Journal Home > Volume 14 , Issue 6

Two-dimensional (2D) transition metal chalcogenides (TMCs) are known to be susceptible to the atmosphere, which greatly obscures the intrinsic physical and chemical properties. The quantitative origin of the instability on the atomic scale has not been well investigated due to the lack of environmentally stable TMCs sample. Here, we find the stability of the grown TMCs is strongly relevant to their initial element ratios, and thus the stoichiometric bonded TMCs have favorable stability, benefitted from the TMCs with controllable chalcogenisation. In this study, the degree of structural degradation has been quantitatively defined by the reduced element ratio of chalcogen to metal through the time-dependent characterizations, and the non-stoichiometric ratios in TMCs reveal the atomic lattices with point defects like additive bonds or vacancies inside. This study not only provides a potential view to fabricate environmentally stable TMCs based devices, but also will bring an effective feasibility of stacking stable vertical heterostructures.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhancing stability by tuning element ratio in 2D transition metal chalcogenides

Show Author's information Zhenjia Zhou1,§Tao Xu2,§Chenxi Zhang1Shisheng Li3Jie Xu1Litao Sun2( )Libo Gao1( )
National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 3050044, Japan

§ Zhenjia Zhou and Tao Xu contributed equally to this work.

Abstract

Two-dimensional (2D) transition metal chalcogenides (TMCs) are known to be susceptible to the atmosphere, which greatly obscures the intrinsic physical and chemical properties. The quantitative origin of the instability on the atomic scale has not been well investigated due to the lack of environmentally stable TMCs sample. Here, we find the stability of the grown TMCs is strongly relevant to their initial element ratios, and thus the stoichiometric bonded TMCs have favorable stability, benefitted from the TMCs with controllable chalcogenisation. In this study, the degree of structural degradation has been quantitatively defined by the reduced element ratio of chalcogen to metal through the time-dependent characterizations, and the non-stoichiometric ratios in TMCs reveal the atomic lattices with point defects like additive bonds or vacancies inside. This study not only provides a potential view to fabricate environmentally stable TMCs based devices, but also will bring an effective feasibility of stacking stable vertical heterostructures.

Keywords: stability, transition metal chalcogenides, point defects, stoichiometric ratio, two-step vapor deposition

References(45)

