Journal Home > Volume 13 , Issue 12

Plasmonic nanostructures have been widely used for photochemical conversions due to their unique and easy-tuning optical properties in visible and near-infrared range. Compared with the plasmon-generated hot electrons, the hot holes usually have a shorter lifetime, which makes them more difficult to drive redox reactions. This review focuses on the photochemistry driven by the plasmon-generated hot holes. First, we discuss the generation and energy distribution of the plasmon-generated hot carriers, especially hot holes. Then, the dynamics of the hot holes are discussed at the interface between plasmonic metal and semiconductor or adsorbed molecules. Afterwards, the utilization of these hot holes in redox reactions is reviewed on the plasmon-semiconductor heterostructures as well as on the surface of the molecule-adsorbed plasmonic metals. Finally, the remaining challenges and future perspectives in this field are presented. This review will be helpful for further improving the efficiency of the photochemical reactions involving the plasmon-generated hot holes and expanding the applications of these hot holes in varieties of chemical reactions, especially the ones with high conversion rate and selectivity.


menu
Abstract
Full text
Outline
About this article

Plasmon-generated hot holes for chemical reactions

Show Author's information Chengyu ZhangFucan JiaZhuoyao LiXiao HuangGang Lu( )
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China

Abstract

Plasmonic nanostructures have been widely used for photochemical conversions due to their unique and easy-tuning optical properties in visible and near-infrared range. Compared with the plasmon-generated hot electrons, the hot holes usually have a shorter lifetime, which makes them more difficult to drive redox reactions. This review focuses on the photochemistry driven by the plasmon-generated hot holes. First, we discuss the generation and energy distribution of the plasmon-generated hot carriers, especially hot holes. Then, the dynamics of the hot holes are discussed at the interface between plasmonic metal and semiconductor or adsorbed molecules. Afterwards, the utilization of these hot holes in redox reactions is reviewed on the plasmon-semiconductor heterostructures as well as on the surface of the molecule-adsorbed plasmonic metals. Finally, the remaining challenges and future perspectives in this field are presented. This review will be helpful for further improving the efficiency of the photochemical reactions involving the plasmon-generated hot holes and expanding the applications of these hot holes in varieties of chemical reactions, especially the ones with high conversion rate and selectivity.

Keywords: photocatalysis, photochemistry, surface plasmon, hot hole

References(137)

[1]
M. R. Hoffmann,; S. T. Martin,; W. Choi,; D. W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69-96.
[2]
J. M. Herrmann, Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 1999, 53, 115-129.
[3]
H. M. Chen,; C. K. Chen,; R. S. Liu,; C. C. Wu,; W. S. Chang,; K. H. Chen,; T. S. Chan,; J. F. Lee,; D. P. Tsai, A new approach to solar hydrogen production: A ZnO-ZnS solid solution nanowire array photoanode. Adv. Energy Mater. 2011, 1, 742-747.
[4]
H. M. Chen,; C. K. Chen,; C. C. Lin,; R. S. Liu,; H. Yang,; W. S. Chang,; K. H. Chen,; T. S. Chan,; J. F. Lee,; D. P. Tsai, Multi-bandgap-sensitized ZnO nanorod photoelectrode arrays for water splitting: An X-ray absorption spectroscopy approach for the electronic evolution under solar illumination. J. Phys. Chem. C 2011, 115, 21971-21980.
[5]
Y. H. Su,; N. J. W. Straathof,; V. Hessel,; T. Noël, Photochemical transformations accelerated in continuous-flow reactors: Basic concepts and applications. Chem.-Eur. J. 2014, 20, 10562-10589.
[6]
A. Fujishima,; K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.
[7]
X. T. Zhai,; Z. Y. Li,; Z. C. Lu,; G. L. Wang,; P. Li,; Y. Q. Gao,; X. Huang,; W. Huang,; H. Uji-i,; G. Lu, Synthesis of 42-faceted bismuth vanadate microcrystals for enhanced photocatalytic activity. J. Colloid Interface Sci. 2019, 542, 207-212.
[8]
R. H. Yi,; Y. L. Wang,; X. Zhou,; Z. Y. Li,; C. Y. Zhang,; C. Y. He,; H. Li,; Y. Q. Gao,; X. Huang,; G. Lu, Crack formation on crystalline bismuth oxychloride thin square sheets by using a wet-chemical method. ChemNanoMat 2020, 6, 759-764.
[9]
N. L. Rosi,; C. A. Mirkin, Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, 1547-1562.
[10]
B. M. Reinhard,; S. Sheikholeslami,; A. Mastroianni,; A. P. Alivisatos,; J. Liphardt, Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single ecorv restriction enzymes. Proc. Natl. Acad. Sci. USA 2007, 104, 2667-2672.
