Journal Home > Volume 13 , Issue 12

We report the formation of colloidal polymers consisting of disk-like silica nanoparticles (NPs) with polystyrene (PS) chains at the bottom of their two cavities assembled through reduction of the solvent quality for the PS chains and linked by hydrophobic associations. We show that this NPs assembly exhibits a two-stage process involving reaction-controlled polymerization and diffusion-controlled polymerization. Colloidal polymer networks are produced by the incorporation of three-patch NPs, which serve as branching points between the colloidal chains. By co-assembling preformed homopolymers composed of patchy NPs of different sizes or surface chemical groups, block copolymers are also achieved. This study provides insight into the process of self-assembly of two-patch NPs by precisely designing the components to generate colloidal analogues of linear macromolecular chains.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Self-assembly of colloidal polymers from two-patch silica nanoparticles

Show Author's information Weiya Li1,2Bin Liu1,2Céline Hubert1,3Adeline Perro3Etienne Duguet2Serge Ravaine1( )
Univ. Bordeaux, CNRS, CRPP, UMR 5031, Pessac 33600, France
Univ. Bordeaux, CNRS, ICMCB, UMR 5026, Pessac 33600, France
Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence 33400, France

Abstract

We report the formation of colloidal polymers consisting of disk-like silica nanoparticles (NPs) with polystyrene (PS) chains at the bottom of their two cavities assembled through reduction of the solvent quality for the PS chains and linked by hydrophobic associations. We show that this NPs assembly exhibits a two-stage process involving reaction-controlled polymerization and diffusion-controlled polymerization. Colloidal polymer networks are produced by the incorporation of three-patch NPs, which serve as branching points between the colloidal chains. By co-assembling preformed homopolymers composed of patchy NPs of different sizes or surface chemical groups, block copolymers are also achieved. This study provides insight into the process of self-assembly of two-patch NPs by precisely designing the components to generate colloidal analogues of linear macromolecular chains.

Keywords: self-assembly, nanoparticles, colloidal polymers, patchy

References(45)

