Journal Home > Volume 14 , Issue 6

Two-dimensional (2D) crystals are attractive due to their intriguing structures and properties which are strongly dependent on the synthesis conditions. To achieve their superior properties, it is of critical importance to fully understand the growth processes and mechanisms for tailored design and controlled growth of 2D crystals. Due to the high spatiotemporal resolution and the capability to mimic the realistic growth conditions, in situ transmission electron microscopy (TEM) becomes an effective way to monitor the growth process in real-time at the atomic scale, which is expected to provide atomic-scale insights into the nucleation and growth of 2D crystals. Here we review the recent in situ TEM works on the formation of 2D crystals under electron irradiation, thermal excitation as well as voltage bias. The underlying mechanisms are also elucidated in detail, providing key insights into the nucleation and formation of 2D crystals.


menu
Abstract
Full text
Outline
About this article

Atomic-scale insights into the formation of 2D crystals from in situ transmission electron microscopy

Show Author's information Yatong Zhu1Dundong Yuan1Hao Zhang1Tao Xu1( )Litao Sun1,2( )
SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
Center for Advanced Materials and Manufacture, Southeast University-Monash University Joint Research Institute, Suzhou 215123, China

Abstract

Two-dimensional (2D) crystals are attractive due to their intriguing structures and properties which are strongly dependent on the synthesis conditions. To achieve their superior properties, it is of critical importance to fully understand the growth processes and mechanisms for tailored design and controlled growth of 2D crystals. Due to the high spatiotemporal resolution and the capability to mimic the realistic growth conditions, in situ transmission electron microscopy (TEM) becomes an effective way to monitor the growth process in real-time at the atomic scale, which is expected to provide atomic-scale insights into the nucleation and growth of 2D crystals. Here we review the recent in situ TEM works on the formation of 2D crystals under electron irradiation, thermal excitation as well as voltage bias. The underlying mechanisms are also elucidated in detail, providing key insights into the nucleation and formation of 2D crystals.

Keywords: formation mechanism, two-dimensional crystal, in situ transmission electron microscopy, electron irradiation

References(80)

[1]
K. S. Novoselov,; A. K. Geim,; S. V. Morozov,; D. Jiang,; Y. Zhang,; S. V. Dubonos,; I. V. Grigorieva,; A. A. Firsov, Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[2]
Y. Liu,; N. O. Weiss,; X. D. Duan,; H. C. Cheng,; Y. Huang,; X. F. Duan, van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.
[3]
S. Manzeli,; D. Ovchinnikov,; D. Pasquier,; O. V. Yazyev,; A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.
[4]
C. L. Tan,; X. H. Cao,; X. J. Wu,; Q. Y. He,; J. Yang,; X. Zhang,; J. Z. Chen,; W. Zhao,; S. K. Han,; G. H. Nam, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225-6331.
[5]
Y. Liu,; X. D. Duan,; Y. Huang,; X. F. Duan, Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 2018, 47, 6388-6409.
[6]
J. Jiang,; T. Xu,; J. P. Lu,; L. T. Sun,; Z. H. Ni, Defect engineering in 2D materials: Precise manipulation and improved functionalities. Research 2019, 2019, 4641739.
[7]
R. H. Dong,; T. Zhang,; X. L. Feng, Interface-assisted synthesis of 2D materials: Trend and challenges. Chem. Rev. 2018, 118, 6189-6235.
[8]
S. S. Zhou,; L. Gan,; D. L. Wang,; H. Q. Li,; T. Y. Zhai, Space- confined vapor deposition synthesis of two dimensional materials. Nano Res. 2018, 11, 2909-2931.
[9]
X. Xiao,; H. Wang,; P. Urbankowski,; Y. Gogotsi, Topochemical synthesis of 2D materials. Chem. Soc. Rev. 2018, 47, 8744-8765.
[10]
A. Ziegler,; H. Graafsma,; X. F. Zhang,; J. W. M. Frenken, In-situ Materials Characterization: Across Spatial and Temporal Scales; Springer Science & Business Media: Berlin, 2014.