[11]
C. Sönnichsen,; B. M. Reinhard,; J. Liphardt,; A. P. Alivisatos, A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol. 2005, 23, 741-745.
[12]
A. J. Haes,; R. P. Van Duyne, A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 2002, 124, 10596-10604.
[13]
R. Elghanian,; J. J. Storhoff,; R. C. Mucic,; R. L. Letsinger,; C. A. Mirkin, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277, 1078-1081.
[14]
Z. W. Seh,; S. H. Liu,; M. Low,; S. Y. Zhang,; Z. L. Liu,; A. Mlayah,; M. Y. Han, Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv. Mater. 2012, 24, 2310-2314.
[15]
I. Thomann,; B. A. Pinaud,; Z. B. Chen,; B. M. Clemens,; T. F. Jaramillo,; M. L. Brongersma, Plasmon enhanced solar-to-fuel energy conversion. Nano Lett. 2011, 11, 3440-3446.
[16]
K. Awazu,; M. Fujimaki,; C. Rockstuhl,; J. Tominaga,; H. Murakami,; Y. Ohki,; N. Yoshida,; T. Watanabe, A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc. 2008, 130, 1676-1680.
[17]
S. Linic,; U. Aslam,; C. Boerigter,; M. Morabito, Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14, 567-576.
[18]
K. Ueno,; H. Misawa, Surface plasmon-enhanced photochemical reactions. J. Photochem. Photobiol. C Photochem. Rev. 2013, 15, 31-52.
[19]
S. A. Maier,; H. A. Atwater, Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 2005, 98, 011101.
[20]
S. K. Cushing,; J. T. Li,; F. K. Meng,; T. R. Senty,; S. Suri,; M. J. Zhi,; M. Li,; A. D. Bristow,; N. Q. Wu, Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 2012, 134, 15033-15041.
[21]
M. G. Lee,; C. W. Moon,; H. Park,; W. Sohn,; S. B. Kang,; S. Lee,; K. J. Choi,; H. W. Jang, Dominance of plasmonic resonant energy transfer over direct electron transfer in substantially enhanced water oxidation activity of BiVO4 by shape-controlled Au nanoparticles. Small 2017, 13, 1701644.
[22]
M. Fedoruk,; M. Meixner,; S. Carretero-Palacios,; T. Lohmüller,; J. Feldmann, Nanolithography by plasmonic heating and optical manipulation of gold nanoparticles. ACS Nano 2013, 7, 7648-7653.
[23]
S. Chaunchaiyakul,; A. Setiadi,; P. Krukowski,; F. C. I. Catalan,; M. Akai-Kasaya,; A. Saito,; N. Hayazawa,; Y. Kim,; H. Osuga,; Y. Kuwahara, Nanoscale dehydrogenation observed by tip-enhanced Raman spectroscopy. J. Phys. Chem. C 2017, 121, 18162-18168.
[24]
D. N. Denzler,; C. Frischkorn,; C. Hess,; M. Wolf,; G. Ertl, Electronic excitation and dynamic promotion of a surface reaction. Phys. Rev. Lett. 2003, 91, 226102.
[25]
R. Sundararaman,; P. Narang,; A. S. Jermyn,; W. A. Goddard III,; H. A. Atwater, Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 2014, 5, 5788.
[26]
G. Baffou,; I. Bordacchini,; A. Baldi,; R. Quidant, Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics. Light Sci. Appl. 2020, 9, 108.
[27]
Y. Y. Dong,; Y. L. Su,; L. L. Du,; R. F. Wang,; L. Zhang,; D. B. Zhao,; W. Xie, Plasmon-enhanced deuteration under visible-light irradiation. ACS Nano 2019, 13, 10754-10760.
[28]
C. Zhan,; Z. Y. Wang,; X. G. Zhang,; X. J. Chen,; Y. F. Huang,; S. Hu,; J. F. Li,; D. Y. Wu,; M. Moskovits,; Z. Q. Tian, Interfacial construction of plasmonic nanostructures for the utilization of the plasmon-excited electrons and holes. J. Am. Chem. Soc. 2019, 141, 8053-8057.
[29]
W. Li,; J. J. Miao,; T. H. Peng,; H. Lv,; J. G. Wang,; K. Li,; Y. Zhu,; D. Li, Single-molecular catalysis identifying activation energy of the intermediate product and rate-limiting step in plasmonic photocatalysis. Nano Lett. 2020, 20, 2507-2513.
[30]
Y. M. Zhai,; J. S. DuChene,; Y. C. Wang,; J. J. Qiu,; A. C. Johnston-Peck,; B. You,; W. X. Guo,; B. DiCiaccio,; K. Qian,; E. W. Zhao, et al. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis. Nat. Mater. 2016, 15, 889-895.
