Journal Home > Volume 13 , Issue 12

The application of molybdenum oxide in the photovoltaic field is gaining traction as this material can be deployed in doping-free heterojunction solar cells in the role of hole selective contact. For modeling-based optimization of such contact, knowledge of the molybdenum oxide defect density of states (DOS) is crucial. In this paper, we report a method to extract the defect density through nondestructive optical measures, including the contribution given by small polaron optical transitions. The presence of defects related to oxygen-vacancy and of polaron is supported by the results of our opto-electrical characterizations along with the evaluation of previous observations. As part of the study, molybdenum oxide samples have been evaluated after post-deposition thermal treatments. Quantitative results are in agreement with the result of density functional theory showing the presence of a defect band fixed at 1.1 eV below the conduction band edge of the oxide. Moreover, the distribution of defects is affected by post-deposition treatment.


menu
Abstract
Full text
Outline
About this article

Sub-gap defect density characterization of molybdenum oxide: An annealing study for solar cell applications

Show Author's information Daniele Scirè1,2( )Paul Procel2Antonino Gulino3Olindo Isabella2Miro Zeman2Isodiana Crupi1
Department of Engineering, University of Palermo, Palermo 90128, Italy
Photovoltaic Materials and Devices group, Delft University of Technology, Delft 2628 CD, The Netherlands
Department of Chemical Sciences, University of Catania, Catania 95125, Italy

Abstract

The application of molybdenum oxide in the photovoltaic field is gaining traction as this material can be deployed in doping-free heterojunction solar cells in the role of hole selective contact. For modeling-based optimization of such contact, knowledge of the molybdenum oxide defect density of states (DOS) is crucial. In this paper, we report a method to extract the defect density through nondestructive optical measures, including the contribution given by small polaron optical transitions. The presence of defects related to oxygen-vacancy and of polaron is supported by the results of our opto-electrical characterizations along with the evaluation of previous observations. As part of the study, molybdenum oxide samples have been evaluated after post-deposition thermal treatments. Quantitative results are in agreement with the result of density functional theory showing the presence of a defect band fixed at 1.1 eV below the conduction band edge of the oxide. Moreover, the distribution of defects is affected by post-deposition treatment.

Keywords: molybdenum oxide, density of states, polaron theory, silicon heterojunction solar cell

References(85)