DOI
[11]
T. Xu,; L. T. Sun, Dynamic in-situ experimentation on nanomaterials at the atomic scale. Small 2015, 11, 3247-3262.
[12]
T. Xu,; L. T. Sun, Investigation on material behavior in liquid by in situ TEM. Superlattices Microstruct. 2016, 99, 24-34.
[13]
Q. B. Zhang,; K. B. Yin,; H. Dong,; Y. L. Zhou,; X. D. Tan,; K. H. Yu,; X. H. Hu,; T. Xu,; C. Zhu,; W. W. Xia, et al. Electrically driven cation exchange for in situ fabrication of individual nanostructures. Nat. Commun. 2017, 8, 14889.
[14]
C. Zhu,; S. X. Liang,; E. H. Song,; Y. J. Zhou,; W. Wang,; F. Shan,; Y. T. Shi,; C. Hao,; K. B. Yin,; T. Zhang, et al. In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles. Nat. Commun. 2018, 9, 421.
[15]
L. B. He,; L. Zhang,; L. P. Tang,; J. Sun,; Q. B. Zhang,; L. T. Sun, Novel behaviors/properties of nanometals induced by surface effects. Mater. Today Nano 2018, 1, 8-21.
[16]
Y. Zhou,; T. Xu,; K. Yin,; L. He,; F. Banhart,; L. Sun, In situ observation of atomic-scale stability limit of Cu nanoparticles. Mater. Today Nano 2018, 4, 32-37.
[17]
H. Xu,; X. Wu,; X. Tian,; J. Li,; J. Chu,; L. Sun, Dynamic structure- properties characterization and manipulation in advanced nanodevices. Mater. Today Nano 2019, 7, 100042.
[18]
N. Wan,; L. T. Sun,; X. H. Hu,; Y. Y. Zhu,; L. Zha,; T. Xu,; H. Bi,; J. Sun,; F. Z. Dong, Charge supported growth and superplasticity of sodium nanostructures. Cryst. Growth Des. 2012, 12, 3899-3905.
[19]
K. H. Yu,; T. Xu,; X. Wu,; W. Wang,; H. Zhang,; Q. B. Zhang,; L. P. Tang,; L. T. Sun, In situ observation of crystalline silicon growth from SiO2 at atomic scale. Research 2019, 3289247.
[20]
H. T. Zhang,; W. Wang,; T. Xu,; F. Xu,; L. T. Sun, Phase transformation at controlled locations in nanowires by in situ electron irradiation. Nano Res. 2020, 13, 1912-1919.
[21]
I. G. Gonzalez-Martinez,; A. Bachmatiuk,; V. Bezugly,; J. Kunstmann,; T. Gemming,; Z. Liu,; G. Cuniberti,; M. H. Rümmeli, Electron-beam induced synthesis of nanostructures: A review. Nanoscale 2016, 8, 11340-11362.
[22]
C. Luo,; C. L. Wang,; X. Wu,; J. Zhang,; J. H. Chu, In situ transmission electron microscopy characterization and manipulation of two- dimensional layered materials beyond graphene. Small 2017, 13, 1604259.
[23]
X. F. Liu,; T. Xu,; X. Wu,; Z. H. Zhang,; J. Yu,; H. Qiu,; J. H. Hong,; C. H. Jin,; J. X. Li,; X. R. Wang, et al. Top-down fabrication of sub- nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets. Nat. Commun. 2013, 4, 1776.
[24]
T. Xu,; Y. L. Zhou,; X. D. Tan,; K. B. Yin,; L. B. He,; F. Banhart,; L. T. Sun, Creating the smallest BN nanotube from bilayer h-BN. Adv. Funct. Mater. 2017, 27, 1603897.
[25]
X. X. Zhao,; J. Kotakoski,; J. C. Meyer,; E. Sutter,; P. Sutter,; A. V. Krasheninnikov,; U. Kaiser,; W. Zhou, Engineering and modifying two-dimensional materials by electron beams. MRS Bull. 2017, 42, 667-676.
