Journal Home > Volume 13 , Issue 12

The nanoplatforms based on upconversion nanoparticles (UCNPs) have shown great promise in amplified photodynamic therapy (PDT) triggered by near-infrared (NIR) light. However, their practical in vivo applications are hindered by the overheating effect of 980 nm excitation and low utilization of upconversion luminescence (UCL) by photosensitizers. To solve these defects, core-satellite metal-organic framework@UCNP superstructures, composed of a single metal-organic framework (MOF) NP as the core and Nd3+-sensitized UCNPs as the satellites, are designed and synthesized via a facile electrostatic self-assembly strategy. The superstructures realize a high co-loading capacity of chlorin e6 (Ce6) and rose bengal (RB) benefitted from the highly porous nature of MOF NPs, showing a strong spectral overlap between maximum absorption of photosensitizers and emission of UCNPs. The in vitro and in vivo experiments demonstrate that the dual-photosensitizer superstructures have trimodal (magnetic resonance (MR)/UCL/fluorescence (FL)) imaging functions and excellent antitumor effectiveness of PDT at 808 nm NIR light excitation, avoiding the laser irradiation-induced overheating issue. This study provides new insights for the development of highly efficient PDT nanodrugs toward precision theranostics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Core-satellite metal-organic framework@upconversion nanoparticle superstructures via electrostatic self-assembly for efficient photodynamic theranostics

Show Author's information Zhike Li1Xi Qiao1Guihua He1Xin Sun1Danhua Feng1Liefeng Hu1Hua Xu2Hai-Bing Xu3Shengqian Ma4( )Jian Tian1( )
Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
Department of Chemistry, University of North Texas, Denton, TX 76201, USA

Abstract

The nanoplatforms based on upconversion nanoparticles (UCNPs) have shown great promise in amplified photodynamic therapy (PDT) triggered by near-infrared (NIR) light. However, their practical in vivo applications are hindered by the overheating effect of 980 nm excitation and low utilization of upconversion luminescence (UCL) by photosensitizers. To solve these defects, core-satellite metal-organic framework@UCNP superstructures, composed of a single metal-organic framework (MOF) NP as the core and Nd3+-sensitized UCNPs as the satellites, are designed and synthesized via a facile electrostatic self-assembly strategy. The superstructures realize a high co-loading capacity of chlorin e6 (Ce6) and rose bengal (RB) benefitted from the highly porous nature of MOF NPs, showing a strong spectral overlap between maximum absorption of photosensitizers and emission of UCNPs. The in vitro and in vivo experiments demonstrate that the dual-photosensitizer superstructures have trimodal (magnetic resonance (MR)/UCL/fluorescence (FL)) imaging functions and excellent antitumor effectiveness of PDT at 808 nm NIR light excitation, avoiding the laser irradiation-induced overheating issue. This study provides new insights for the development of highly efficient PDT nanodrugs toward precision theranostics.

Keywords: photodynamic therapy, theranostics, nanoscale metal-organic frameworks, core-satellite structures, upconversion nanoparticles (UCNPs)

References(49)

