[1]
J. F. Lovell,; T. W. B. Liu,; J. Chen,; G. Zheng, Activatable photosensitizers for imaging and therapy. Chem. Rev. 2010, 110, 2839-2857.
[2]
S. Y. Ye,; J. M. Rao,; S. H. Qiu,; J. L. Zhao,; H. He,; Z. L. Yan,; T. Yang,; Y. B. Deng,; H. T. Ke,; H. Yang, et al. Rational design of conjugated photosensitizers with controllable photoconversion for dually cooperative phototherapy. Adv. Mater. 2018, 30, 1801216.
[3]
S. S. Lucky,; K. C. Soo,; Y. Zhang, Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990-2042.
[4]
W. S. Chen,; J. Ouyang,; H. Liu,; M. Chen,; K. Zeng,; J. P. Sheng,; Z. J. Liu,; Y. J. Han,; L. Q. Wang,; J. Li, et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/ photothermal/chemotherapy of cancer. Adv. Mater. 2017, 29, 1603864.
[5]
W. P. Fan,; P. Huang,; X. Y. Chen, Overcoming the Achilles' heel of photodynamic therapy. Chem. Soc. Rev. 2016, 45, 6488-6519.
[6]
K. R. Deng,; C. X. Li,; S. S. Huang,; B. G. Xing,; D. Y. Jin,; Q. G. Zeng,; Z. Y. Hou,; J. Lin, Recent progress in near infrared light triggered photodynamic therapy. Small 2017, 13, 1702299.
[7]
C. Wang,; L. Cheng,; Z. Liu, Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics 2013, 3, 317-330.
[8]
F. Y. Li,; Y. Du,; J. N. Liu,; H. Sun,; J. Wang,; R. Q. Li,; D. Kim,; T. Hyeon,; D. S. Ling, Responsive assembly of upconversion nanoparticles for pH-activated and near-infrared-triggered photodynamic therapy of deep tumors. Adv. Mater. 2018, 30, 1802808.
[9]
Y. Y. Liu,; J. W. Zhang,; C. J. Zuo,; Z. Zhang,; D. L. Ni,; C. Zhang,; J. Wang,; H. Zhang,; Z. W. Yao,; W. B. Bu, Upconversion nano-photosensitizer targeting into mitochondria for cancer apoptosis induction and cyt c fluorescence monitoring. Nano Res. 2016, 9, 3257-3266.
[10]
W. P. Fan,; W. B. Bu,; J. L. Shi, On the latest three-stage development of nanomedicines based on upconversion nanoparticles. Adv. Mater. 2016, 28, 3987-4011.
[11]
S. Q. Yan,; X. M. Zeng,; Y. A. Tang,; B. F. Liu,; Y. Wang,; X. G. Liu, Activating antitumor immunity and antimetastatic effect through polydopamine-encapsulated core-shell upconversion nanoparticles. Adv. Mater. 2019, 31, 1905825.
[12]
B. Zhou,; B. Y. Shi,; D. Y. Jin,; X. G. Liu, Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 2015, 10, 924-936.
[13]
G. X. Bai,; M. K. Tsang,; J. H. Hao, Luminescent ions in advanced composite materials for multifunctional applications. Adv. Funct. Mater. 2016, 26, 6330-6350.
[14]
D. D. Zhang,; L. W. Wen,; R. Huang,; H. H. Wang,; X. L. Hu,; D. Xing, Mitochondrial specific photodynamic therapy by rare-earth nanoparticles mediated near-infrared graphene quantum dots. Biomaterials 2018, 153, 14-26.
[15]
S. He,; N. J. J. Johnson,; V. A. N. Huu,; Y. R. Huang,; A. Almutairi, Leveraging spectral matching between photosensitizers and upconversion nanoparticles for 808 nm-activated photodynamic therapy. Chem. Mater. 2018, 30, 3991-4000.
[16]
Y. Chen,; J. L. Ren,; D. Tian,; Y. C. Li,; H. Jiang,; J. T. Zhu, Polymer-upconverting nanoparticle hybrid micelles for enhanced synergistic chemo-photodynamic therapy: Effects of emission-absorption spectral match. Biomacromolecules 2019, 20, 4044-4052.
[17]
Y. F. Wang,; G. Y. Liu,; L. D. Sun,; J. W. Xiao,; J. C. Zhou,; C. H. Yan, Nd3+-sensitized upconversion nanophosphors: Efficient in vivo bioimaging probes with minimized heating effect. ACS Nano 2013, 7, 7200-7206.
[18]
B. Liu,; Y. Y. Chen,; C. X. Li,; F. He,; Z. Y. Hou,; S. S. Huang,; H. M. Zhu,; X. Y. Chen,; J. Lin, Poly(acrylic acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery. Adv. Funct. Mater. 2015, 25, 4717-4729.