[26]
T. Xu,; K. B. Yin,; L. T. Sun, In-situ study of electron irradiation on two- dimensional layered materials. Chin. Sci. Bull. 2017, 62, 2919-2930.
[27]
M. H. Rummeli,; H. Q. Ta,; R. G. Mendes,; I. G. Gonzalez-Martinez,; L. Zhao,; J. Gao,; L. Fu,; T. Gemming,; A. Bachmatiuk,; Z. F. Liu, New frontiers in electron beam-driven chemistry in and around graphene. Adv. Mater. 2018, 31, 1800715.
[28]
R. F. Egerton,; P. Li,; M. Malac, Radiation damage in the TEM and SEM. Micron 2004, 35, 399-409.
[29]
Y. C. Lin,; D. O. Dumcenco,; Y. S. Huang,; K. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9, 391-396.
[30]
H. Qiu,; T. Xu,; Z. L. Wang,; W. Ren,; H. Y. Nan,; Z. H. Ni,; Q. Chen,; S. J. Yuan,; F. Miao,; F. Q. Song, et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 2013, 4, 2642.
[31]
L. T. Sun,; F. Banhart,; J. Warner, Two-dimensional materials under electron irradiation. MRS Bull. 2015, 40, 29-37.
[32]
T. Xu,; Y. T. Shen,; K. B. Yin,; L. T. Sun, Precisely monitoring and tailoring 2D nanostructures at the atomic scale. APL Mater. 2019, 7, 050901.
[33]
K. Elibol,; T. Susi,; G. Argentero,; M. Reza Ahmadpour Monazam,; T. J. Pennycook,; J. C. Meyer,; J. Kotakoski, Atomic structure of intrinsic and electron-irradiation-induced defects in MoTe2. Chem. Mater. 2018, 30, 1230-1238.
[34]
S. S. Wang,; G. D. Lee,; S. Lee,; E. Yoon,; J. H. Warner, Detailed atomic reconstruction of extended line defects in monolayer MoS2. ACS Nano 2016, 10, 5419-5430.
[35]
H. P. Komsa,; S. Kurasch,; O. Lehtinen,; U. Kaiser,; A. V. Krasheninnikov, From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation. Phys. Rev. B 2013, 88, 035301.
[36]
J. H. Lin,; S. T. Pantelides,; W. Zhou, Vacancy-induced formation and growth of inversion domains in transition-metal dichalcogenide monolayer. ACS Nano 2015, 9, 5189-5197.
[37]
H. Zhu,; Q. X. Wang,; L. X. Cheng,; R. Addou,; J. Kim,; M. J. Kim,; R. M. Wallace, Defects and surface structural stability of MoTe2 under vacuum annealing. ACS Nano 2017, 11, 11005-11014.
[38]
J. Chen,; S. Zhou,; Y. Wen,; G. H. Ryu,; C. Allen,; Y. Lu,; A. I. Kirkland,; J. H. Warner, In situ high temperature atomic level dynamics of large inversion domain formations in monolayer MoS2. Nanoscale 2019, 11, 1901-1913.
[39]
H. Q. Ta,; Q. X. Yang,; S. Y. Liu,; A. Bachmatiuk,; R. G. Mendes,; T. Gemming,; Y. Liu,; L. J. Liu,; K. Tokarska,; R. B. Patel, et al. In situ formation of free-standing single-atom-thick antiferromagnetic chromium membranes. Nano Lett. 2020, 20, 4354-4361.
[40]
E. Sutter,; Y. Huang,; H. P. Komsa,; M. Ghorbani-Asl,; A. V. Krasheninnikov,; P. Sutter, Electron-beam induced transformations of layered tin dichalcogenides. Nano Lett. 2016, 16, 4410-4416.