[1]
S. Manzeli,; D. Ovchinnikov,; D. Pasquier,; O. V. Yazyev,; A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.
[2]
G. H. Han,; D. L. Duong,; D. H. Keum,; S. J. Yun,; Y. H. Lee, van der Waals metallic transition metal dichalcogenides. Chem. Rev. 2018, 118, 6297-6336.
[3]
A. K. Geim,; I. V. Grigorieva, van der Waals heterostructures. Nature 2013, 499, 419-425.
[4]
K. S. Novoselov,; V. I. Fal'ko,; L. Colombo,; P. R. Gellert,; M. G. Schwab,; K. Kim, A roadmap for graphene. Nature 2012, 490, 192-200.
[5]
C. R. Dean,; A. F. Young,; I. Meric,; C. Lee,; L. Wang,; S. Sorgenfrei,; K. Watanabe,; T. Taniguchi,; P. Kim,; K. L. Shepard, et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722-726.
[6]
C. X. Huang,; Y. P. Du,; H. P. Wu,; H. J. Xiang,; K. M. Deng,; E. J. Kan, Prediction of intrinsic ferromagnetic ferroelectricity in a transition- metal halide monolayer. Phys. Rev. Lett. 2018, 120, 147601.
[7]
L. K. Li,; Y. J. Yu,; G. J. Ye,; Q. Q. Ge,; X. D. Ou,; H. Wu,; D. L. Feng,; X. H. Chen,; Y. B. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.
[8]
Z. H. Hu,; Q. Li,; B. Lei,; Q. H. Zhou,; D. Xiang,; Z. Y. Lyu,; F. Hu,; J. Y. Wang,; Y. J. Ren,; R. Guo, et al. Water-catalyzed oxidation of few- layer black phosphorous in a dark environment. Angew. Chem., Int. Ed. 2017, 56, 9131-9135.
[9]
D. Tristant,; A. Cupo,; X. Ling,; V. Meunier, Phonon anharmonicity in few-layer black phosphorus. ACS Nano 2019, 13, 10456-10468.
[10]
Q. H. Wang,; K. Kalantar-Zadeh,; A. Kis,; J. N. Coleman,; M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[11]
S. S. Chou,; Y. K. Huang,; J. Kim,; B. Kaehr,; B. M. Foley,; P. Lu,; C. Dykstra,; P. E. Hopkins,; C. J. Brinker,; J. X. Huang, et al. Controlling the metal to semiconductor transition of MoS2 and WS2 in solution. J. Am. Chem. Soc. 2015, 137, 1742-1745.
[12]
X. D. Duan,; C. Wang,; A. L. Pan,; R. Q. Yu,; X. F. Duan, Two- dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev. 2015, 44, 8859-8876.
[13]
Y. Liu,; X. D. Duan,; Y. Huang,; X. F. Duan, Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 2018, 47, 6388-6409.
[14]
J. T. Ye,; Y. J. Zhang,; R. Akashi,; M. S. Bahramy,; R. Arita,; Y. Iwasa, Superconducting dome in a gate-tuned band insulator. Science 2012, 338, 1193-1196.
[15]
L. J. Li,; E. C. T. O'Farrell,; K. P. Loh,; G. Eda,; B. Özyilmaz,; A. H. C. Neto, Controlling many-body states by the electric-field effect in a two-dimensional material. Nature 2016, 529, 185-189.
[16]
H. H. Lin,; Q. Zhu,; D. H. Shu,; D. J. Lin,; J. Xu,; X. L. Huang,; W. Shi,; X. X. Xi,; J. W. Wang,; L. B. Gao, Growth of environmentally stable transition metal selenide films. Nat. Mater. 2019, 18, 602-607.
[17]
H. Wang,; X. W. Huang,; J. H. Lin,; J. Cui,; Y. Chen,; C. Zhu,; F. C. Liu,; Q. S. Zeng,; J. D. Zhou,; P. Yu, et al. High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition. Nat. Commun. 2017, 8, 394.
[18]
B. Huang,; G. Clark,; D. R. Klein,; D. MacNeill,; E. Navarro-Moratalla,; K. L. Seyler,; N. Wilson,; M. A. McGuire,; D. H. Cobden,; D. Xiao, et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544-548.
[19]
S. S. Chou,; B. Kaehr,; J. Kim,; B. M. Foley,; M. De,; P. E. Hopkins,; J. X. Huang,; C. J. Brinker,; V. P. Dravid, Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew. Chem., Int. Ed. 2013, 52, 4160-4164.
[20]
M. Chhowalla,; H. S. Shin,; G. Eda,; L. J. Li,; K. P. Loh,; H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.
[21]
F. X. Bu,; M. M. Zagho,; Y. Ibrahim,; B. Ma,; A. Elzatahry,; D. Y. Zhao, Porous MXenes: Synthesis, structures, and applications. Nano Today 2020, 30, 100803.
[22]
M. Q. Zeng,; L. Fu, Controllable fabrication of graphene and related two-dimensional materials on liquid metals via chemical vapor deposition. Acc. Chem. Res. 2018, 51, 2839-2847.
[23]
Q. Q. Ji,; Y. Zhang,; Y. F. Zhang,; Z. F. Liu, Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: Engineered substrates from amorphous to single crystalline. Chem. Soc. Rev. 2015, 44, 2587-2602.
[24]
Y. W. Zhu,; H. X. Ji,; H. M. Cheng,; R. S. Ruoff, Mass production and industrial applications of graphene materials. Natl. Sci. Rev. 2018, 5, 90-101.
[25]
J. D. Zhou,; J. H. Lin,; X. W. Huang,; Y. Zhou,; Y. Chen,; J. Xia,; H. Wang,; Y. Xie,; H. M. Yu,; J. C. Lei, et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355-359.
[26]
M. M. Ugeda,; A. J. Bradley,; Y. Zhang,; S. Onishi,; Y. Chen,; W. Ruan,; C. Ojeda-Aristizabal,; H. Ryu,; M. T. Edmonds,; H. Z. Tsai, et al. Characterization of collective ground states in single-layer NbSe2. Nat. Phys. 2016, 12, 92-97.
[27]
J. Gao,; B. C. Li,; J. W. Tan,; P. Chow,; T. M. Lu,; N. Koratkar, Aging of transition metal dichalcogenide monolayers. ACS Nano 2016, 10, 2628-2635.
[28]
J. H. Hong,; Z. X. Hu,; M. Probert,; K. Li,; D. H. Lv,; X. N. Yang,; L. Gu,; N. N. Mao,; Q. L. Feng,; L. M. Xie, et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 2015, 6, 6293.