[31]
J. L. White,; M. F. Baruch,; J. E. Pander III,; Y. Hu,; I. C. Fortmeyer,; J. E. Park,; T. Zhang,; K. Liao,; J. Gu,; Y. Yan, et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 12888-12935.
[32]
W. B. Hou,; W. H. Hung,; P. Pavaskar,; A. Goeppert,; M. Aykol,; S. B. Cronin, Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions. ACS Catal. 2011, 1, 929-936.
[33]
W. G. Tu,; Y. Zhou,; H. J. Li,; P. Li,; Z. G. Zou, Au@TiO2 yolk-shell hollow spheres for plasmon-induced photocatalytic reduction of CO2 to solar fuel via a local electromagnetic field. Nanoscale 2015, 7, 14232-14236.
[34]
H. Robatjazi,; H. Q. Zhao,; D. F. Swearer,; N. J. Hogan,; L. N. Zhou,; A. Alabastri,; M. J. McClain,; P. Nordlander,; N. J. Halas, Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles. Nat. Commun. 2017, 8, 27.
[35]
B. H. Wu,; D. Y. Liu,; S. Mubeen,; T. T. Chuong,; M. Moskovits,; G. D. Stucky, Anisotropic growth of TiO2 onto gold nanorods for plasmon-enhanced hydrogen production from water reduction. J. Am. Chem. Soc. 2016, 138, 1114-1117.
[36]
S. C. Warren,; E. Thimsen, Plasmonic solar water splitting. Energy Environ. Sci. 2012, 5, 5133-5146.
[37]
P. Zhang,; T. Wang,; J. L. Gong, Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv. Mater. 2015, 27, 5328-5342.
[38]
K. Ueno,; T. Oshikiri,; H. Misawa, Plasmon-induced water splitting using metallic-nanoparticle-loaded photocatalysts and photoelectrodes. ChemPhysChem 2016, 17, 199-215.
[39]
Y. Nishijima,; K. Ueno,; Y. Kotake,; K. Murakoshi,; H. Inoue,; H. Misawa, Near-infrared plasmon-assisted water oxidation. J. Phys. Chem. Lett. 2012, 3, 1248-1252.
[40]
Y. B. Huang,; J. Liu,; D. W. Cao,; Z. M. Liu,; K. K. Ren,; K. Liu,; A. W. Tang,; Z. J. Wang,; L. Li,; S. C. Qu, et al. Separation of hot electrons and holes in Au/LaFeO3 to boost the photocatalytic activities both for water reduction and oxidation. Int. J. Hydrogen Energy 2019, 44, 13242-13252.
[41]
K. Saito,; I. Tanabe,; T. Tatsuma, Site-selective plasmonic etching of silver nanocubes. J. Phys. Chem. Lett. 2016, 7, 4363-4368.
[42]
V. A. Khanadeev,; N. G. Khlebtsov,; A. M. Burov,; B. N. Khlebtsov, Tuning of plasmon resonance of gold nanorods by controlled etching. Colloid J. 2015, 77, 652-660.
[43]
A. M. Brown,; R. Sundararaman,; P. Narang,; W. A. Goddard III,; H. A. Atwater, Nonradiative plasmon decay and hot carrier dynamics: Effects of phonons, surfaces, and geometry. ACS Nano 2016, 10, 957-966.
[44]
A. O. Govorov,; H. Zhang,; Y. K. Gun'ko, Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules. J. Phys. Chem. C 2013, 117, 16616-16631.
[45]
W. Hou,; S. B. Cronin, A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 2013, 23, 1612-1619.
[46]
E. Kazuma,; Y. Kim, Mechanistic studies of plasmon chemistry on metal catalysts. Angew. Chem., Int. Ed. 2019, 58, 4800-4808.
[47]
N. Zhang,; C. Han,; X. Z. Fu,; Y. J. Xu, Function-oriented engineering of metal-based nanohybrids for photoredox catalysis: Exerting plasmonic effect and beyond. Chem 2018, 4, 1832-1861.
[48]
H. H. Shin,; J. J. Koo,; K. S. Lee,; Z. H. Kim, Chemical reactions driven by plasmon-induced hot carriers. Appl. Mater. Today 2019, 16, 112-119.
[49]
X. C. Ma,; Y. Dai,; L. Yu,; B. B. Huang, Energy transfer in plasmonic photocatalytic composites. Light Sci. Appl. 2016, 5, e16017.
[50]
Y. C. Zhang,; S. He,; W. X. Guo,; Y. Hu,; J. W. Huang,; J. R. Mulcahy,; W. D. Wei, Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 2018, 118, 2927-2954.
[51]
T. Tatsuma,; H. Nishi, Plasmonic hole ejection involved in plasmon-induced charge separation. Nanoscale Horiz. 2020, 5, 597-606.
[52]
X. G. Li,; D. Xiao,; Z. Y. Zhang, Landau damping of quantum plasmons in metal nanostructures. New J. Phys. 2013, 15, 023011.