[41]
J. H. Lin,; S. Zuluaga,; P. Yu,; Z. Liu,; S. T. Pantelides,; K. Suenaga, Novel Pd2Se3 Two-dimensional phase driven by interlayer fusion in layered PdSe2. Phys. Rev. Lett. 2017, 119, 016101.
[42]
X. X. Zhao,; J. D. Dan,; J. Y. Chen,; Z. J. Ding,; W. Zhou,; K. P. Loh,; S. J. Pennycook, Atom-by-atom fabrication of monolayer molybdenum membranes. Adv. Mater. 2018, 30, 1707281.
[43]
R. F. Egerton, Beam-induced motion of Adatoms in the transmission electron microscope. Microsc. Microanal. 2013, 19, 479-486.
[44]
F. B. Romdhane,; O. Cretu,; L. Debbichi,; O. Eriksson,; S. Lebegue,; F. Banhart, Quasi-2D Cu2S crystals on graphene: In-situ growth and ab-initio calculations. Small 2015, 11, 1253-1257.
[45]
Y. T. Shen,; T. Xu,; X. D. Tan,; L. B. He,; K. B. Yin,; N. Wan,; L. T. Sun, In situ repair of 2D chalcogenides under electron beam irradiation. Adv. Mater. 2018, 30, 1705954.
[46]
T. Xu,; X. Xie,; K. B. Yin,; J. Sun,; L. B. He,; L. T. Sun, Controllable atomic-scale sculpting and deposition of carbon nanostructures on graphene. Small 2014, 10, 1724-1728.
[47]
T. Xu,; K. B. Yin,; X. Xie,; L. B. He,; B. J. Wang,; L. T. Sun, Size- dependent evolution of graphene nanopores under thermal excitation. Small 2012, 8, 3422-3426.
[48]
J. Zhao,; Q. M. Deng,; A. Bachmatiuk,; G. Sandeep,; A. Popov,; J. Eckert,; M. H. Rümmeli, Free-standing single-atom-thick iron membranes suspended in graphene pores. Science 2014, 343, 1228-1232.
[49]
H. T. Quang,; A. Bachmatiuk,; A. Dianat,; F. Ortmann,; J. Zhao,; J. H. Warner,; J. Eckert,; G. Cunniberti,; M. H. Rümmeli, In situ observations of free-standing graphene-like mono- and bilayer ZnO membranes. ACS Nano 2015, 9, 11408-11413.
[50]
K. B. Yin,; Y. Y. Zhang,; Y. L. Zhou,; L. T. Sun,; M. F. Chisholm,; S. T. Pantelides,; W. Zhou, Unsupported single-atom-thick copper oxide monolayers. 2D Mater. 2017, 4, 011001.
[51]
Z. Liu,; Y. C. Lin,; C. C. Lu,; C. H. Yeh,; P. W. Chiu,; S. Iijima,; K. Suenaga, In situ observation of step-edge in-plane growth of graphene in a STEM. Nat. Commun. 2014, 5, 4055.
[52]
H. Q. Ta,; L. Zhao,; W. J. Yin,; D. Pohl,; B. Rellinghaus,; T. Gemming,; B. Trzebicka,; J. Palisaitis,; G. Jing,; P. O. Å. Persson, et al. Single Cr atom catalytic growth of graphene. Nano Res. 2018, 11, 2405-2411.
[53]
J. Zhao,; Q. M. Deng,; S. M. Avdoshenko,; L. Fu,; J. Eckert,; M. H. Rümmeli, Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges. Proc. Natl. Acad. Sci. 2014, 111, 15641-15646.
[54]
F. Börrnert,; S. M. Avdoshenko,; A. Bachmatiuk,; I. Ibrahim,; B. Büchner,; G. Cuniberti,; M. H. Rümmeli, Amorphous carbon under 80 kV electron irradiation: A means to make or break graphene. Adv. Mater. 2012, 24, 5630-5635.
[55]
B. C. Bayer,; R. Kaindl,; M. Reza Ahmadpour Monazam,; T. Susi,; J. Kotakoski,; T. Gupta,; D. Eder,; W. Waldhauser,; J. C. Meyer, Atomic-scale in situ observations of crystallization and restructuring processes in two-dimensional MoS2 films. ACS Nano 2018, 12, 8758-8769.