[1]
International Technology Roadmap for Photovoltaic (ITRPV) [Online]. https://pv-manufacturing.org/wp-content/uploads/2019/03/ITRPV-2019.pdf (accessed June 8, 2020).
[2]
S Philipps,. Photovoltaics report. Fraunhofer Institute for Solar Energy Systems, ISE with Support of PSE Projects GmbH[Online]. https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf (accessed June 8, 2020).
[3]
LONGi solar. LONGi Solar sets new bifacial mono-PERC solar cell world record at 24.06 percent. 2019[Online]. https://en.longi-solar.com/home/events/press_detail/id/89.html (accessed: Jun 8, 2020).
[4]
D. Chen,; M. Kim,; J. W. Shi,; B. V. Stefani,; Z. S. Yu,; S. Y. Liu; R. Einhaus,; S. Wenham,; Z. Holman,; B. Hallam, Defect engineering of p-type silicon heterojunction solar cells fabricated using commercial-grade low-lifetime silicon wafers. Prog. Photovoltaics Res. Appl., in press, .
[5]
B Asaba,. Hanergy’s SHJ Technology achieves 25.11% Conversion Efficiency[Online]. https://www.arabianindustry.com/utilities/news/2019/nov/19/hanergys-shj-technology-achieves-2511-conversion-efficiency-6269848/ (accessed: Jun 8, 2020).
[6]
S. De Wolf,; A. Descoeudres,; Z. C. Holman,; C. Ballif, High-efficiency silicon heterojunction solar cells: A review. Green 2012, 2, 7-24.
[7]
J. Melskens,; B. W. H. Van de Loo,; B. Macco,; L. E. Black,; S. Smit,; W. M. M. Kessels, Passivating contacts for crystalline silicon solar cells: From concepts and materials to prospects. IEEE J. Photovoltaics 2018, 8, 373-388.
[8]
K. Masuko,; M. Shigematsu,; T. Hashiguchi,; D. Fujishima,; M. Kai,; N. Yoshimura,; T. Yamaguchi,; Y. Ichihashi,; T. Mishima,; N. Matsubara, et al. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. J. IEEE Photovoltaics 2014, 4, 1433-1435.
[9]
H. A. Gatz,; J. K. Rath,; M. A. Verheijen,; W. M. M. Kessels,; R. E. I. Schropp, Silicon heterojunction solar cell passivation in combination with nanocrystalline silicon oxide emitters. Phys. Status Solidi 2016, 213, 1932-1936.
[10]
G. T. Yang,; P. Q. Guo,; P. Procel,; G. Limodio,; A. Weeber,; O. Isabella,; M. Zeman, High-efficiency black IBC c-Si solar cells with poly-Si as carrier-selective passivating contacts. Sol. Energy Mater. Sol. Cells 2018, 186, 9-113.
[11]
K. Yoshikawa,; H. Kawasaki,; W. Yoshida,; T. Irie,; K. Konishi,; K. Nakano,; T. Uto,; D. Adachi,; M. Kanematsu,; H. Uzu, et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2017, 2, 17032.
[12]
M. A. Green,; K. Emery,; Y. Hishikawa,; W. Warta,; E. D. Dunlop,; D. H. Levi; A. W. Y. Ho-Baillie, Solar cell efficiency tables (version 49). Prog. Photovoltaics Res. Appl. 2017, 25, 3-13.
[13]
Z. C. Holman,; A. Descoeudres,; L. Barraud,; F. Z. Fernandez,; J. P. Seif,; S. De Wolf,; C. Ballif, Current losses at the front of silicon heterojunction solar cells. J. IEEE Photovoltaics 2012, 2, 7-15.
[14]
L. G. Gerling,; S. Mahato,; A. Morales-Vilches,; G. Masmitja,; P. Ortega,; C. Voz,; R. Alcubilla,; J. Puigdollers, Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells. Sol. Energy Mater. Sol. Cells 2016, 145, 109-115.
[15]
C. Yu,; S. Z. Xu,; J. X. Yao,; S. W. Han, Recent advances in and new perspectives on crystalline silicon solar cells with carrier-selective passivation contacts. Crystals 2018, 8, 430.
[16]
C. Battaglia,; X. T. Yin,; M. Zheng,; I. D. Sharp,; T. Chen,; S. McDonnell,; A. Azcatl,; C. Carraro,; B. W. Ma; R. Maboudian, et al. Hole selective MoOx contact for silicon solar cells. Nano Lett. 2014, 14, 967-971.
[17]
J. H. Shi,; L. L. Shen,; Y. W. Liu,; J. Yu,; J. N. Liu,; L. P. Zhang,; Y. C. Liu,; J. Y. Bian,; Z. X. Liu,; F. Y. Meng, MoOx modified ITO/a-Si:H(p) contact for silicon heterojunction solar cell application. Mater. Res. Bull. 2018, 97, 176-181.
[18]
