Journal Home > Volume 13 , Issue 12

We report a new scheme for fabrication of clean, suspended superconducting weak links from pristine single-walled carbon nanotubes (SWCNT). The SWCNTs were grown using the floating-catalyst chemical vapour deposition (FC-CVD) and directly deposited on top of prefabricated superconducting molybdenum-rhenium (MoRe) electrodes by thermophoresis at nearly ambient conditions. Transparent contacts to SWCNTs were obtained by vacuum-annealing the devices at 900 °C, which enabled proximity-induced supercurrents up to 53 nA. SWCNT weak links fabricated on MoRe/palladium bilayer sustained supercurrents up to 0.4 nA after annealing at relatively low temperature of 220 °C. The fabrication process does neither expose SWCNTs to lithographic chemicals, nor the contact electrodes to the harsh conditions of in situ CVD growth. Our scheme facilitates new experimental possibilities for hybrid superconducting devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Suspended superconducting weak links from aerosol-synthesized single-walled carbon nanotubes

Show Author's information Jukka-Pekka Kaikkonen1( )Abhilash Thanniyil Sebastian1Patrik Laiho3Nan Wei3Marco Will1,2Yongping Liao3Esko I. Kauppinen3Pertti J. Hakonen1,2( )
Low Temperature Laboratory, Department of Applied Physics, School of Science, Aalto University, PO Box 15100, FI-00076 Aalto, Finland
QTF Centre of Excellence, Department of Applied Physics, School of Science, Aalto University, P.O. Box 15100, FI-00076 Aalto, Finland
Department of Applied Physics, School of Science, Aalto University, P.O. Box 11100, FI-00076 Aalto, Finland

Abstract

We report a new scheme for fabrication of clean, suspended superconducting weak links from pristine single-walled carbon nanotubes (SWCNT). The SWCNTs were grown using the floating-catalyst chemical vapour deposition (FC-CVD) and directly deposited on top of prefabricated superconducting molybdenum-rhenium (MoRe) electrodes by thermophoresis at nearly ambient conditions. Transparent contacts to SWCNTs were obtained by vacuum-annealing the devices at 900 °C, which enabled proximity-induced supercurrents up to 53 nA. SWCNT weak links fabricated on MoRe/palladium bilayer sustained supercurrents up to 0.4 nA after annealing at relatively low temperature of 220 °C. The fabrication process does neither expose SWCNTs to lithographic chemicals, nor the contact electrodes to the harsh conditions of in situ CVD growth. Our scheme facilitates new experimental possibilities for hybrid superconducting devices.

Keywords: carbon nanotube, electrical transport, thermophoresis, Josephson junction, floating catalyst chemical vapour deposition

References(54)