[56]
F. I. Allen,; E. Kim,; N. C. Andresen,; C. P. Grigoropoulos,; A. M. Minor, In situ TEM Raman spectroscopy and laser-based materials modification. Ultramicroscopy 2017, 178, 33-37.
[57]
B. Xiang,; D. J. Hwang,; J. B. In,; S. G. Ryu,; J. H. Yoo,; O. Dubon,; A. M. Minor,; C. P. Grigoropoulos, In situ TEM near-field optical probing of nanoscale silicon crystallization. Nano Lett. 2012, 12, 2524-2529
[58]
F. Ben Romdhane,; T. Björkman,; A. V. Krasheninnikov,; F. Banhart, Solid-state growth of one- and two-dimensional silica structures on metal surfaces. J. Phys. Chem. C 2014, 118, 21001-21005.
[59]
F. B. Romdhane,; T. Bjorkman,; J. A. Rodríguez-Manzo,; O. Cretu,; A. V. Krasheninnikov,; F. Banhart, In situ growth of cellular two- dimensional silicon oxide on metal substrates. ACS Nano 2013, 7, 5175-5180.
[60]
J. A. Rodríguez-Manzo,; C. Pham-Huu,; F. Banhart, Graphene growth by a metal-catalyzed solid-state transformation of amorphous carbon. ACS Nano 2011, 5, 1529-1534.
[61]
L. F. Fei,; S. J. Lei,; W. B. Zhang,; W. Lu,; Z. Y. Lin,; C. H. Lam,; Y. Chai,; Y. Wang, Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes. Nat. Commun. 2016, 7, 12206.
[62]
L. P. Hansen,; E. Johnson,; M. Brorson,; S. Helveg, Growth mechanism for single- and multi-layer MoS2 nanocrystals. J. Phys. Chem. C 2014, 118, 22768-22773.
[63]
X. H. Sang,; X. F. Li,; A. A. Puretzky,; D. B. Geohegan,; K. Xiao,; R. R. Unocic, Atomic insight into thermolysis-driven growth of 2D MoS2. Adv. Funct. Mater. 2019, 29, 1902149.
[64]
N. Kondekar,; M. G. Boebinger,; M. K. Tian,; M. H. Kirmani,; M. T. McDowell, The effect of nickel on MoS2 growth revealed with in situ transmission electron microscopy. ACS Nano 2019, 13, 7117-7126.
[65]
Y. N. Zhang,; Z. Zhang,; Y. F. Cheng,; F. Cheng,; L. F. Wang,; N. S. Liu,; L. Y. Li,; J. Su,; Y. H. Gao, In situ TEM observation of controlled growth of two-dimensional WS2 with vertically aligned layers and high-temperature stability. Nano Energy 2020, 67, 104221.
[66]
K. H. Yu,; W. Zhao,; X. Wu,; J. N. Zhuang,; X. H. Hu,; Q. B. Zhang,; J. Sun,; T. Xu,; Y. Chai,; F. Ding, et al. In situ atomic-scale observation of monolayer graphene growth from SiC. Nano Res. 2018, 11, 2809-2820.
[67]
X. H. Sang,; Y. Xie,; D. E. Yilmaz,; R. Lotfi,; M. Alhabeb,; A. Ostadhossein,; B. Anasori,; W. W. Sun,; X. F. Li,; K. Xiao, et al. In situ atomistic insight into the growth mechanisms of single layer 2D transition metal carbides. Nat. Commun. 2018, 9, 2266.
[68]
J. Y. Huang,; F. Ding,; B. I. Yakobson,; P. Lu,; L. Qi,; J. Li, In situ observation of graphene sublimation and multi-layer edge reconstructions. Proc. Natl. Acad. Sci. 2009, 106, 10103-10108.