M. Bivour,; J. Temmler,; H. Steinkemper,; M. Hermle, Molybdenum and tungsten oxide: High work function wide band gap contact materials for hole selective contacts of silicon solar cells. Sol. Energy Mater. Sol. Cells 2015, 142, 34-41.
[19]
J. Geissbühler,; J. Werner,; S. M. de Nicolas,; L. Barraud,; A. Hessler-Wyser,; M. Despeisse,; S. Nicolay,; A. Tomasi,; B. Niesen,; S. De Wolf, et al. 22.5% Efficient Silicon Heterojunction Solar Cell With Molybdenum Oxide Hole Collector. Appl. Phys. Lett. 2015, 107, 081601.
[20]
K. Mallem,; Y. J. Kim,; S. Q. Hussain,; S. Dutta,; A. H. T. Le,; M. Ju,; J. Park,; Y. H. Cho,; Y. Kim,; E. C. Cho, et al. Molybdenum oxide: A superior hole extraction layer for replacing p-type hydrogenated amorphous silicon with high efficiency heterojunction Si solar cells. Mater. Res. Bull. 2019, 110, 90-96.
[21]
M. Mews,; A. Lemaire,; L. Korte, Sputtered tungsten oxide as hole contact for silicon heterojunction solar cells. IEEE J. Photovoltaics 2017, 7, 1209-1215.
[22]
X. B. Yang,; Q. Y. Bi,; H. Ali,; K. Davis,; W. V. Schoenfeld,; K. Weber, High-performance TiO2-based electron-selective contacts for crystalline silicon solar cells. Adv. Mater. 2016, 28, 5891-5897.
[23]
R. García-Hernansanz,; E. García-Hemme,; D. Montero,; J. Olea,; A. del Prado,; I. Mártil,; C. Voz,; L. G. Gerling,; J. Puigdollers,; R. Alcubilla, Transport mechanisms in silicon heterojunction solar cells with molybdenum oxide as a hole transport layer. Sol. Energy Mater. Sol. Cells 2018, 185, 61-65.
[24]
W. X. Lan,; Y. W. Wang,; J. Singh,; F. R. Zhu, Omnidirectional and broadband light absorption enhancement in 2-D photonic-structured organic solar cells. ACS Photonics 2018, 5, 1144-1150.
[25]
H. Wu,; X. W. Zhao,; Y. Z. Wu,; Q. H. Ji,; L. X. Dai,; Y. Y. Shang,; A. Y. Cao, Improving CNT-Si solar cells by metal chloride-to-oxide transformation. Nano Res. 2020, 13, 543-550.
[26]
J. Dréon,; Q. Jeangros,; J. Cattin,; J. Haschke,; L. Antognini,; C. Ballif,; M. Boccard, 23.5%-efficient silicon heterojunction silicon solar cell using molybdenum oxide as hole-selective contact. Nano Energy 2020, 70, 104495.
[27]
S. K. Hau,; H. L. Yip,; N. S. Baek,; J. Y. Zou,; K. O’Malley,; A. K. Y. Jen, Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Appl. Phys. Lett. 2008, 92, 253301.
[28]
X. T. Yin,; C. Battaglia,; Y. J. Lin,; K. Chen,; M. Hettick,; M. Zheng,; C. Y. Chen,; D. Kiriya,; A. Javey, 19.2% Efficient InP heterojunction solar cell with electron-selective TiO2 contact. ACS Photonics 2014, 1, 1245-1250.
[29]
B. H. Li,; H. Ren,; H. Y. Yuan,; A. Karim,; X. Gong, Room-temperature, solution-processed MoOx thin film as a hole extraction layer to substitute PEDOT/PSS in polymer solar cells. ACS Photonics 2014, 1, 87-90.
[30]
K. Zilberberg,; S. Trost,; J. Meyer,; A. Kahn,; A. Behrendt,; D. Lützenkirchen-Hecht,; R. Frahm,; T. Riedl, Inverted organic solar cells with sol-gel processed high work-function vanadium oxide hole-extraction layers. Adv. Funct. Mater. 2011, 21, 4776-4783.
[31]
C. Messmer,; M. Bivour,; J. Schön,; S. W. Glunz,; M. Hermle, Numerical simulation of silicon heterojunction solar cells featuring metal oxides as carrier-selective contacts. IEEE J. Photovoltaics 2018, 8, 456-464.
[32]
R. A. Vijayan,; S. Essig,; S. De Wolf,; B. G. Ramanathan,; P. Loper,; C. Ballif,; M. Varadharajaperumal, Hole-collection mechanism in passivating metal-oxide contacts on Si solar cells: Insights from numerical simulations. IEEE J. Photovoltaics 2018, 8, 473-482.
[33]
P. M. P. Salomé,; B. Vermang,; R. Ribeiro-Andrade,; J. P. Teixeira,; J. M. V. Cunha,; M. J. Mendes,; S. Haque,; J. Borme,; H. Águas,; E. Fortunato, et al. Passivation of interfaces in thin film solar cells: Understanding the effects of a nanostructured rear point contact layer. Adv. Mater. Interfaces 2018, 5, 1701101.