[1]
E. A. Laird,; F. Kuemmeth,; G. A. Steele,; K. Grove-Rasmussen,; J. Nygård,; K. Flensberg,; L. P. Kouwenhoven, Quantum transport in carbon nanotubes. Rev. Mod. Phys. 2015, 87, 703-764.
[2]
S. Sapmaz,; P. Jarillo-Herrero,; Y. M. Blanter,; C. Dekker,; H. S. J. Van Der Zant, Tunneling in suspended carbon nanotubes assisted by longitudinal phonons. Phys. Rev. Lett. 2006, 96, 026801.
[3]
G. A. Steele,; A. K. Hüttel,; B. Witkamp,; M. Poot,; H. B. Meerwaldt,; L. P. Kouwenhoven,; H. S. J. Van Der Zant, Strong coupling between single-electron tunneling and nanomechanical motion. Science 2009, 325, 1103-1107.
[4]
R. Leturcq,; C. Stampfer,; K. Inderbitzin,; L. Durrer,; C. Hierold,; E. Mariani,; M. G. Schultz,; F. Von Oppen,; K. Ensslin, Franck-condon blockade in suspended carbon nanotube quantum dots. Nat. Phys. 2009, 5, 327-331.
[5]
A. Benyamini,; A. Hamo,; S. V. Kusminskiy,; F. Von Oppen,; S. Ilani, Real-space tailoring of the electron-phonon coupling in ultraclean nanotube mechanical resonators. Nat. Phys. 2014, 10, 151-156.
[6]
J. Chaste,; A. Eichler,; J. Moser,; G. Ceballos,; R. Rurali,; A. Bachtold, A nanomechanical mass sensor with yoctogram resolution. Nat. Nanotechnol. 2012, 7, 301-304.
[7]
P. Häkkinen,; A. Isacsson,; A. Savin,; J. Sulkko,; P. Hakonen, Charge sensitivity enhancement via mechanical oscillation in suspended carbon nanotube devices. Nano Lett. 2015, 15, 1667-1672.
[8]
J. Moser,; J. Güttinger,; A. Eichler,; M. J. Esplandiu,; D. E. Liu,; M. I. Dykman,; A. Bachtold, Ultrasensitive force detection with a nanotube mechanical resonator. Nat. Nanotechnol. 2013, 8, 493-496.
[9]
M. Ganzhorn,; S. Klyatskaya,; M. Ruben,; W. Wernsdorfer, Carbon nanotube nanoelectromechanical systems as magnetometers for single-molecule magnets. ACS Nano 2013, 7, 6225-6236.
[10]
J. Cao,; Q. Wang,; H. J. Dai, Electron transport in very clean, as-grown suspended carbon nanotubes. Nat. Mater. 2005, 4, 745-749.
[11]
C. C. Wu,; C. H. Liu,; Z. H. Zhong, One-step direct transfer of pristine single-walled carbon nanotubes for functional nanoelectronics. Nano Lett. 2010, 10, 1032-1036.
[12]
J. Waissman,; M. Honig,; S. Pecker,; A. Benyamini,; A. Hamo,; S. Ilani, Realization of pristine and locally tunable one-dimensional electron systems in carbon nanotubes. Nat. Nanotechnol. 2013, 8, 569-574.
[13]
M. Muoth,; C. Hierold, Transfer of carbon nanotubes onto microactuators for hysteresis-free transistors at low thermal budget. In Proceedings of 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), Paris, France, 2012, pp 1352-1355.
[14]
J. Gramich,; A. Baumgartner,; M. Muoth,; C. Hierold,; C. Schönenberger, Fork stamping of pristine carbon nanotubes onto ferromagnetic contacts for spin-valve devices. Phys. Status Solidi B 2015, 252, 2496-2502.
[15]
S. Blien,; P. Steger,; A. Albang,; N. Paradiso,; A. K. Hüttel, Quartz tuning-fork based carbon nanotube transfer into quantum device geometries. Phys. Status Solidi B 2018, 255, 1800118.
[16]
F. Pei,; E. A. Laird,; G. A. Steele,; L. P. Kouwenhoven, Valley-spin blockade and spin resonance in carbon nanotubes. Nat. Nanotechnol. 2012, 7, 630-634.
[17]
C. J. H. Keijzers, Josephson effects in carbon nanotube mechanical resonators and graphene. Ph.D. Dissertation, Delft University of Technology, Delft, 2012.
[18]
B. H. Schneider,; S. Etaki,; H. S. J. Van Der Zant,; G. A. Steele, Coupling carbon nanotube mechanics to a superconducting circuit. Sci. Rep. 2012, 2, 599.
[19]
J. S. Lim,; R. López,; R. Aguado, Josephson current in carbon nanotubes with spin-orbit interaction. Phys. Rev. Lett. 2011, 107, 196801.
[20]
J. P. Cleuziou,; W. Wernsdorfer,; V. Bouchiat,; T. Ondarçuhu,; M. Monthioux, Carbon nanotube superconducting quantum interference device. Nat. Nanotechnol. 2006, 1, 53-59.
[21]
J. P. Cleuziou,; W. Wernsdorfer,; V. Bouchiat,; T. Ondarçuhu,; M. Monthioux, Carbon nanotube based magnetic flux detector for molecular spintronics. Phys. Status Solidi B 2007, 244, 4351-4355.
[22]
V. Bouchiat, Detection of magnetic moments using a nano-SQUID: Limits of resolution and sensitivity in near-field SQUID magnetometry. Supercond. Sci. Technol. 2009, 22, 064002.
[23]
B. Braunecker,; P. Burset,; A. L. Yeyati, Entanglement detection from conductance measurements in carbon nanotube cooper pair splitters. Phys. Rev. Lett. 2013, 111, 136806.
[24]
M. C. Hels,; B. Braunecker,; K. Grove-Rasmussen,; J. Nygård, Noncollinear spin-orbit magnetic fields in a carbon nanotube double quantum dot. Phys. Rev. Lett. 2016, 117, 276802.
[25]
V. Bouchiat,; N. Chtchelkatchev,; D. Feinberg,; G. B. Lesovik,; T. Martin,; J. Torrès, Single-walled carbon nanotube-superconductor entangler: Noise correlations and Einstein-Podolsky-Rosen states. Nanotechnology 2003, 14, 77-85.
[26]
C. Padurariu,; C. J. H. Keijzers,; Y. V. Nazarov, Effect of mechanical resonance on josephson dynamics. Phys. Rev. B 2012, 86, 155448.
[27]
K. E. Khosla,; M. R. Vanner,; N. Ares,; E. A. Laird, Displacemon electromechanics: How to detect quantum interference in a nanomechanical resonator. Phys. Rev. X 2018, 8, 021052.
[28]