[69]
C. W. Huang,; J. Y. Chen,; C. H. Chiu,; C. L. Hsin,; T. Y. Tseng,; W. W. Wu, Observing the evolution of graphene layers at high current density. Nano Res. 2016, 9, 3663-3670.
[70]
B. Westenfelder,; J. C. Meyer,; J. Biskupek,; S. Kurasch,; F. Scholz,; C. E. Krill III,; U. Kaiser, Transformations of carbon adsorbates on graphene substrates under extreme heat. Nano Lett. 2011, 11, 5123-5127.
[71]
A. Barreiro,; F. Börrnert,; S. M. Avdoshenko,; B. Rellinghaus,; G. Cuniberti,; M. H. Rümmeli,; L. M. K. Vandersypen, Understanding the catalyst-free transformation of amorphous carbon into graphene by current-induced annealing. Sci. Rep. 2013, 3, 1115.
[72]
M. S. Fu,; Z. P. Yao,; X. Ma,; H. Dong,; K. Sun,; S. Hwang,; E. Y. Hu,; H. Gan,; Y. Yao,; E. A. Stach, et al. Expanded lithiation of titanium disulfide: Reaction kinetics of multi-step conversion reaction. Nano Energy 2019, 63, 103882.
[73]
K. He,; Z. P. Yao,; S. Hwang,; N. Li,; K. Sun,; H. Gan,; Y. P. Du,; H. Zhang,; C. Wolverton,; D. Su, Kinetically-driven phase transformation during lithiation in copper sulfide nanoflakes. Nano Lett. 2017, 17, 5726-5733.
[74]
M. Kühne,; F. Börrnert,; S. Fecher,; M. Ghorbani-Asl,; J. Biskupek,; D. Samuelis,; A. V. Krasheninnikov,; U. Kaiser,; J. H. Smet, Reversible superdense ordering of lithium between two graphene sheets. Nature 2018, 564, 234-239.
[75]
Q. M. Huang,; L. F. Wang,; Z. Xu,; W. L. Wang,; X. D. Bai, In-situ TEM investigation of MoS2 upon alkali metal intercalation. Sci. China Chem. 2018, 61, 222-227.
[76]
S. Kim,; Z. P. Yao,; J. M. Lim,; M. C. Hersam,; C. Wolverton,; V. P. Dravid,; K. He, Atomic-scale observation of electrochemically reversible phase transformations in SnSe2 single crystals. Adv. Mater. 2018, 30, 1804925.
[77]
C. L. Sun,; K. N. Zhao,; Y. He,; J. M. Zheng,; W. W. Xu,; C. Y. Zhang,; X. Wang,; M. H. Guo,; L. Q. Mai,; C. M. Wang, et al. Interconnected vertically stacked 2D-MoS2 for ultrastable cycling of rechargeable Li-ion battery. ACS Appl. Mater. Interfaces 2019, 11, 20762-20769.
[78]
L. F. Wang,; Z. Xu,; W. L. Wang,; X. D. Bai, Atomic mechanism of dynamic electrochemical lithiation processes of MoS2 nanosheets. J. Am. Chem. Soc. 2014, 136, 6693-6697.
[79]
P. Gao,; L. P. Wang,; Y. Y. Zhang,; Y. Huang,; K. H. Liu, Atomic- scale probing of the dynamics of sodium transport and intercalation- induced phase transformations in MoS2. ACS Nano 2015, 9, 11296-11301.
[80]
P. Gao,; L. P. Wang,; Y. Y. Zhang,; Y. Huang,; L. Liao,; P. Sutter,; K. H. Liu,; D. P. Yu,; E. G. Wang, High-resolution tracking asymmetric lithium insertion and extraction and local structure ordering in SnS2. Nano Lett. 2016, 16, 5582-5588.
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 May 2020
Revised: 30 July 2020
Accepted: 04 August 2020
Published: 05 September 2020
Issue date: June 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11525415, 61974021, 61601116, and 51420105003) and the Natural Science Foundation of Jiangsu Province (No. BK20181284).

Return