[19]
Z. Y. Hou,; K. R. Deng,; M. F. Wang,; Y. H. Liu,; M. Y. Chang,; S. S. Huang,; C. X. Li,; Y. Wei,; Z. Y. Cheng,; G. Han, et al. Hydrogenated titanium oxide decorated upconversion nanoparticles: Facile laser modified synthesis and 808 nm near-infrared light triggered phototherapy. Chem. Mater. 2019, 31, 774-784.
[20]
X. Z. Ai,; C. J. H. Ho,; J. Aw,; A. B. E. Attia,; J. Mu,; Y. Wang,; X. Y. Wang,; Y. Wang,; X. G. Liu,; H. B. Chen, et al. In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics. Nat. Commun. 2016, 7, 10432.
[21]
Y. Li,; J. L. Tang,; D. X. Pan,; L. D. Sun,; C. Y. Chen,; Y. Liu,; Y. F. Wang,; S. Shi,; C. H. Yan, A versatile imaging and therapeutic platform based on dual-band luminescent lanthanide nanoparticles toward tumor metastasis inhibition. ACS Nano 2016, 10, 2766-2773.
[22]
B. Liu,; C. X. Li,; P. P. Yang,; Z. Y. Hou,; J. Lin, 808-nm-light-excited lanthanide-doped nanoparticles: Rational design, luminescence control and theranostic applications. Adv. Mater. 2017, 29, 1605434.
[23]
S. Lu,; D. T. Tu,; P. Hu,; J. Xu,; R. F. Li,; M. Wang,; Z. Chen,; M. D. Huang,; X. Y. Chen, Multifunctional nano-bioprobes based on rattle-structured upconverting luminescent nanoparticles. Angew. Chem., Int. Ed. 2015, 54, 7915-7919.
[24]
N. M. Idris,; M. K. Gnanasammandhan,; J. Zhang,; P. C. Ho,; R. Mahendran,; Y. Zhang, In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 2012, 18, 1580-1585.
[25]
L. E. Liang,; A. Care,; R. Zhang,; Y. Q. Lu,; N. H. Packer,; A. Sunna,; Y. Qian,; A. V. Zvyagin, Facile assembly of functional upconversion nanoparticles for targeted cancer imaging and photodynamic therapy. ACS Appl. Mater. Interfaces 2016, 8, 11945-11953.
[26]
J. T. Xu,; P. P. Yang,; M. D. Sun,; H. T. Bi,; B. Liu,; D. Yang,; S. L. Gai,; F. He,; J. Lin, Highly emissive dye-sensitized upconversion nanostructure for dual-photosensitizer photodynamic therapy and bioimaging. ACS Nano 2017, 11, 4133-4144.
[27]
S. Z. Wang,; C. M. McGuirk,; A. d'Aquino,; J. A. Mason,; C. A. Mirkin, Metal-organic framework nanoparticles. Adv. Mater. 2018, 30, 1800202.
[28]
P. Horcajada,; T. Chalati,; C. Serre,; B. Gillet,; C. Sebrie,; T. Baati,; J. F. Eubank,; D. Heurtaux,; P. Clayette,; C. Kreuz, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172-178.
[29]
L. Y. Zhang,; C. Liu,; Y. Gao,; Z. H. Li,; J. Xing,; W. Z. Ren,; L. L. Zhang,; A. G. Li,; G. M. Lu,; A. G. Wu, et al. ZD2-engineered gold nanostar@metal-organic framework nanoprobes for T1-weighted magnetic resonance imaging and photothermal therapy specifically toward triple-negative breast cancer. Adv. Healthcare Mater. 2018, 7, 1801144.
[30]
Z. M. He,; X. L. Huang,; C. Wang,; X. L. Li,; Y. J. Liu,; Z. J. Zhou,; S. Wang,; F. W. Zhang,; Z. T. Wang,; O. Jacobson, et al. A catalase-like metal-organic framework nanohybrid for O2-evolving synergistic chemoradiotherapy. Angew. Chem., Int. Ed. 2019, 58, 8752-8756.
[31]
M. J. Neufeld,; A. N. DuRoss,; M. R. Landry,; H. Winter,; A. M. Goforth,; C. Sun, Co-delivery of PARP and PI3K inhibitors by nanoscale metal-organic frameworks for enhanced tumor chemoradiation. Nano Res. 2019, 12, 3003-3017.
[32]
K. D. Lu,; T. Aung,; N. N. Guo,; R. Weichselbaum,; W. B. Lin, Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications. Adv. Mater. 2018, 30, 1707634.
[33]
Z. Zhang,; W. Sang,; L. S. Xie,; Y. L. Dai, Metal-organic frameworks for multimodal bioimaging and synergistic cancer chemotherapy. Coordin. Chem. Rev. 2019, 399, 213022.
[34]
C. Y. Sun,; C. Qin,; C. G. Wang,; Z. M. Su,; S. Wang,; X. L. Wang,; G. S. Yang,; K. Z. Shao,; Y. Q. Lan,; E. B. Wang, Chiral nanoporous metal-organic frameworks with high porosity as materials for drug delivery. Adv. Mater. 2011, 23, 5629-5632.