L. Lechner,; M. Gaaß,; A. Paila,; M. A. Sillanpää,; C. Strunk,; P. J. Hakonen, Microwave reflection measurement of critical currents in a nanotube josephson transistor with a resistive environment. Nanotechnology 2011, 22, 125203.
[29]
N. Ares,; T. Pei,; A. Mavalankar,; M. Mergenthaler,; J. H. Warner,; G. A. D. Briggs,; E. A. Laird, Resonant optomechanics with a vibrating carbon nanotube and a radio-frequency cavity. Phys. Rev. Lett. 2016, 117, 170801.
[30]
P. Laiho,; K. Mustonen,; Y. Ohno,; S. Maruyama,; E. I. Kauppinen, Dry and direct deposition of aerosol-synthesized single-walled carbon nanotubes by thermophoresis. ACS Appl. Mater. Interfaces 2017, 9, 20738-20747.
[31]
N. Wei,; P. Laiho,; A. T. Khan,; A. Hussain,; A. Lyuleeva,; S. Ahmed,; Q. Zhang,; Y. P. Liao,; Y. Tian,; E. X. Ding, et al. Fast and ultraclean approach for measuring the transport properties of carbon nanotubes. Adv. Funct. Mater. 2020, 30, 1907150.
[32]
K. Mustonen,; P. Laiho,; A. Kaskela,; Z. Zhu,; O. Reynaud,; N. Houbenov,; Y. Tian,; T. Susi,; H. Jiang,; A. G. Nasibulin, et al. Gas phase synthesis of non-bundled, small diameter single-walled carbon nanotubes with near-armchair chiralities. Appl. Phys. Lett. 2015, 107, 013106.
[33]
W. J. Liang,; M. Bockrath,; D. Bozovic,; J. H. Hafner,; M. Tinkham,; H. Park, Fabry-perot interference in a nanotube electron waveguide. Nature 2001, 411, 665-669.
[34]
P. Jarillo-Herrero,; J. A. Van Dam,; L. P. Kouwenhoven, Quantum supercurrent transistors in carbon nanotubes. Nature 2006, 439, 953-956.
[35]
T. Tsuneta,; L. Lechner,; P. J. Hakonen, Gate-controlled superconductivity in a diffusive multiwalled carbon nanotube. Phys. Rev. Lett. 2007, 98, 087002.
[36]
H. Courtois,; M. Meschke,; J. T. Peltonen,; J. P. Pekola, Origin of hysteresis in a proximity Josephson junction. Phys. Rev. Lett. 2008, 101, 067002.
[37]
M. Tinkham, Introduction to Superconductivity; 2th ed. McGraw-Hill: New York, 1996.
[38]
P. Joyez,; P. Lafarge,; A. Filipe,; D. Esteve,; M. H. Devoret, Observation of parity-induced suppression of Josephson tunneling in the superconducting single electron transistor. Phys. Rev. Lett. 1994, 72, 2458.
[39]
L. Roschier,; R. Tarkiainen,; M. Ahlskog,; M. Paalanen,; P. Hakonen, Multiwalled carbon nanotubes as ultrasensitive electrometers. Appl. Phys. Lett. 2001, 78, 3295-3297.
[40]
K. J. G. Götz,; S. Blien,; P. L. Stiller,; O. Vavra,; T. Mayer,; T. Huber,; T. N. G. Meier,; M. Kronseder,; C. Strunk,; A. K. Hüttel, Co-sputtered MoRe thin films for carbon nanotube growth-compatible superconducting coplanar resonators. Nanotechnology 2016, 27, 135202.
[41]
Q. Cao,; S. J. Han,; J. Tersoff,; A. D. Franklin,; Y. Zhu,; Z. Zhang,; G. S. Tulevski,; J. S. Tang,; W. Haensch, End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 2015, 350, 68-72.
[42]
V. Singh,; B. H. Schneider,; S. J. Bosman,; E. P. J. Merkx,; G. A. Steele, Molybdenum-rhenium alloy based high-Q superconducting microwave resonators. Appl. Phys. Lett. 2014, 105, 222601.
[43]
S. Blien,; K. J. G. Götz,; P. L. Stiller,; T. Mayer,; T. Huber,; O. Vavra,; A. K. Hüttel, Towards carbon nanotube growth into superconducting microwave resonator geometries. Phys. Status Solidi B 2016, 253, 2385-2390.
[44]
I. M. Pop,; T. Fournier,; T. Crozes,; F. Lecocq,; I. Matei,; B. Pannetier,; O. Buisson,; W. Guichard, Fabrication of stable and reproducible submicron tunnel junctions. J. Vac. Sci. Technol. B 2012, 30, 010607.
[45]
N. Takano,; T. Kai,; K. Shiiki,; F. Terasaki, Effect of copious vacancies on magnetims of Pd. Solid State Commun. 1996, 97, 153-156.
[46]
S. S. Alexandre,; E. Anglada,; J. M. Soler,; F. Yndurain, Magnetism of two-dimensional defects in Pd: Stacking faults, twin boundaries, and surfaces. Phys. Rev. B 2006, 74, 054405.
[47]
I. Rodríguez,; R. M. Valladares,; D. Hinojosa-Romero,; A. Valladares,; A. A. Valladares, Emergence of magnetism in bulk amorphous palladium. Phys. Rev. B 2019, 100, 024422.
[48]
V. L. Moruzzi,; P. M. Marcus, Magnetism in fcc rhodium and palladium. Phys. Rev. B 1989, 39, 471-474.
[49]
H. Chen,; N. E. Brener,; J. Callaway, Electronic structure, optical and magnetic properties of fcc palladium. Phys. Rev. B 1989, 40 (3), 1443-1449.
[50]
B. Sampedro,; P. Crespo,; A. Hernando,; R. Litrán,; J. C. S. López,; C. L. Cartes,; A. Fernandez,; J. Ramírez,; J. G. Calbet,; M. Vallet, Ferromagnetism in fcc twinned 2.4 nm size Pd nanoparticles. Phys. Rev. Lett. 2003, 91, 237203.
[51]
T. Shinohara,; T. Sato,; T. Taniyama, Surface ferromagnetism of Pd fine particles. Phys. Rev. Lett. 2003, 91, 197201.
[52]
A. Delin,; E. Tosatti,; R. Weht, Magnetism in atomic-size palladium contacts and nanowires. Phys. Rev. Lett. 2004, 92, 057201.
[53]
S. C. Hong,; J. I. Lee,; R. Q. Wu, Ferromagnetism in Pd thin films induced by quantum well states. Phys. Rev. B 2007, 75, 172402.
[54]
J. P. Cleuziou,; W. Wernsdorfer,; S. Andergassen,; S. Florens,; V. Bouchiat,; T Ondarçuhu,; M. Monthioux, Gate-tuned high frequency response of carbon nanotube Josephson junction. Phys. Rev. Lett. 2007, 99, 117001.
File
12274_2020_3032_MOESM1_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 16 January 2020
Revised: 04 August 2020
Accepted: 04 August 2020
Published: 03 September 2020
Issue date: December 2020