[34]
K. H. Ong,; A. Ramasamy,; P. Arnou,; B. Maniscalco,; J. W. Bowers,; C. C. Kumar,; M. Bte Marsadek, Formation of MoOx barrier layer under atmospheric based condition to control MoSe2 formation in CIGS thin film solar cell. Mater. Technol. 2018, 33, 723-729.
[35]
Z. F. Wei,; B. Smith,; F. De Rossi,; J. R. Searle,; D. A. Worsley,; T. M. Watson, Efficient and semi-transparent perovskite solar cells using a room-temperature processed MoOx/ITO/Ag/ITO electrode. J. Mater. Chem. C 2019, 7, 10981-10987.
[36]
E. M. Sanehira,; B. J. T. de Villers,; P. Schulz,; M. O. Reese,; S. Ferrere,; K. Zhu,; L. Y. Lin,; J. J. Berry,; J. M. Luther, Influence of electrode interfaces on the stability of perovskite solar cells: Reduced degradation using MoOx/Al for hole collection. ACS Energy Lett. 2016, 1, 38-45.
[37]
Y. X. Zhao,; A. M. Nardes,; K. Zhu, Effective hole extraction using MoOx-Al contact in perovskite CH3NH3PbI3 solar cells. Appl. Phys. Lett. 2014, 104, 213906.
[38]
L. C. Hao,; M. Zhang,; M. Ni,; J. M. Liu,; X. D. Feng, Simulation of high efficiency silicon heterojunction solar cells with molybdenum oxide carrier selective layer. Mater. Res. Express 2018, 5, 075504.
[39]
J. Werner,; J. Geissbühler,; A. Dabirian,; S. Nicolay,; M. Morales-Masis,; S. De Wolf,; B. Niesen,; C. Ballif, Parasitic absorption reduction in metal oxide-based transparent electrodes: Application in perovskite solar cells. ACS Appl. Mater. Interfaces 2016, 8, 17260-17267.
[40]
T. S. Sian,; G. B. Reddy, Optical, structural and photoelectron spectroscopic studies on amorphous and crystalline molybdenum oxide thin films. Sol. Energy Mater. Sol. Cells 2004, 82, 375-386.
[41]
A. Lyubchyk,; A. Vicente,; P. U. Alves,; B. Catela,; B. Soule,; T. Mateus,; M. J. Mendes,; H. Águas,; E. Fortunato,; R. Martins, Influence of post-deposition annealing on electrical and optical properties of ZnO-based TCOs deposited at room temperature. Phys. Status Solidi Appl. Mater. Sci. 2016, 213, 2317-2328.
[42]
J. Kočka,; M. Vaněček,; A. Tříska, Energy and density of gap states in a-Si:H. In Amorphous Silicon and Related Materials. H. Fritzsche,, Ed.; World Scientific, 1989; pp 297-327.
[43]
M. Vaněček,; J. Kočka,; J. Stuchlík,; Z. Kožíšek,; O. Štika,; A. Tříska, Density of the gap states in undoped and doped glow discharge a-Si:H. Sol. Energy Mater. 1983, 8, 411-423.
[44]
Z. Remes,; R. Vasudevan,; K. Jarolimek,; A. Smets,; M. H.; M. Zeman, The optical spectra of a-Si:H and a-SiC:H thin films measured by the absolute Photothermal Deflection Spectroscopy (PDS). Solid State Phenom. 2014, 213, 19-28.
[45]
M. Singh,; R. Santbergen,; L. Mazzarella,; A. Madrampazakis,; G. Yang,; R. Vismara,; Z. Remes,; A. Weeber,; M. Zeman,; O. Isabella, Optical characterization of poly-SiOx and poly-SiCx carrier-selective passivating contacts. Sol. Energy Mater. Sol. Cells 2020, 210, 110507.
[46]
P. Spinelli,; M. A. Sen,; E. G. Hoek,; B. W. J. Kikkert,; G. T. Yang,; O. Isabella,; A. W. Weeber,; P. C. P. Bronsveld, Moly-poly solar cell: Industrial application of metal-oxide passivating contacts with a starting efficiency of 18.1%. AIP Conf. Proc. 2018, 1999, 040021.
[47]
M. F. J. Vos,; B. Macco,; N. F. W. Thissen,; A. A. Bol,; W. M. M. Kessels, Atomic layer deposition of molybdenum oxide from (NtBu)2(NMe2)2Mo and O2 plasma. J. Vac. Sci. Technol. A 2016, 34, 01A103.
[48]
S. Morawiec,; J. Holovský,; M. J. Mendes,; M. Müller,; K. Ganzerová,; A. Vetushka,; M. Ledinský,; F. Priolo,; A. Fejfar,; I. Crupi, Experimental quantification of useful and parasitic absorption of light in plasmon-enhanced thin silicon films for solar cells application. Sci. Rep. 2016, 6, 22481.
[49]