[53]
M. L. Brongersma,; N. J. Halas,; P. Nordlander, Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25-34.
[54]
S. Link,; M. A. El-Sayed, Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B 1999, 103, 4212-4217.
[55]
J. J. Mock,; M. Barbic,; D. R. Smith,; D. A. Schultz,; S. Schultz, Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 2002, 116, 6755.
[56]
Y. Ekinci,; H. H. Solak,; J. F. Löffler, Plasmon resonances of aluminum nanoparticles and nanorods. J. Appl. Phys. 2008, 104, 083107.
[57]
K. L. Kelly,; E. Coronado,; L. L. Zhao,; G. C. Schatz, The optical properties of metal nanoparticles:  The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668-677.
[58]
G. Lu,; G. L. Wang,; H. Li, Effect of nanostructured silicon on surface enhanced Raman scattering. RSC Adv. 2018, 8, 6629-6633.
[59]
A. Manjavacas,; J. G. Liu,; V. Kulkarni,; P. Nordlander, Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 2014, 8, 7630-7638.
[60]
N. A. Dhas,; C. P. Raj,; A. Gedanken, Synthesis, characterization, and properties of metallic copper nanoparticles. Chem. Mater. 1998, 10, 1446-1452.
[61]
M. Bernardi,; J. Mustafa,; J. B. Neaton,; S. G. Louie, Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nat. Commun. 2015, 6, 7044.
[62]
R. Sundararaman,; P. Narang,; A. S. Jermyn,; W. A. Goddard III,; H. A. Atwater, Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 2014, 5, 5788.
[63]
Z. L. Zhang,; C. Y. Zhang,; H. R. Zheng,; H. X. Xu, Plasmon-driven catalysis on molecules and nanomaterials. Acc. Chem. Res. 2019, 52, 2506-2515.
[64]
M. J. Kale,; T. Avanesian,; P. Christopher, Direct photocatalysis by plasmonic nanostructures. ACS Catal. 2014, 4, 116-128.
[65]
C. Boerigter,; R. Campana,; M. Morabito,; S. Linic, Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. Nat. Commun. 2016, 7, 10545.
[66]
J. S. DuChene,; B. C. Sweeny,; A. C. Johnston-Peck,; D. Su,; E. A. Stach,; W. D. Wei, Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. Angew. Chem., Int. Ed. 2014, 53, 7887-7891.
[67]
S. F. Hung,; F. X. Xiao,; Y. Y. Hsu,; N. T. Suen,; H. B. Yang,; H. M. Chen,; B. Liu, Iridium oxide-assisted plasmon-induced hot carriers: Improvement on kinetics and thermodynamics of hot carriers. Adv. Energy Mater. 2016, 6, 1501339.
[68]
Z. Zhang,; J. T. Yates, Jr. Band bending in semiconductors: Chemical and physical consequences at surfaces and interfaces. Chem. Rev. 2012, 112, 5520-5551.
[69]
J. Sá,; G. Tagliabue,; P. Friedli,; J. Szlachetko,; M. H. Rittmann-Frank,; F. G. Santomauro,; C. J. Milne,; H. Sigg, Direct observation of charge separation on Au localized surface plasmons. Energy Environ. Sci. 2013, 6, 3584-3588.
[70]
Z. C. Lian,; M. Sakamoto,; H. Matsunaga,; J. J. M. Vequizo,; A. Yamakata,; M. Haruta,; H. Kurata,; W. Ota,; T. Sato,; T. Teranishi, Near infrared light induced plasmonic hot hole transfer at a nano-heterointerface. Nat. Commun. 2018, 9, 2314.
[71]
O. Zandi,; A. Agrawal,; A. B. Shearer,; L. C. Reimnitz,; C. J. Dahlman,; C. M. Staller,; D. J. Milliron, Impacts of surface depletion on the plasmonic properties of doped semiconductor nanocrystals. Nat. Mater. 2018, 17, 710-717.
[72]
I. Kriegel,; F. Scotognella,; L. Manna, Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives. Phys. Rep. 2017, 674, 1-52.
[73]
C. Boerigter,; U. Aslam,; S. Linic, Mechanism of charge transfer from plasmonic nanostructures to chemically attached materials. ACS Nano 2016, 10, 6108-6115.
[74]
A. Furube,; L. C. Du,; K. Hara,; R. Katoh,; M. Tachiya, Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc. 2007, 129, 14852-14853.
[75]
Y. Ning,; L. A. Fielding,; J. Nutter,; A. N. Kulak,; F. C. Meldrum,; S. P. Armes, Spatially controlled occlusion of polymer-stabilized gold nanoparticles within ZnO. Angew. Chem., Int. Ed. 2019, 58, 4302-4307.