[29]
Y. C. Lin,; T. Björkman,; H. P. Komsa,; P. Y. Teng,; C. H. Yeh,; F. S. Huang,; K. H. Lin,; J. Jadczak,; Y. S. Huang,; P. W. Chiu, et al. Three-fold rotational defects in two-dimensional transition metal dichalcogenides. Nat. Commun. 2015, 6, 6736.
[30]
Z. H. Yu,; Y. M. Pan,; Y. T. Shen,; Z. L. Wang,; Z. Y. Ong,; T. Xu,; R. Xin,; L. J. Pan,; B. G. Wang,; L. T. Sun, et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 2014, 5, 5290.
[31]
Y. Zhang,; Y. Y. Yao,; M. G. Sendeku,; L. Yin,; X. Y. Zhan,; F. Wang,; Z. X. Wang,; J. He, Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater. 2019, 31, 1901694.
[32]
S. Barja,; S. Refaely-Abramson,; B. Schuler,; D. Y. Qiu,; A. Pulkin,; S. Wickenburg,; H. Ryu,; M. M. Ugeda,; C. Kastl,; C. Chen, et al. Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides. Nat. Commun. 2019, 10, 3382.
[33]
S. S. Li,; S. F. Wang,; D. M. Tang,; W. J. Zhao,; H. L. Xu,; L. Q. Chu,; Y. Bando,; D. Golberg,; G. Eda, Halide-assisted atmospheric pressure growth of large WSe2 and WS2 monolayer crystals. Appl. Mater. Today 2015, 1, 60-66.
[34]
S. S. Li,; Y. C. Lin,; W. Zhao,; J. Wu,; Z. Wang,; Z. H. Hu,; Y. D. Shen,; D. M. Tang,; J. Y. Wang,; Q. Zhang, et al. Vapour-liquid-solid growth of monolayer MoS2 nanoribbons. Nat. Mater. 2018, 17, 535-542.
[35]
P. Y. Huang,; C. S. Ruiz-Vargas,; A. M. Van Der Zande,; W. S. Whitney,; M. P. Levendorf,; J. W. Kevek,; S. Garg,; J. S. Alden,; C. J. Hustedt,; Y. Zhu, et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011, 469, 389-392.
[36]
D. L. Duong,; S. J. Yun,; Y. H. Lee, van der Waals layered materials: Opportunities and challenges. ACS Nano 2017, 11, 11803-11830.
[37]
H. V. Han,; A. Y. Lu,; L. S. Lu,; J. K. Huang,; H. N. Li,; C. L. Hsu,; Y. C. Lin,; M. H. Chiu,; K. Suenaga,; C. W. Chu, et al. Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment. ACS Nano 2016, 10, 1454-1461.
[38]
S. S. Wang,; A. Robertson,; J. H. Warner, Atomic structure of defects and dopants in 2D layered transition metal dichalcogenides. Chem. Soc. Rev. 2018, 47, 6764-6794.
[39]
A. Azizi,; X. L. Zou,; P. Ercius,; Z. H. Zhang,; A. L. Elías,; N. Perea-Lopez,; G. Stone,; M. Terrones,; B. I. Yakobson,; N. Alem, Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. Nat. Commun. 2014, 5, 4867.
[40]
S. Wang,; D. Zhang,; B. Li,; C. Zhang,; Z. G. Du,; H. M. Yin,; X. F. Bi,; S. B. Yang, Ultrastable in-plane 1T-2H MoS2 heterostructures for enhanced hydrogen evolution reaction. Adv. Energy Mater. 2018, 8, 1801345.
[41]
J. Zhang,; H. Yu,; W. Chen,; X. Z. Tian,; D. H. Liu,; M. Cheng,; G. B. Xie,; W. Yang,; R. Yang,; X. D. Bai, et al. Scalable growth of high- quality polycrystalline MoS2 monolayers on SiO2 with tunable grain sizes. ACS Nano 2014, 8, 6024-6030.
[42]
J. Q. Zhu,; Z. C. Wang,; H. Yu,; N. Li,; J. Zhang,; J. L. Meng,; M. Z. Liao,; J. Zhao,; X. B. Lu,; L. J. Du, et al. Argon plasma induced phase transition in monolayer MoS2. J. Am. Chem. Soc. 2017, 139, 10216-10219.
[43]
M. Buscema,; G. A. Steele,; H. S. J. Van Der Zant,; A. Castellanos- Gomez, The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 2014, 7, 561-571.
[44]
P. K. Chow,; R. B. Jacobs-Gedrim,; J. Gao,; T. M. Lu,; B. Yu,; H. Terrones,; N. Koratkar, Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. ACS Nano 2015, 9, 1520-1527.
[45]
H. Zhu,; Q. X. Wang,; L. X. Cheng,; R. Addou,; J. Y. Kim,; M. J. Kim,; R. M. Wallace, Defects and surface structural stability of MoTe2 under vacuum annealing. ACS Nano 2017, 11, 11005-11014.
File
12274_2020_3035_MOESM1_ESM.pdf (4.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 June 2020
Revised: 30 July 2020
Accepted: 04 August 2020
Published: 03 September 2020
Issue date: June 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

We thank Yi Zhang for the MoSe2 samples by MBE. This work was supported by the National Key R&D Program of China (No. 2018YFA0305800), the Fundamental Research Funds for the Central Universities (Nos. 020414380145 and 020414380153), the National Natural Science Foundation of China (Nos. 11674154, 11761131010, 51972163, and 11904163), the Natural Science Foundation of Jiangsu Province (No. BK20190010) and the Fok Ying-Tong Education Foundation of China (No. 171038). T. X. and L. T. S. acknowledge support from the National Natural Science Foundation of China (Nos. 61974021 and 11525415).

L. B. G. conceived and supervised the project, and designed the experiments. Z. J. Z. carried out growth experiments and XPS, Raman and PL measurements. C. X. Z. and J. X. assisted in the growth experiments. T. X. and L. T. S. performed AC-TEM. S. S. L. provided some 1-CVD grown samples. L. B. G. and Z. J. Z. wrote the manuscript, T. X. and L. T. S. revised it, and all authors commented on it.

Return