[35]
H. Cheng,; J. Y. Zhu,; S. Y. Li,; J. Y. Zeng,; Q. Lei,; K. W. Chen,; C. Zhang,; X. Z. Zhang, An O2 Self-sufficient biomimetic nanoplatform for highly specific and efficient photodynamic therapy. Adv. Funct. Mater. 2016, 26, 7847-7860.
[36]
K. D. Lu,; C. B. He,; W. B. Lin, Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc. 2014, 136, 16712-16715.
[37]
J. Park,; Q. Jiang,; D. W. Feng,; L. Q. Mao,; H. C. Zhou, Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy. J. Am. Chem. Soc. 2016, 138, 3518-3525.
[38]
H. Min,; J. Wang,; Y. Q. Qi,; Y. L. Zhang,; X. X. Han,; Y. Xu,; J. C. Xu,; Y. Li,; L. Chen,; K. M. Cheng, et al. Biomimetic metal-organic framework nanoparticles for cooperative combination of antiangiogenesis and photodynamic therapy for enhanced efficacy. Adv. Mater. 2019, 31, 1808200.
[39]
K. Y. Ni,; T. K. Luo,; G. X. Lan,; A. Culbert,; Y. Song,; T. Wu,; X. M. Jiang,; W. B. Lin, A nanoscale metal-organic framework to mediate photodynamic therapy and deliver CpG oligodeoxynucleotides to enhance antigen presentation and cancer immunotherapy. Angew. Chem. 2020, 132, 1124-1128.
[40]
W. J. Zhu,; Y. Yang,; Q. T. Jin,; Y. Chao,; L. L. Tian,; J. J. Liu,; Z. L. Dong,; Z. Liu, Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemo-photodynamic cancer therapy. Nano Res. 2019, 12, 1307-1312.
[41]
L. C. He,; M. Brasino,; C. C. Mao,; S. Cho,; W. Park,; A. P. Goodwin,; J. N. Cha, DNA-assembled core-satellite upconverting-metal-organic framework nanoparticle superstructures for efficient photodynamic therapy. Small 2017, 13, 1700504.
[42]
Y. F. Li,; Z. H. Di,; J. H. Gao,; P. Cheng,; C. Z. Di,; G. Zhang,; B. Liu,; X. H. Shi,; L. D. Sun,; L. Li, et al. Heterodimers made of upconversion nanoparticles and metal-organic frameworks. J. Am. Chem. Soc. 2017, 139, 13804-13810.
[43]
Y. L. Shao,; B. Liu,; Z. H. Di,; G. Zhang,; L. D. Sun,; L. L. Li,; C. H. Yan, Engineering of upconverted metal-organic frameworks for near-infrared light-triggered combinational photodynamic/chemo-/ immunotherapy against hypoxic tumors. J. Am. Chem. Soc. 2020, 142, 3939-3946.
[44]
C. Liu,; B. Liu,; J. Zhao,; Z. H. Di,; D. Q. Chen,; Z. J. Gu,; L. L. Li,; Y. L. Zhao, Nd3+-sensitized upconversion metal-organic frameworks for mitochondria-targeted amplified photodynamic therapy. Angew. Chem., Int. Ed. 2020, 59, 2634-2638.
[45]
R. C. Lv,; D. Yang,; P. P. Yang,; J. T. Xu,; F. He,; S. L. Gai,; C. X. Li,; Y. L. Dai,; G. X. Yang,; J. Lin, Integration of upconversion nanoparticles and ultrathin black phosphorus for efficient photodynamic theranostics under 808 nm near-infrared light irradiation. Chem. Mater. 2016, 28, 4724-4734.
[46]
Z. Yuan,; L. Zhang,; S. Z. Li,; W. N. Zhang,; M. Lu,; Y. Pan,; X. J. Xie,; L. Huang,; W. Huang, Paving metal-organic frameworks with upconversion nanoparticles via self-assembly. J. Am. Chem. Soc. 2018, 140, 15507-15515.
[47]
J. N. Liu,; W. B. Bu,; L. M. Pan,; S. J. Zhang,; F. Chen,; L. P. Zhou,; K. L. Zhao,; W. J. Peng,; J. L. Shi, Simultaneous nuclear imaging and intranuclear drug delivery by nuclear-targeted multifunctional upconversion nanoprobes. Biomaterials 2012, 33, 7282-7290.
[48]
C. B. He,; K. D. Lu,; W. B. Lin, Nanoscale metal-organic frameworks for real-time intracellular pH sensing in live cells. J. Am. Chem. Soc. 2014, 136, 12253-12256.
[49]
L. Y. Zeng,; Y. W. Pan,; R. F. Zou,; J. C. Zhang,; Y. Tian,; Z. G. Teng,; S. J. Wang,; W. Z. Ren,; X. S. Xiao,; J. C. Zhang, et al. 808 nm-excited upconversion nanoprobes with low heating effect for targeted magnetic resonance imaging and high-efficacy photodynamic therapy in HER2-overexpressed breast cancer. Biomaterials 2016, 103, 116-127.