Copyright

© The Author(s) 2020

Acknowledgements

The authors thank Unto Suominen from VTT Technical Research Centre of Finland for help with the MoRe sputtering and Pasi Häkkinen for assistance with the fabrication at the initial stage of this project. This work was supported by the Academy of Finland projects 314448 (BOLOSE) and 312295 (CoE, Quantum Technology Finland) as well as by ERC (grant no. 670743). The research also received partial funding from the European Union Seventh Framework Program FP7 Nanosciences, Nanotechnologies, Materials and new Production Technologies (FP7/2007-2013) under Grant Agreement No. 604472 (IRENA project) and the Aalto Energy Efficiency (AEF) Research Program through the MOPPI project. In addition, the research was partially supported by the Academy of Finland (Luonnontieteiden ja Tekniikan Tutkimuksen Toimikunta) via projects 286546 (DEMEC) and 292600 (SUPER), as well as by TEKES Finland via projects 3303/31/2015 (CNT-PV) and 1882/31/ 2016 (FEDOC). This research project utilized the Aalto University OtaNano/ NanoFab and Aalto-NMC facilities, and Low Temperature Laboratory infrastructure, which is part of European Microkelvin Platform. J.-P. K. is grateful for the financial support from Vilho, Yrjö and Kalle Väisälä Foundation of the Finnish Academy of Science and Letters.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return