[76]
R. B. Wei,; P. Y. Kuang,; H. Cheng,; Y. B. Chen,; J. Y. Long,; M. Y. Zhang,; Z. Q. Liu, Plasmon-enhanced photoelectrochemical water splitting on gold nanoparticle decorated ZnO/CdS nanotube arrays. ACS Sustainable Chem. Eng. 2017, 5, 4249-4257.
[77]
Z. S. Zhang,; L. H. Liu,; W. H. Fang,; R. Long,; M. V. Tokina,; O. V. Prezhdo, Plasmon-mediated electron injection from Au nanorods into MoS2: Traditional versus photoexcitation mechanism. Chem 2018, 4, 1112-1127.
[78]
C. Chai,; J. X. Liu,; Y. W. Wang,; X. C. Zhang,; D. H. Duan,; C. M. Fan,; Y. F. Wang, Enhancement in photocatalytic performance of Ag-AgCl decorated with h-WO3 and mechanism insight. Appl. Phys. A 2019, 125, 96.
[79]
L. Wang,; D. D. Lv,; Z. J. Yue,; H. Zhu,; L. Wang,; D. F. Wang,; X. Xu,; W. C. Hao,; S. X. Dou,; Y. Du, Promoting photoreduction properties via synergetic utilization between plasmonic effect and highly active facet of BiOCl. Nano Energy 2019, 57, 398-404.
[80]
Z. C. Lu,; X. T. Zhai,; R. H. Yi,; Z. Y. Li,; R. X. Zhang,; Q. Wei,; G. H. Xing,; G. Lu,; W. Huang, Photoluminescence emission during photoreduction of graphene oxide sheets as investigated with single-molecule microscopy. J. Phys. Chem. C 2020, 124, 7914-7921.
[81]
L. Su,; G. Lu,; B. Kenens,; S. Rocha,; E. Fron,; H. F. Yuan,; C. Chen,; P. Van Dorpe,; M. B. J. Roeffaers,; H. Mizuno, et al. Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy. Nat. Commun. 2015, 6, 6287.
[82]
T. Chen,; B. Dong,; K. C. Chen,; F. Zhao,; X. D. Cheng,; C. B. Ma,; S. Lee,; P. Zhang,; S. H. Kang,; J. W. Ha, et al. Optical super-resolution imaging of surface reactions. Chem. Rev. 2017, 117, 7510-7537.
[83]
J. W. Ha,; T. P. A. Ruberu,; R. Han,; B. Dong,; J. Vela,; N. Fang, Super-resolution mapping of photogenerated electron and hole separation in single metal-semiconductor nanocatalysts. J. Am. Chem. Soc. 2014, 136, 1398-1408.
[84]
H. Nishi,; M. Sakamoto,; T. Tatsuma, Local trapping of energetic holes at gold nanoparticles on TiO2. Chem. Commun. 2018, 54, 11741-11744.
[85]
S. Y. Wang,; Y. Y. Gao,; S. Miao,; T. F. Liu,; L. C. Mu,; R. G. Li,; F. T. Fan,; C. Li, Positioning the water oxidation reaction sites in plasmonic photocatalysts. J. Am. Chem. Soc. 2017, 139, 11771-11778.
[86]
S. Bai,; X. Y. Li,; Q. Kong,; R. Long,; C. M. Wang,; J. Jiang,; Y. J. Xiong, Toward enhanced photocatalytic oxygen evolution: Synergetic utilization of plasmonic effect and schottky junction via interfacing facet selection. Adv. Mater. 2015, 27, 3444-3452.
[87]
A. Naldoni,; T. Montini,; F. Malara,; M. M. Mróz,; A. Beltram,; T. Virgili,; C. L. Boldrini,; M. Marelli,; I. Romero-Ocaña,; J. J. Delgado, et al. Hot electron collection on brookite nanorods lateral facets for plasmon-enhanced water oxidation. ACS Catal. 2017, 7, 1270-1278.
[88]
L. Q. Liu,; P. Li,; B. Adisak,; S. X. Ouyang,; N. Umezawa,; J. H. Ye,; R. Kodiyath,; T. Tanabe,; G. V. Ramesh,; S. Ueda, et al. Gold photosensitized SrTiO3 for visible-light water oxidation induced by Au interband transitions. J. Mater. Chem. A 2014, 2, 9875-9882.
[89]
M. M. Wang,; P. Wang,; C. P. Li,; H. J. Li,; Y. D. Jin, Boosting electrocatalytic oxygen evolution performance of ultrathin Co/Ni-MOF nanosheets via plasmon-induced hot carriers. ACS Appl. Mater. Interfaces 2018, 10, 37095-37102.
[90]
C. G. Silva,; R. Juarez,; T. Marino,; R. Molinari,; H. Garcia, Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J. Am. Chem. Soc. 2011, 133, 595-602.