[1]
J. F. Lovell,; T. W. B. Liu,; J. Chen,; G. Zheng, Activatable photosensitizers for imaging and therapy. Chem. Rev. 2010, 110, 2839-2857.
[2]
S. Y. Ye,; J. M. Rao,; S. H. Qiu,; J. L. Zhao,; H. He,; Z. L. Yan,; T. Yang,; Y. B. Deng,; H. T. Ke,; H. Yang, et al. Rational design of conjugated photosensitizers with controllable photoconversion for dually cooperative phototherapy. Adv. Mater. 2018, 30, 1801216.
[3]
S. S. Lucky,; K. C. Soo,; Y. Zhang, Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990-2042.
[4]
W. S. Chen,; J. Ouyang,; H. Liu,; M. Chen,; K. Zeng,; J. P. Sheng,; Z. J. Liu,; Y. J. Han,; L. Q. Wang,; J. Li, et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/ photothermal/chemotherapy of cancer. Adv. Mater. 2017, 29, 1603864.
[5]
W. P. Fan,; P. Huang,; X. Y. Chen, Overcoming the Achilles' heel of photodynamic therapy. Chem. Soc. Rev. 2016, 45, 6488-6519.
[6]
K. R. Deng,; C. X. Li,; S. S. Huang,; B. G. Xing,; D. Y. Jin,; Q. G. Zeng,; Z. Y. Hou,; J. Lin, Recent progress in near infrared light triggered photodynamic therapy. Small 2017, 13, 1702299.
[7]
C. Wang,; L. Cheng,; Z. Liu, Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics 2013, 3, 317-330.
[8]
F. Y. Li,; Y. Du,; J. N. Liu,; H. Sun,; J. Wang,; R. Q. Li,; D. Kim,; T. Hyeon,; D. S. Ling, Responsive assembly of upconversion nanoparticles for pH-activated and near-infrared-triggered photodynamic therapy of deep tumors. Adv. Mater. 2018, 30, 1802808.
[9]
Y. Y. Liu,; J. W. Zhang,; C. J. Zuo,; Z. Zhang,; D. L. Ni,; C. Zhang,; J. Wang,; H. Zhang,; Z. W. Yao,; W. B. Bu, Upconversion nano-photosensitizer targeting into mitochondria for cancer apoptosis induction and cyt c fluorescence monitoring. Nano Res. 2016, 9, 3257-3266.
[10]
W. P. Fan,; W. B. Bu,; J. L. Shi, On the latest three-stage development of nanomedicines based on upconversion nanoparticles. Adv. Mater. 2016, 28, 3987-4011.
[11]
S. Q. Yan,; X. M. Zeng,; Y. A. Tang,; B. F. Liu,; Y. Wang,; X. G. Liu, Activating antitumor immunity and antimetastatic effect through polydopamine-encapsulated core-shell upconversion nanoparticles. Adv. Mater. 2019, 31, 1905825.
[12]
B. Zhou,; B. Y. Shi,; D. Y. Jin,; X. G. Liu, Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 2015, 10, 924-936.
[13]
G. X. Bai,; M. K. Tsang,; J. H. Hao, Luminescent ions in advanced composite materials for multifunctional applications. Adv. Funct. Mater. 2016, 26, 6330-6350.
[14]
D. D. Zhang,; L. W. Wen,; R. Huang,; H. H. Wang,; X. L. Hu,; D. Xing, Mitochondrial specific photodynamic therapy by rare-earth nanoparticles mediated near-infrared graphene quantum dots. Biomaterials 2018, 153, 14-26.
[15]
S. He,; N. J. J. Johnson,; V. A. N. Huu,; Y. R. Huang,; A. Almutairi, Leveraging spectral matching between photosensitizers and upconversion nanoparticles for 808 nm-activated photodynamic therapy. Chem. Mater. 2018, 30, 3991-4000.
[16]
Y. Chen,; J. L. Ren,; D. Tian,; Y. C. Li,; H. Jiang,; J. T. Zhu, Polymer-upconverting nanoparticle hybrid micelles for enhanced synergistic chemo-photodynamic therapy: Effects of emission-absorption spectral match. Biomacromolecules 2019, 20, 4044-4052.
[17]
Y. F. Wang,; G. Y. Liu,; L. D. Sun,; J. W. Xiao,; J. C. Zhou,; C. H. Yan, Nd3+-sensitized upconversion nanophosphors: Efficient in vivo bioimaging probes with minimized heating effect. ACS Nano 2013, 7, 7200-7206.
[18]
B. Liu,; Y. Y. Chen,; C. X. Li,; F. He,; Z. Y. Hou,; S. S. Huang,; H. M. Zhu,; X. Y. Chen,; J. Lin, Poly(acrylic acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery. Adv. Funct. Mater. 2015, 25, 4717-4729.
[19]
Z. Y. Hou,; K. R. Deng,; M. F. Wang,; Y. H. Liu,; M. Y. Chang,; S. S. Huang,; C. X. Li,; Y. Wei,; Z. Y. Cheng,; G. Han, et al. Hydrogenated titanium oxide decorated upconversion nanoparticles: Facile laser modified synthesis and 808 nm near-infrared light triggered phototherapy. Chem. Mater. 2019, 31, 774-784.
