[1]
L. Cademartiri,; K. J. M. Bishop, Programmable self-assembly. Nat. Mater. 2015, 14, 2-9.
[2]
S. Ravaine,; E. Duguet, Synthesis and assembly of patchy particles: Recent progress and future prospects. Curr. Opin. Colloid Interface Sci. 2017, 30, 45-53.
[3]
L. L. Zhang,; S. C. Glotzer, Self-Assembly of patchy particles. Nano Lett. 2004, 4, 1407-1413.
[4]
Y. F. Wang,; Y. Wang,; D. R. Breed,; V. N. Manoharan,; L. Feng,; A. D. Hollingsworth,; M. Weck,; D. J. Pine, Colloids with valence and specific directional bonding. Nature 2012, 491, 51-55.
[5]
E. Duguet,; C. Hubert,; C. Chomette,; A. A. Perro; S. Ravaine Patchy colloidal particles for programmed self assembly. C. R. Chimie 2016, 19, 173-182.
[6]
Y. Wang,; Y. F. Wang,; X. L. Zheng,; G. R. Yi,; S. Sacanna,; D. J. Pine,; M. Weck, Three-dimensional lock and key colloids. J. Am. Chem. Soc. 2014, 136, 6866-6869.
[7]
P. E. Rouet,; C. Chomette,; E. Duguet,; S. Ravaine, Colloidal molecules from valence-endowed nanoparticles by covalent chemistry. Angew. Chem., Int. Ed. 2018, 57, 15754-15757.
[8]
P. E. Rouet,, C. Chomette,; L. Adumeau,; E. Duguet,; S. Ravaine, Colloidal chemistry with patchy silica nanoparticles. Beilstein J. Nanotechnol. 2018, 9, 2989-2998.
[9]
W. Y. Li,; S. Ravaine,; E. Duguet, Clustering of asymmetric dumbbell-shaped silica/polystyrene nanoparticles by solvent-induced self-assembly. J. Colloid Interface Sci. 2020, 560, 639-648.
[10]
Q. Chen,; S. C. Bae,; S. Granick, Directed self-assembly of a colloidal kagome lattice. Nature 2011, 469, 381-384.
[11]
D. J. Lunn,; J. R. Finnegan,; I. Manners, Self-assembly of “patchy” nanoparticles: A versatile approach to functional hierarchical materials. Chem. Sci. 2015, 6, 3663-3673.
[12]
P. C. Song,; Y. F. Wang,; Y. Wang,; A. D. Hollingsworth,; M. Weck,; D. J. Pine,; M. D. Ward, Patchy particle packing under electric fields. J. Am. Chem. Soc. 2015, 137, 3069-3075.
[13]
J. Yan,; M. Han,; J. Zhang,; C. Xu,; E. Luijten,; S. Granick, Reconfiguring active particles by electrostatic imbalance. Nat. Mater. 2016, 15, 1095-1099.
[14]
L. J. Hill,; J. Pyun, Colloidal polymers via dipolar assembly of magnetic nanoparticle monomers. ACS Appl. Mater. Interfaces 2014, 6, 6022-6032.
[15]
S. Shaw,; L. Cademartiri, Nanowires and nanostructures that grow like polymer molecules. Adv. Mater. 2013, 25, 4829-4844.
[16]
K. Liu,; N. N. Zhao,; E. Kumacheva, Self-assembly of inorganic nanorods. Chem. Soc. Rev. 2011, 40, 656-671.
[17]
B. B. Luo,; J. W. Smith,; Z. X. Wu,; J. Kim,; Z. H. Ou,; Q. Chen, Polymerization-like co-assembly of silver nanoplates and patchy spheres. ACS Nano 2017, 11, 7626-7633.
[18]
S. Onishi,; M. Tokuda,; T. Suzuki,; H. Minami, Preparation of Janus particles with different stabilizers and formation of one-dimensional particle arrays. Langmuir 2015, 31, 674-678.
[19]
S. P. Zhao,; Y. Y. Wu,; W. S. Lu,; B. Liu, Capillary force driving directional 1D assembly of patchy colloidal discs. ACS Macro Lett. 2019, 8, 363-367.
[20]
H. Onoe,; K. Matsumoto,; I. Shimoyama, Three-dimensional sequential self-assembly of microscale objects. Small 2007, 3, 1383-1389.
[21]
K. K. Caswell,; J. N. Wilson,; U. H. F. Bunz,; C. J. Murphy, Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors. J. Am. Chem. Soc. 2003, 125, 13914-13915.
[22]
Z. H. Nie,; D. Fava,; E. Kumacheva,; S. Zou,; G. C. Walker,; M. Rubinstein, Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers. Nat. Mater. 2007, 6, 609-614.
[23]
K. Liu,; Z. H. Nie,; N. N. Zhao,; W. Li,; M. Rubinstein,; E. Kumacheva, Step-growth polymerization of inorganic nanoparticles. Science 2010, 329, 197-200.
[24]
R. M. Choueiri,; E. Galati,; A. Klinkova,; H. Thérien-Aubin,; E. Kumacheva, Linear assembly of patchy and non-patchy nanoparticles. Faraday Discuss. 2016, 191, 198-204.