[91]
L. Wang,; H. Y. Hu,; N. T. Nguyen,; Y. J. Zhang,; P. Schmuki,; Y. P. Bi, Plasmon-induced hole-depletion layer on hematite nanoflake photoanodes for highly efficient solar water splitting. Nano Energy 2017, 35, 171-178.
[92]
J. Kim,; H. Y. Son,; Y. S. Nam, Multilayered plasmonic heterostructure of gold and titania nanoparticles for solar fuel production. Sci. Rep. 2018, 8, 10464.
[93]
Y. C. Zhang,; Y. L. Zhang,; W. X. Guo,; A. C. Johnston-Peck,; Y. Hu,; X. N. Song,; W. D. Wei, Modulating multi-hole reaction pathways for photoelectrochemical water oxidation on gold nanocatalysts. Energy Environ. Sci. 2020, 13, 1501-1508.
[94]
D. P. DePuccio,; C. C. Landry, Photocatalytic oxidation of methanol using porous Au/WO3 and visible light. Catal. Sci. Technol. 2016, 6, 7512-7520.
[95]
Y. J. Xiong,; L. L. Zou,; Q. G. Pan,; Y. Zhou,; Z. Q. Zou,; H. Yang, Photo-electro synergistic catalysis: Can Pd be active for methanol electrooxidation in acidic medium? Electrochim. Acta 2018, 278, 210-218.
[96]
H. Yang,; L. Q. He,; Z. H. Wang,; X. H. Lu,; G. R. Li,; P. P. Fang,; Y. X. Tong, Enhanced photocatalytic activity from mixture-fuel cells by ZnO template-assisted Pd-Pt hollow nanorods. ChemistrySelect 2017, 2, 9842-9846.
[97]
P. Zhang,; P. Y. Wu,; S. Y. Bao,; Z. Wang,; B. Z. Tian,; J. L. Zhang, Synthesis of sandwich-structured AgBr@Ag@TiO2 composite photocatalyst and study of its photocatalytic performance for the oxidation of benzyl alcohols to benzaldehydes. Chem. Eng. J. 2016, 306, 1151-1161.
[98]
H. Li,; F. Qin,; Z. P. Yang,; X. M. Cui,; J. F. Wang,; L. Z. Zhang, New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies. J. Am. Chem. Soc. 2017, 139, 3513-3521.
[99]
J. Boltersdorf,; G. T. Forcherio,; J. P. McClure,; D. R. Baker,; A. C. Leff,; C. Lundgren, Visible light-promoted plasmon resonance to induce “Hot” hole transfer and photothermal conversion for catalytic oxidation. J. Phys. Chem. C 2018, 122, 28934-28948.
[100]
H. Q. Pan,; A. Steiniger,; M. D. Heagy,; S. Chowdhury, Efficient production of formic acid by simultaneous photoreduction of bicarbonate and oxidation of glycerol on gold-TiO2 composite under solar light. J. CO2 Util. 2017, 22, 117-123.
[101]
Y. R. Sun,; C. Y. Du,; G. K. Han,; Y. J. Wang,; Y. Z. Gao,; G. P. Yin,Pt/g-C3N4 nanosheet for visible light-induced enhancement of activity for formic acid electro-oxidation. J. Electrochem. 2018, 24, 262-269.
[102]
A. Tanaka,; K. Hashimoto,; B. Ohtani,; H. Kominami, Non-linear photocatalytic reaction induced by visible-light surface-plasmon resonance absorption of gold nanoparticles loaded on titania particles. Chem. Commun. 2013, 49, 3419-3421.
[103]
A. Tanaka,; A. Ogino,; M. Iwaki,; K. Hashimoto,; A. Ohnuma,; F. Amano,; B. Ohtani,; H. Kominami, Gold-titanium(IV) oxide plasmonic photocatalysts prepared by a colloid-photodeposition method: Correlation between physical properties and photocatalytic activities. Langmuir 2012, 28, 13105-13111.
[104]
Y. Y. Yin,; Y. Yang,; L. Z. Zhang,; Y. S. Li,; Z. Y. Li,; W. W. Lei,; Y. F. Ma,; Z. R. Huang, Facile synthesis of Au/Pd nano-dogbones and their plasmon-enhanced visible-to-NIR light photocatalytic performance. RSC Adv. 2017, 7, 36923-36928.
[105]
H. J. Yu,; C. J. Miller,; A. Ikeda-Ohno,; T. D. Waite, Photodegradation of contaminants using Ag@AgCl/rGo assemblages: Possibilities and limitations. Catal. Today 2014, 224, 122-131.
[106]
Q. Xiao,; T. U. Connell,; J. J. Cadusch,; A. Roberts,; A. S. R. Chesman,; D. E. Gómez, Hot-carrier organic synthesis via the near-perfect absorption of light. ACS Catal. 2018, 8, 10331-10339.