E. Horynová,; O. Romanyuk,; L. Horák,; Z. Remeš,; B. Conrad,; A. P. Amalathas,; L. Landová,; J. Houdková,; P. Jiříček,; T. Finsterle, et al. Optical characterization of low temperature amorphous MoOx, WOx, and VOx prepared by pulsed laser deposition. Thin Solid Films 2020, 693, 137690.
[50]
A. Gulino,; G. G. Condorelli,; I. Fragalà, Synthesis and spectroscopic characterisation of MoO3 thin films. J. Mater. Chem. 1996, 6, 1335-1338.
[51]
D. O. Scanlon,; G. W. Watson,; D. J. Payne,; G. R. Atkinson,; R. G. Egdell,; D. S. L. Law, Theoretical and experimental study of the electronic structures of MoO3 and MoO2. J. Phys. Chem. C 2010, 114, 4636-4645.
[52]
S. K. Deb,; J. A. Chopoorian, Optical properties and color-center formation in thin films of molybdenum trioxide. J. Appl. Phys. 1966, 37, 4818-4825.
[53]
P. A. Spevack,; N. S. McIntyre, A Raman and XPS investigation of supported molybdenum oxide thin films. 2. Reactions with hydrogen sulfide. J. Phys. Chem. 1993, 97, 11031-11036.
[54]
P. A. Spevack,; N. S. McIntyre, A Raman and XPS investigation of supported molybdenum oxide thin films. 1. Calcination and reduction studies. J. Phys. Chem. 1993, 97, 11020-11030.
[55]
K. Kanai,; K. Koizumi,; S. Ouchi,; Y. Tsukamoto,; K. Sakanoue,; Y. Ouchi,; K. Seki, Electronic structure of anode interface with molybdenum oxide buffer layer. Org. Electron. 2010, 11, 188-194.
[56]
R. M. Corless,; G. H. Gonnet,; D. E. G. Hare,; D. J. Jeffrey,; D. E. Knuth, On the Lambert W function. Adv. Comput. Math. 1996, 5, 329-359.
[57]
V. Jadkar,; A. Pawbake,; R. Waykar,; A. Jadhavar,; A. Mayabadi,; A. Date,; D. Late,; H. Pathan,; S. Gosavi,; S. Jadkar, Synthesis of orthorhombic-molybdenum trioxide (α-MoO3) thin films by hot wire-CVD and investigations of its humidity sensing properties. J. Mater. Sci.: Mater. Electron. 2017, 28, 15790-15796.
[58]
J. Tauc,; R. Grigorovici,; A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 1966, 15, 627-637.
[59]
J. J. Thevaril,; S. K. O’Leary, A dimensionless joint density of states formalism for the quantitative characterization of the optical response of hydrogenated amorphous silicon. J. Appl. Phys. 2010, 107, 083105.
[60]
J. A. Guerra,; A. Tejada,; J. A. Töfflinger,; R. Grieseler,; L. Korte, Band-fluctuations model for the fundamental absorption of crystalline and amorphous semiconductors: A dimensionless joint density of states analysis. J. Phys. D Appl. Phys. 2019, 52, 105303.
[61]
J. A. Guerra,; J. R. Angulo,; S. Gomez,; J. Llamoza,; L. M. Montañez,; A. Tejada,; J A. Töfflinger,; A. Winnacker,; R. Weingärtner, The urbach focus and optical properties of amorphous hydrogenated SiC thin films. J. Phys. D Appl. Phys. 2016, 49, 195102.
[62]
S. Krishnakumar,; C. S. Menon, Electrical and optical properties of molybdenum trioxide thin films. Bull. Mater. Sci. 1993, 16, 187-191.
[63]
D. Zu,; H. Y. Wang,; S. Lin,; G. Ou,; H. H. Wei,; S. Q. Sun,; H. Wu, Oxygen-deficient metal oxides: Synthesis routes and applications in energy and environment. Nano Res. 2019, 12, 2150-2163.
[64]
Y. Bouizem,; A. Belfedal,; J. D. Sib,; L. Chahed, Density of states in hydrogenated amorphous germanium seen via optical absorption spectra. Solid State Commun. 2003, 126, 675-680.
[65]
W. B. Jackson,; S. M. Kelso,; C. C. Tsai,; J. W. Allen,; S. J. Oh, Energy dependence of the optical matrix element in hydrogenated amorphous and crystalline silicon. Phys. Rev. B 1985, 31, 5187-5198.
[66]
M. Van Sebille,; R. A. Vasudevan,; R. J. Lancee,; R. A. C. M. M. Van Swaaij,; M. Zeman, Optical characterization and density of states determination of silicon nanocrystals embedded in amorphous silicon based matrix. J. Phys. D Appl. Phys. 2015, 48, 325302.
[67]
S. M. Sze, Physics of Semiconductor Devices; Wiley-Interscience: New York, 1995.