[25]
A. Klinkova,; H. Thérien-Aubin,; R. M. Choueiri,; M. Rubinstein,; E. Kumacheva, Colloidal analogs of molecular chain stoppers. Proc. Natl. Acad. Sci. USA 2013, 110, 18775-18779.
[26]
Z. H. Nie,; D. Fava,; M. Rubinstein,; E. Kumacheva, “Supramolecular” assembly of gold nanorods end-terminated with polymer “pom-poms”: Effect of pom-pom structure on the association modes. J. Am. Chem. Soc. 2008, 130, 3683-3689.
[27]
K. Liu,; C. Resetco,; E. Kumacheva, Salt-mediated kinetics of the self-assembly of gold nanorods end-tethered with polymer ligands. Nanoscale 2012, 4, 6574-6580.
[28]
S. Sacanna,; W. T. M. Irvine,; P. M. Chaikin,; D. J. Pine, Lock and key colloids. Nature 2010, 464, 575-578.
[29]
T. Tigges,; A. Walther, Hierarchical self-assembly of 3D-printed lock-and-key colloids through shape recognition. Angew. Chem., Int. Ed. 2016, 55, 11261-11265.
[30]
T. Tigges,; T. Heuser,; R. Tiwari,; A. Walther, 3D DNA origami cuboids as monodisperse patchy nanoparticles for switchable hierarchical self-assembly. Nano Lett. 2016, 16, 7870-7874.
[31]
A. H. Gröschel,; F. H. Schacher,; H. Schmalz,; O. V. Borisov,; E. B. Zhulina,; A. Walther,; A. H. E. Müller, Precise hierarchical self-assembly of multicompartment micelles. Nat. Commun. 2012, 3, 710.
[32]
A. H. Gröschel,; A. Walther,; T. I. Löbling,; F. H. Schacher,; H. Schmalz,; A. H. E. Müller, Guided hierarchical co-assembly of soft patchy nanoparticles. Nature 2013, 503, 247-251.
[33]
T. I. Löbling,; O. Borisov,; J. S. Haataja,; O. Ikkala,; A. H. Gröschel,; A. H. E. Müller, Rational design of ABC triblock terpolymer solution nanostructures with controlled patch morphology. Nat. Commun. 2016, 7, 12097.
[34]
J. H. Kim,; W. J. Kwon,; B. H. Sohn, Supracolloidal polymer chains of diblock copolymer micelles. Chem. Commun. 2015, 51, 3324-3327.
[35]
K. Kim,; S. Jang,; J. Jeon,; D. Kang,; B. H. Sohn, Fluorescent supracolloidal chains of patchy micelles of diblock copolymers functionalized with fluorophores. Langmuir 2018, 34, 4634-4639.
[36]
S. Lee,; S. Jang,; K. Kim,; J. Jeon,; S. S. Kim,; B. H. Sohn, Branched and crosslinked supracolloidal chains with diblock copolymer micelles having three well-defined patches. Chem. Commun. 2016, 52, 9430-9433.
[37]
S. Jang,; K. Kim,; J. Jeon,; D. Kang,; B. H. Sohn, Supracolloidal chains of patchy micelles of diblock copolymers with in situ synthesized nanoparticles. Soft Matter 2017, 13, 6756-6760.
[38]
H. B. Qiu,; Z. M. Hudson,; M. A. Winnik,; I. Manners, Multidimensional hierarchical self-assembly of amphiphilic cylindrical block comicelles. Science 2015, 347, 1329-1332.
[39]
A. Désert,; J. Morele,; J. C. Taveau,; O. Lambert,; M. Lansalot,; E. Bourgeat-Lami,; A. Thill,; O. Spalla,; L. Belloni,; S. Ravaine, et al. Multipod-like silica/polystyrene clusters. Nanoscale 2016, 8, 5454-5469.
[40]
A. Désert,; C. Hubert,; Z. Fu,; L. Moulet,; J. Majimel,; P. Barboteau,; A. Thill,; M. Lansalot,; E. Bourgeat-Lami,; E. Duguet, et al. Synthesis and site-specific functionalization of tetravalent, hexavalent, and dodecavalent silica particles. Angew. Chem., Int. Ed. 2013, 52, 11068-11072.
[41]
D. G. Duff,; A. Baiker,; P. P. Edwards, A new hydrosol of gold clusters. J. Chem. Soc., Chem. Commun. 1993, 96-98.
[42]
C. Chomette,; E. Duguet,; S. Mornet,; E. Yammine,; V. N. Manoharan,; N. B. Schade,; C. Hubert,; S. Ravaine,; A. Perro,; M. Tréguer-Delapierre, Templated growth of gold satellites on dimpled silica cores. Faraday Discuss. 2016, 191, 105-116.
[43]
C. L. Yi,; Y. Q. Yang,; Z. H. Nie, Alternating copolymerization of inorganic nanoparticles. J. Am. Chem. Soc. 2019, 141, 7917-7925.
[44]
P. J. Flory, Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, 1953.
[45]
I. Coluzza,; P. D. J. Van Oostrum,; B. Capone,; E. Reimhult,; C. Dellago, Design and folding of colloidal patchy polymers. Soft Matter 2013, 9, 938-944.