[107]
H. T. Chen, Interference theory of metamaterial perfect absorbers. Opt. Express 2012, 20, 7165-7172.
[108]
C. Ng,; J. J. Cadusch,; S. Dligatch,; A. Roberts,; T. J. Davis,; P. Mulvaney,; D. E. Gómez, Hot carrier extraction with plasmonic broadband absorbers. ACS Nano 2016, 10, 4704-4711.
[109]
L. C. Zhang,; C. C. Jia,; S. R. He,; Y. T. Zhu,; Y. N. Wang,; Z. H. Zhao,; X. C. Gao,; X. M. Zhang,; Y. H. Sang,; D. J. Zhang, et al. Hot hole enhanced synergistic catalytic oxidation on Pt-Cu alloy clusters. Adv. Sci. 2017, 4, 1600448.
[110]
J. S. DuChene,; G. Tagliabue,; A. J. Welch,; W. H. Cheng,; H. A. Atwater, Hot hole collection and photoelectrochemical CO2 reduction with plasmonic Au/P-GaN photocathodes. Nano Lett. 2018, 18, 2545-2550.
[111]
G. L. Wang,; R. H. Yi,; X. T. Zhai,; R. J. Bian,; Y. Q. Gao,; D. Y. Cai,; J. Q. Liu,; X. Huang,; G. Lu, et al. A flexible SERS-active film for studying the effect of non-metallic nanostructures on Raman enhancement. Nanoscale 2018, 10, 16895-16901.
[112]
G. Lu,; H. Li,; S. X. Wu,; P. Chen,; H. Zhang, High-density metallic nanogaps fabricated on solid substrates used for surface enhanced Raman scattering. Nanoscale 2012, 4, 860-863.
[113]
Z. Y. Li,; X. Huang,; G. Lu, Recent developments of flexible and transparent sers substrates. J. Mater. Chem. C 2020, 8, 3956-3969.
[114]
M. Osawa,; N. Matsuda,; K. Yoshii,; I. Uchida, Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-teller contribution. J. Phys. Chem. 1994, 98, 12702-12707.
[115]
D. Y. Wu,; X. M. Liu,; Y. F. Huang,; B. Ren,; X. Xu,; Z. Q. Tian, Surface catalytic coupling reaction of p-mercaptoaniline linking to silver nanostructures responsible for abnormal sers enhancement: A DFT study. J. Phys. Chem. C 2009, 113, 18212-18222.
[116]
Y. R. Fang,; Y. Z. Li,; H. X. Xu,; M. T. Sun, Ascertaining p,p'-dimercaptoazobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles. Langmuir 2010, 26, 7737-7746.
[117]
Y. F. Huang,; H. P. Zhu,; G. K. Liu,; D. Y. Wu,; B. Ren,; Z. Q. Tian, When the signal is not from the original molecule to be detected: Chemical transformation of para-aminothiophenol on Ag during the SERS measurement. J. Am. Chem. Soc. 2010, 132, 9244-9246.
[118]
M. T. Sun,; Y. X. Hou,; Z. P. Li,; L. W. Liu,; H. X. Xu, Remote excitation polarization-dependent surface photochemical reaction by plasmonic waveguide. Plasmonics 2011, 6, 681-687.
[119]
V. Canpean,; M. Iosin,; S. Astilean, Disentangling sers signals from two molecular species: A new evidence for the production of p,p'-dimercaptoazobenzene by catalytic coupling reaction of p-aminothiophenol on metallic nanostructures. Chem. Phys. Lett. 2010, 500, 277-282.
[120]
Y. Z. Huang,; Y. R. Fang,; Z. L. Yang,; M. T. Sun, Can p, p'-dimercaptoazobisbenzene be produced from p-aminothiophenol by surface photochemistry reaction in the junctions of a Ag nanoparticle-molecule-Ag (or Au) film? J. Phys. Chem. C 2010, 114, 18263-18269.
[121]
B. Dong,; Y. R. Fang,; X. W. Chen,; H. X. Xu,; M. T. Sun, Substrate-, wavelength-, and time-dependent plasmon-assisted surface catalysis reaction of 4-nitrobenzenethiol dimerizing to p,p'-dimercaptoazobenzene on Au, Ag, and Cu films. Langmuir 2011, 27, 10677-10682.
[122]
L. B. Zhao,; Y. F. Huang,; X. M. Liu,; J. R. Anema,; D. Y. Wu,; B. Ren,; Z. Q. Tian, A DFT study on photoinduced surface catalytic coupling reactions on nanostructured silver: Selective formation of azobenzene derivatives from para-substituted nitrobenzene and aniline. Phys. Chem. Chem. Phys. 2012, 14, 12919-12929.