[68]
A. H. Reshak, Specific features of electronic structures and optical susceptibilities of molybdenum oxide. RSC Adv. 2015, 5, 22044-22052.
[69]
S. O. Akande,; A. Chroneos,; M. Vasilopoulou,; S. Kennou,; U. Schwingenschlögl, Vacancy formation in MoO3: Hybrid density functional theory and photoemission experiments. J. Mater. Chem. C 2016, 4, 9526-9531.
[70]
C. Y. Cheng,; H. Kim,; N. C. Giebink, Charged polariton luminescence from an organic semiconductor microcavity. ACS Photonics 2019, 6, 308-313.
[71]
J. Ederth,; A. Hoel,; G. A. Niklasson,; C. G. Granqvist, Small polaron formation in porous WO3-x nanoparticle films. J. Appl. Phys. 2004, 96, 5722-5726.
[72]
G. A. Niklasson,; J. Klasson,; E. Olsson, Polaron absorption in tungsten oxide nanoparticle aggregates. Electrochim. Acta 2001, 46, 1967-1971.
[73]
T. Koyama,; A. Nakamura,; H. Kishida, Microscopic mobility of polarons in chemically doped polythiophenes measured by employing photoluminescence spectroscopy. ACS Photonics 2014, 1, 655-661.
[74]
M. Dieterle,; G. Weinberg,; G. Mestl, Raman spectroscopy of molybdenum oxides - Part I. Structural characterization of oxygen defects in MoO3-x by DR UV/VIS, Raman spectroscopy and X-ray diffraction. Phys. Chem. Chem. Phys. 2002, 4, 812-821.
[75]
A. Gulino,; G. Tabbì, CdO thin films: A study of their electronic structure by electron spin resonance spectroscopy. Appl. Surf. Sci. 2005, 245, 322-327.
[76]
R. J. Colton,; A. M. Guzman,; J. W. Rabalais, Photochromism and electrochromism in amorphous transition metal oxide films. Acc. Chem. Res. 1978, 11, 170-176.
[77]
J. Livage, Small polarons in transition metal oxide glasses. In Glass … Current Issues. A. F. Wright,, J. Dupuy,, Eds.; Springer: Dordrecht, 1985; pp 408-418.
[78]
M. Reticcioli,; U. Diebold,; G. Kresse,; C. Franchini, Small polarons in transition metal oxides. In Handbook of Materials Modeling: Applications: Current and Emerging Materials. W. Andreoni,, S. Yip,, Eds.; Springer: Cham, 2019; pp 1-39.
[79]
M. B. Johansson,; A. Mattsson,; S. E. Lindquist,; G. A. Niklasson,; L. Österlund, The importance of oxygen vacancies in nanocrystalline WO3-x thin films prepared by DC magnetron sputtering for achieving high photoelectrochemical efficiency. J. Phys. Chem. C 2017, 121, 7412-7420.
[80]
I. G. Austin,; N. F. Mott, Polarons in crystalline and non-crystalline materials. Adv. Phys. 2001, 50, 757-812.
[81]
B. Henderson, Optical spectroscopy of color centers in ionic crystal. In Spectroscopy of Solid-State Laser-Type Materials. B. Di Bartolo,, Ed.; Springer: Boston, MA, 1987; pp 109-139.
[82]
S. I. Pekar,; M. F. Deigen, Quantum states and optical transitions of electron in a polaron and at a color center of a crystal. Zh. Eksp. Teor. Fiz. 1948, 18, 481-486.
[83]
S. F. Wang, Polaron model of electron-excess color centers. Phys. Rev. 1967, 153, 939-947.
[84]
P. Procel,; G. T. Yang,; O. Isabella,; M. Zeman, Theoretical evaluation of contact stack for high efficiency IBC-SHJ solar cells. Sol. Energy Mater. Sol. Cells 2018, 186, 66-77.
[85]
P. Procel,; P. Löper,; F. Crupi,; C. Ballif,; A. Ingenito, Numerical simulations of hole carrier selective contacts in p-type c-Si solar cells. Sol. Energy Mater. Sol. Cells 2019, 200, 109937.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 17 June 2020
Revised: 02 August 2020
Accepted: 03 August 2020
Published: 02 September 2020
Issue date: December 2020

Copyright

© The Author(s) 2020

Acknowledgements

We thank G. Yang, R. Santbergen and G. Limodio for the fruitful discussions. The authors also thank L. Spitaleri for the assistance with the XPS patterns and Y. Zhou for the assistance with the deposition equipment.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return