[20]
X. Z. Ai,; C. J. H. Ho,; J. Aw,; A. B. E. Attia,; J. Mu,; Y. Wang,; X. Y. Wang,; Y. Wang,; X. G. Liu,; H. B. Chen, et al. In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics. Nat. Commun. 2016, 7, 10432.
[21]
Y. Li,; J. L. Tang,; D. X. Pan,; L. D. Sun,; C. Y. Chen,; Y. Liu,; Y. F. Wang,; S. Shi,; C. H. Yan, A versatile imaging and therapeutic platform based on dual-band luminescent lanthanide nanoparticles toward tumor metastasis inhibition. ACS Nano 2016, 10, 2766-2773.
[22]
B. Liu,; C. X. Li,; P. P. Yang,; Z. Y. Hou,; J. Lin, 808-nm-light-excited lanthanide-doped nanoparticles: Rational design, luminescence control and theranostic applications. Adv. Mater. 2017, 29, 1605434.
[23]
S. Lu,; D. T. Tu,; P. Hu,; J. Xu,; R. F. Li,; M. Wang,; Z. Chen,; M. D. Huang,; X. Y. Chen, Multifunctional nano-bioprobes based on rattle-structured upconverting luminescent nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 7915-7919.
[24]
N. M. Idris,; M. K. Gnanasammandhan,; J. Zhang,; P. C. Ho,; R. Mahendran,; Y. Zhang, In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 2012, 18, 1580-1585.
[25]
L. E. Liang,; A. Care,; R. Zhang,; Y. Q. Lu,; N. H. Packer,; A. Sunna,; Y. Qian,; A. V. Zvyagin, Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy. ACS Appl. Mater. Interfaces 2016, 8, 11945-11953.
[26]
J. T. Xu,; P. P. Yang,; M. D. Sun,; H. T. Bi,; B. Liu,; D. Yang,; S. L. Gai,; F. He,; J. Lin, Highly emissive dye-sensitized upconversion nanostructure for dual-photosensitizer photodynamic therapy and bioimaging. ACS Nano 2017, 11, 4133-4144.
[27]
S. Z. Wang,; C. M. McGuirk,; A. d'Aquino,; J. A. Mason,; C. A. Mirkin, Metal-organic framework nanoparticles. Adv. Mater. 2018, 30, 1800202.
[28]
P. Horcajada,; T. Chalati,; C. Serre,; B. Gillet,; C. Sebrie,; T. Baati,; J. F. Eubank,; D. Heurtaux,; P. Clayette,; C. Kreuz, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172-178.
[29]
L. Y. Zhang,; C. Liu,; Y. Gao,; Z. H. Li,; J. Xing,; W. Z. Ren,; L. L. Zhang,; A. G. Li,; G. M. Lu,; A. G. Wu, et al. ZD2-engineered gold nanostar@metal-organic framework nanoprobes for T1-weighted magnetic resonance imaging and photothermal therapy specifically toward triple-negative breast cancer. Adv. Healthcare Mater. 2018, 7, 1801144.
[30]
Z. M. He,; X. L. Huang,; C. Wang,; X. L. Li,; Y. J. Liu,; Z. J. Zhou,; S. Wang,; F. W. Zhang,; Z. T. Wang,; O. Jacobson, et al. A catalase-like metal-organic framework nanohybrid for O2-evolving synergistic chemoradiotherapy. Angew. Chem., Int. Ed. 2019, 58, 8752-8756.
[31]
M. J. Neufeld,; A. N. DuRoss,; M. R. Landry,; H. Winter,; A. M. Goforth,; C. Sun, Co-delivery of PARP and PI3K inhibitors by nanoscale metal-organic frameworks for enhanced tumor chemoradiation. Nano Res. 2019, 12, 3003-3017.
[32]
K. D. Lu,; T. Aung,; N. N. Guo,; R. Weichselbaum,; W. B. Lin, Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications. Adv. Mater. 2018, 30, 1707634.
[33]
Z. Zhang,; W. Sang,; L. S. Xie,; Y. L. Dai, Metal-organic frameworks for multimodal bioimaging and synergistic cancer chemotherapy. Coordin. Chem. Rev. 2019, 399, 213022.
[34]
C. Y. Sun,; C. Qin,; C. G. Wang,; Z. M. Su,; S. Wang,; X. L. Wang,; G. S. Yang,; K. Z. Shao,; Y. Q. Lan,; E. B. Wang, Chiral nanoporous metal-organic frameworks with high porosity as materials for drug delivery. Adv. Mater. 2011, 23, 5629-5632.
[35]
H. Cheng,; J. Y. Zhu,; S. Y. Li,; J. Y. Zeng,; Q. Lei,; K. W. Chen,; C. Zhang,; X. Z. Zhang, An O2 Self-sufficient biomimetic nanoplatform for highly specific and efficient photodynamic therapy. Adv. Funct. Mater. 2016, 26, 7847-7860.
[36]
K. D. Lu,; C. B. He,; W. B. Lin, Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc. 2014, 136, 16712-16715.