[123]
L. B. Zhao,; Y. F. Huang,; D. Y. Wu,; B. Ren, Surface-enhanced Raman spectroscopy and plasmon-assisted photocatalysis of p-aminothiophenol. Acta Chim. Sin. 2014, 72, 1125-1138. (in Chinese)
[124]
L. B. Zhao,; M. Zhang,; Y. F. Huang,; C. T. Williams,; D. Y. Wu,; B. Ren,; Z. Q. Tian, Theoretical study of plasmon-enhanced surface catalytic coupling reactions of aromatic amines and nitro compounds. J. Phys. Chem. Lett. 2014, 5, 1259-1266.
[125]
X. Shi,; H. W. Li,; Y. L. Ying,; C. Liu,; L. Zhang,; Y. T. Long, In situ monitoring of catalytic process variations in a single nanowire by dark-field-assisted surface-enhanced Raman spectroscopy. Chem. Commun. 2016, 52, 1044-1047.
[126]
T. H. Peng,; J. J. Miao,; Z. S. Gao,; L. J. Zhang,; Y. Gao,; C. H. Fan,; D. Li, Reactivating catalytic surface: Insights into the role of hot holes in plasmonic catalysis. Small 2018, 14, 1703510.
[127]
L. Brus, Noble metal nanocrystals: Plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Acc. Chem. Res. 2008, 41, 1742-1749.
[128]
E. S. Thrall,; A. P. Steinberg,; X. M. Wu,; L. E. Brus, The role of photon energy and semiconductor substrate in the plasmon-mediated photooxidation of citrate by silver nanoparticles. J. Phys. Chem. C 2013, 117, 26238-26247.
[129]
A. E. Schlather,; A. Manjavacas,; A. Lauchner,; V. S. Marangoni,; C. J. DeSantis,; P. Nordlander,; N. J. Halas, Hot hole photoelectrochemistry on Au@SiO2@Au nanoparticles. J. Phys. Chem. Lett. 2017, 8, 2060-2067.
[130]
V. P. Dinesh,; P. Biji,; A. Ashok,; S. K. Dhara,; M. Kamruddin,; A. K. Tyagi,; B. Raj, Plasmon-mediated, highly enhanced photocatalytic degradation of industrial textile dyes using hybrid ZnO@Ag core-shell nanorods. RSC Adv. 2014, 4, 58930-58940.
[131]
S. Mondal,; M. E. De Anda Reyes,; U. Pal, Plasmon induced enhanced photocatalytic activity of gold loaded hydroxyapatite nanoparticles for methylene blue degradation under visible light. RSC Adv. 2017, 7, 8633-8645.
[132]
L. L. He,; C. Q. Liu,; J. Tang,; Y. C. Zhou,; H. Yang,; R. Y. Liu,; J. G. Hu, Self-catalytic stabilized Ag-Cu nanoparticles with tailored SERS response for plasmonic photocatalysis. Appl. Surf. Sci. 2018, 434, 265-272.
[133]
G. Lu,; H. F. Yuan,; L. Su,; B. Kenens,; Y. Fujita,; M. Chamtouri,; M. Pszona,; E. Fron,; J. Waluk,; J. Hofkens, et al. Plasmon-mediated surface engineering of silver nanowires for surface-enhanced Raman scattering. J. Phys. Chem. Lett. 2017, 8, 2774-2779.
[134]
A. Al-Zubeidi,; B. S. Hoener,; S. S. E. Collins,; W. X. Wang,; S. R. Kirchner,; S. A. H. Jebeli,; A. Joplin,; W. S. Chang,; S. Link,; C. F. Landes, Hot holes assist plasmonic nanoelectrode dissolution. Nano Lett. 2019, 19, 1301-1306.
[135]
Y. Kim,; J. G. Smith,; P. K. Jain, Harvesting multiple electron-hole pairs generated through plasmonic excitation of Au nanoparticles. Nat. Chem. 2018, 10, 763-769.
[136]
J. Zhao,; S. C. Nguyen,; R. Ye,; B. H. Ye,; H. Weller,; G. A. Somorjai,; A. P. Alivisatos,; F. D. Toste, A comparison of photocatalytic activities of gold nanoparticles following plasmonic and interband excitation and a strategy for harnessing interband hot carriers for solution phase photocatalysis. ACS Cent. Sci. 2017, 3, 482-488.
[137]
W. Xie,; S. Schlücker, Hot electron-induced reduction of small molecules on photorecycling metal surfaces. Nat. Commun. 2015, 6, 7570.
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 June 2020
Revised: 27 July 2020
Accepted: 04 August 2020
Published: 02 September 2020
Issue date: December 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11974180), Key University Science Research Project of Jiangsu Province (No. 17KJA150005), Six Talent Peaks Project in Jiangsu Province (No. XCL-038) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX20_1060).

Return