L. Du,; F. Li,; S. H. Zhang,; J. K. Xiao,; B. S. Liu, et al. Poly(4-styrenesulfonate)- induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode. Nat. Commun. 2017, 8, 15881.
[20]
X. K. Zhang,; Q. L. Liao,; Z. Kang,; B. S. Liu,; Y. Ou,; J. L. Du,; J. K. Xiao,; L. Gao,; H. Y. Shan,; Y. Luo, et al. Self-healing originated van der Waals homojunctions with strong interlayer coupling for high-performance photodiodes. ACS Nano 2019, 13, 3280-3291.
[21]
S. F. Wang,; W. J. Zhao,; F. Giustiniano,; G. Eda, Effect of oxygen and ozone on p-type doping of ultra-thin WSe2 and MoSe2 field effect transistors. Phys. Chem. Chem. Phys. 2016, 18, 4304-4309.
[22]
Q. J. Liang,; Q. Zhang,; J. Gou,; T. T. Song,; ; H. Chen,; M. Yang,; S. X. Lim,; Q. X. Wang,; R. Zhu, et al. Performance improvement by ozone treatment of 2D PdSe2. ACS Nano 2020, 14, 5668-5677.
[23]
X. M. Zheng,; Y. H. Wei,; J. X. Liu,; S. T. Wang,; J. Shi,; H. Yang,; G. Peng,; C. Y. Deng,; W. Luo,; Y. Zhao, et al. A homogeneous p-n junction diode by selective doping of few layer MoSe2 using ultraviolet ozone for high-performance photovoltaic devices. Nanoscale 2019, 11, 13469-13476.
[24]
Q. J. Liang,; Q. X. Wang,; Q. Zhang,; J. X. Wei,; S. X. Lim,; R. Zhu,; J. X. Hu,; W. Wei,; C. Lee,; C. Sow, et al. High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv. Mater. 2019, 31, 1807609.
[25]
A. D. Oyedele,; S. Z. Yang,; L. B. Liang,; A. A. Puretzky,; K. Wang,; J. J. Zhang,; P. Yu,; P. R. Pudasaini,; A. W. Ghosh,; Z. Liu, et al. PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 2017, 139, 14090-14097.
[26]
J. F. Sun,; H. L. Shi,; T. Siegrist,; D. J. Singh, Electronic, transport, and optical properties of bulk and mono-layer PdSe2. Appl. Phys. Lett. 2015, 107, 153902.
[27]
E. Li,; D. F. Wang,; P. Fan,; R. Z. Zhang,; Y. Y. Zhang,; G. Li,; J. H. Mao,; Y. L. Wang,; X. Lin,; S. X. Du, et al. Construction of bilayer PdSe2 on epitaxial graphene. Nano Res. 2018, 11, 5858-5865.
[28]
S. Barja,; S. Refaely-Abramson,; B. Schuler,; D. Y. Qiu,; A. Pulkin,; S. Wickenburg,; H. Ryu,; M. M. Ugeda,; C. Kastl,; C. Chen, et al. Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides. Nat. Commun. 2019, 10, 3382.
[29]
B. S. Tang,; Z. G. Yu,; L. Huang,; J. W. Chai,; S. L. Wong,; J. Deng,; W. F. Yang,; H. Gong,; S. J. Wang,; K. W. Ang, et al. Direct n- to p-Type channel conversion in monolayer/few-layer WS2 field-effect transistors by atomic nitrogen treatment. ACS Nano 2018, 12, 2506-2513.
[30]
A. Nipane,; D. Karmakar,; N. Kaushik,; S. Karande,; S. Lodha, Few-layer MoS2 p-Type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano 2016, 10, 2128-2137.
[31]
H. Zhu,; Q. X. Wang,; L. X. Cheng,; R. Addou,; J. Kim,; M. J. Kim,; R. M. Wallace, Defects and surface structural stability of MoTe2 under vacuum annealing. ACS Nano 2017, 11, 11005-11014.
[32]
T. H. Fleisch,; G. J. Mains, An XPS study of the UV reduction and photochromism of MoO3 and WO3. J. Chem. Phys. 1982, 76, 780-786.
[33]
X. F. Li,; M. W. Lin,; L. Basile,; S. M. Hus,; A. A. Puretzky,; J. Lee,; Y. C. Kuo,; L. Y. Chang,; K. Wang,; J. C. Idrobo, et al. Isoelectronic tungsten doping in monolayer MoSe2 for carrier type modulation. Adv. Mater. 2016, 28, 8240-8247.
[34]
S. Chuang,; C. Battaglia,; A. Azcatl,; S. McDonnell,; J. S. Kang,; X. T. Yin,; M. Tosun,; R. Kapadia,; H. Fang,; R. M. Wallace, et al. MoS2 P-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 2014, 14, 1337-1342.
[35]
L. L. Cai,; C. J. McClellan,; A. L. Koh,; H. Li,; E. Yalon,; E. Pop,; X. L. Zheng, Rapid flame synthesis of atomically thin MoO3 down to monolayer thickness for effective hole doping of WSe2. Nano Lett. 2017, 17, 3854-3861.
[36]
D. Xiang,; C. Han,; J. Wu,; S. Zhong,; Y. Y. Liu,; J. D. Lin,; X. A. Zhang,; W. P. Hu,; B. Özyilmaz,; A. H. C. Neto, et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nat. Commun. 2015, 6, 6485.
File
12274_2020_3038_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 July 2020
Revised: 04 August 2020
Accepted: 04 August 2020
Published: 08 September 2020
Issue date: December 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51472164), Shenzhen Peacock Plan (No. KQTD2016053112042971), the Educational Commission of Guangdong Province (Nos. 2015KGJHZ006 and 2016KCXTD006), and the Science and Technology Planning Project of Guangdong Province (No. 2016B050501005). A. T. S. W. acknowledges funding support from MOE Tier 2 grant R 144-000-382-112, A*STAR Pharos Program (No. 1527300025), and facility support from the NUS Centre for Advanced 2D Materials (CA2DM).

Return