[37]
J. Park,; Q. Jiang,; D. W. Feng,; L. Q. Mao,; H. C. Zhou, Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy. J. Am. Chem. Soc. 2016, 138, 3518-3525.
[38]
H. Min,; J. Wang,; Y. Q. Qi,; Y. L. Zhang,; X. X. Han,; Y. Xu,; J. C. Xu,; Y. Li,; L. Chen,; K. M. Cheng, et al. Biomimetic metal-organic framework nanoparticles for cooperative combination of antiangiogenesis and photodynamic therapy for enhanced efficacy. Adv. Mater. 2019, 31, 1808200.
[39]
K. Y. Ni,; T. K. Luo,; G. X. Lan,; A. Culbert,; Y. Song,; T. Wu,; X. M. Jiang,; W. B. Lin, A nanoscale metal-organic framework to mediate photodynamic therapy and deliver CpG oligodeoxynucleotides to enhance antigen presentation and cancer immunotherapy. Angew. Chem. 2020, 132, 1124-1128.
[40]
W. J. Zhu,; Y. Yang,; Q. T. Jin,; Y. Chao,; L. L. Tian,; J. J. Liu,; Z. L. Dong,; Z. Liu, Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemo-photodynamic cancer therapy. Nano Res. 2019, 12, 1307-1312.
[41]
L. C. He,; M. Brasino,; C. C. Mao,; S. Cho,; W. Park,; A. P. Goodwin,; J. N. Cha, DNA-assembled core-satellite upconverting-metal-organic framework nanoparticle superstructures for efficient photodynamic therapy. Small 2017, 13, 1700504.
[42]
Y. F. Li,; Z. H. Di,; J. H. Gao,; P. Cheng,; C. Z. Di,; G. Zhang,; B. Liu,; X. H. Shi,; L. D. Sun,; L. Li, et al. Heterodimers made of upconversion nanoparticles and metal-organic frameworks. J. Am. Chem. Soc. 2017, 139, 13804-13810.
[43]
Y. L. Shao,; B. Liu,; Z. H. Di,; G. Zhang,; L. D. Sun,; L. L. Li,; C. H. Yan, Engineering of upconverted metal-organic frameworks for near-infrared light-triggered combinational photodynamic/chemo-/ immunotherapy against hypoxic tumors. J. Am. Chem. Soc. 2020, 142, 3939-3946.
[44]
C. Liu,; B. Liu,; J. Zhao,; Z. H. Di,; D. Q. Chen,; Z. J. Gu,; L. L. Li,; Y. L. Zhao, Nd3+-sensitized upconversion metal-organic frameworks for mitochondria-targeted amplified photodynamic therapy. Angew. Chem., Int. Ed. 2020, 59, 2634-2638.
[45]
R. C. Lv,; D. Yang,; P. P. Yang,; J. T. Xu,; F. He,; S. L. Gai,; C. X. Li,; Y. L. Dai,; G. X. Yang,; J. Lin, Integration of upconversion nanoparticles and ultrathin black phosphorus for efficient photodynamic theranostics under 808 nm near-infrared light irradiation. Chem. Mater. 2016, 28, 4724-4734.
[46]
Z. Yuan,; L. Zhang,; S. Z. Li,; W. N. Zhang,; M. Lu,; Y. Pan,; X. J. Xie,; L. Huang,; W. Huang, Paving metal-organic frameworks with upconversion nanoparticles via self-assembly. J. Am. Chem. Soc. 2018, 140, 15507-15515.
[47]
J. N. Liu,; W. B. Bu,; L. M. Pan,; S. J. Zhang,; F. Chen,; L. P. Zhou,; K. L. Zhao,; W. J. Peng,; J. L. Shi, Simultaneous nuclear imaging and intranuclear drug delivery by nuclear-targeted multifunctional upconversion nanoprobes. Biomaterials 2012, 33, 7282-7290.
[48]
C. B. He,; K. D. Lu,; W. B. Lin, Nanoscale metal-organic frameworks for real-time intracellular pH sensing in live cells. J. Am. Chem. Soc. 2014, 136, 12253-12256.
[49]
L. Y. Zeng,; Y. W. Pan,; R. F. Zou,; J. C. Zhang,; Y. Tian,; Z. G. Teng,; S. J. Wang,; W. Z. Ren,; X. S. Xiao,; J. C. Zhang, et al. 808 nm-excited upconversion nanoprobes with low heating effect for targeted magnetic resonance imaging and high-efficacy photodynamic therapy in HER2-overexpressed breast cancer. Biomaterials 2016, 103, 116-127.
File
12274_2020_3025_MOESM1_ESM.pdf (3.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 April 2020
Revised: 28 July 2020
Accepted: 01 August 2020
Published: 29 August 2020
Issue date: December 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (NSFC) (Nos. 21601140 and 21871214), the Fundamental Research Funds for the Central Universities, and Open Research Fund of State Key Laboratory of Bioelectronics.

Return