[1]
L. Cademartiri,; K. J. M. Bishop, Programmable self-assembly. Nat. Mater. 2015, 14, 2-9.
[2]
S. Ravaine,; E. Duguet, Synthesis and assembly of patchy particles: Recent progress and future prospects. Curr. Opin. Colloid Interface Sci. 2017, 30, 45-53.
[3]
L. L. Zhang,; S. C. Glotzer, Self-Assembly of patchy particles. Nano Lett. 2004, 4, 1407-1413.
[4]
Y. F. Wang,; Y. Wang,; D. R. Breed,; V. N. Manoharan,; L. Feng,; A. D. Hollingsworth,; M. Weck,; D. J. Pine, Colloids with valence and specific directional bonding. Nature 2012, 491, 51-55.
[5]
E. Duguet,; C. Hubert,; C. Chomette,; A. A. Perro; S. Ravaine Patchy colloidal particles for programmed self assembly. C. R. Chimie 2016, 19, 173-182.
[6]
Y. Wang,; Y. F. Wang,; X. L. Zheng,; G. R. Yi,; S. Sacanna,; D. J. Pine,; M. Weck, Three-dimensional lock and key colloids. J. Am. Chem. Soc. 2014, 136, 6866-6869.
[7]
P. E. Rouet,; C. Chomette,; E. Duguet,; S. Ravaine, Colloidal molecules from valence-endowed nanoparticles by covalent chemistry. Angew. Chem., Int. Ed. 2018, 57, 15754-15757.
[8]
P. E. Rouet,, C. Chomette,; L. Adumeau,; E. Duguet,; S. Ravaine, Colloidal chemistry with patchy silica nanoparticles. Beilstein J. Nanotechnol. 2018, 9, 2989-2998.
[9]
W. Y. Li,; S. Ravaine,; E. Duguet, Clustering of asymmetric dumbbell-shaped silica/polystyrene nanoparticles by solvent-induced self-assembly. J. Colloid Interface Sci. 2020, 560, 639-648.
[10]
Q. Chen,; S. C. Bae,; S. Granick, Directed self-assembly of a colloidal kagome lattice. Nature 2011, 469, 381-384.
[11]
D. J. Lunn,; J. R. Finnegan,; I. Manners, Self-assembly of “patchy” nanoparticles: A versatile approach to functional hierarchical materials. Chem. Sci. 2015, 6, 3663-3673.
[12]
P. C. Song,; Y. F. Wang,; Y. Wang,; A. D. Hollingsworth,; M. Weck,; D. J. Pine,; M. D. Ward, Patchy particle packing under electric fields. J. Am. Chem. Soc. 2015, 137, 3069-3075.
[13]
J. Yan,; M. Han,; J. Zhang,; C. Xu,; E. Luijten,; S. Granick, Reconfiguring active particles by electrostatic imbalance. Nat. Mater. 2016, 15, 1095-1099.
[14]
L. J. Hill,; J. Pyun, Colloidal polymers via dipolar assembly of magnetic nanoparticle monomers. ACS Appl. Mater. Interfaces 2014, 6, 6022-6032.
[15]
S. Shaw,; L. Cademartiri, Nanowires and nanostructures that grow like polymer molecules. Adv. Mater. 2013, 25, 4829-4844.
[16]
K. Liu,; N. N. Zhao,; E. Kumacheva, Self-assembly of inorganic nanorods. Chem. Soc. Rev. 2011, 40, 656-671.
[17]
B. B. Luo,; J. W. Smith,; Z. X. Wu,; J. Kim,; Z. H. Ou,; Q. Chen, Polymerization-like co-assembly of silver nanoplates and patchy spheres. ACS Nano 2017, 11, 7626-7633.
[18]
S. Onishi,; M. Tokuda,; T. Suzuki,; H. Minami, Preparation of Janus particles with different stabilizers and formation of one-dimensional particle arrays. Langmuir 2015, 31, 674-678.
[19]
S. P. Zhao,; Y. Y. Wu,; W. S. Lu,; B. Liu, Capillary force driving directional 1D assembly of patchy colloidal discs. ACS Macro Lett. 2019, 8, 363-367.
[20]
H. Onoe,; K. Matsumoto,; I. Shimoyama, Three-dimensional sequential self-assembly of microscale objects. Small 2007, 3, 1383-1389.
[21]
K. K. Caswell,; J. N. Wilson,; U. H. F. Bunz,; C. J. Murphy, Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors. J. Am. Chem. Soc. 2003, 125, 13914-13915.
[22]
Z. H. Nie,; D. Fava,; E. Kumacheva,; S. Zou,; G. C. Walker,; M. Rubinstein, Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers. Nat. Mater. 2007, 6, 609-614.
[23]
K. Liu,; Z. H. Nie,; N. N. Zhao,; W. Li,; M. Rubinstein,; E. Kumacheva, Step-growth polymerization of inorganic nanoparticles. Science 2010, 329, 197-200.
[24]
R. M. Choueiri,; E. Galati,; A. Klinkova,; H. Thérien-Aubin,; E. Kumacheva, Linear assembly of patchy and non-patchy nanoparticles. Faraday Discuss. 2016, 191, 198-204.
[25]
A. Klinkova,; H. Thérien-Aubin,; R. M. Choueiri,; M. Rubinstein,; E. Kumacheva, Colloidal analogs of molecular chain stoppers. Proc. Natl. Acad. Sci. USA 2013, 110, 18775-18779.
[26]
Z. H. Nie,; D. Fava,; M. Rubinstein,; E. Kumacheva, “Supramolecular” assembly of gold nanorods end-terminated with polymer “pom-poms”: Effect of pom-pom structure on the association modes. J. Am. Chem. Soc. 2008, 130, 3683-3689.
[27]
K. Liu,; C. Resetco,; E. Kumacheva, Salt-mediated kinetics of the self-assembly of gold nanorods end-tethered with polymer ligands. Nanoscale 2012, 4, 6574-6580.
[28]
S. Sacanna,; W. T. M. Irvine,; P. M. Chaikin,; D. J. Pine, Lock and key colloids. Nature 2010, 464, 575-578.
[29]
T. Tigges,; A. Walther, Hierarchical self-assembly of 3D-printed lock-and-key colloids through shape recognition. Angew. Chem., Int. Ed. 2016, 55, 11261-11265.
[30]
T. Tigges,; T. Heuser,; R. Tiwari,; A. Walther, 3D DNA origami cuboids as monodisperse patchy nanoparticles for switchable hierarchical self-assembly. Nano Lett. 2016, 16, 7870-7874.
[31]
A. H. Gröschel,; F. H. Schacher,; H. Schmalz,; O. V. Borisov,; E. B. Zhulina,; A. Walther,; A. H. E. Müller, Precise hierarchical self-assembly of multicompartment micelles. Nat. Commun. 2012, 3, 710.
[32]
A. H. Gröschel,; A. Walther,; T. I. Löbling,; F. H. Schacher,; H. Schmalz,; A. H. E. Müller, Guided hierarchical co-assembly of soft patchy nanoparticles. Nature 2013, 503, 247-251.
[33]
T. I. Löbling,; O. Borisov,; J. S. Haataja,; O. Ikkala,; A. H. Gröschel,; A. H. E. Müller, Rational design of ABC triblock terpolymer solution nanostructures with controlled patch morphology. Nat. Commun. 2016, 7, 12097.
[34]
J. H. Kim,; W. J. Kwon,; B. H. Sohn, Supracolloidal polymer chains of diblock copolymer micelles. Chem. Commun. 2015, 51, 3324-3327.
[35]
K. Kim,; S. Jang,; J. Jeon,; D. Kang,; B. H. Sohn, Fluorescent supracolloidal chains of patchy micelles of diblock copolymers functionalized with fluorophores. Langmuir 2018, 34, 4634-4639.
[36]
S. Lee,; S. Jang,; K. Kim,; J. Jeon,; S. S. Kim,; B. H. Sohn, Branched and crosslinked supracolloidal chains with diblock copolymer micelles having three well-defined patches. Chem. Commun. 2016, 52, 9430-9433.
[37]
S. Jang,; K. Kim,; J. Jeon,; D. Kang,; B. H. Sohn, Supracolloidal chains of patchy micelles of diblock copolymers with in situ synthesized nanoparticles. Soft Matter 2017, 13, 6756-6760.
[38]
H. B. Qiu,; Z. M. Hudson,; M. A. Winnik,; I. Manners, Multidimensional hierarchical self-assembly of amphiphilic cylindrical block comicelles. Science 2015, 347, 1329-1332.
[39]
A. Désert,; J. Morele,; J. C. Taveau,; O. Lambert,; M. Lansalot,; E. Bourgeat-Lami,; A. Thill,; O. Spalla,; L. Belloni,; S. Ravaine, et al. Multipod-like silica/polystyrene clusters. Nanoscale 2016, 8, 5454-5469.
[40]
A. Désert,; C. Hubert,; Z. Fu,; L. Moulet,; J. Majimel,; P. Barboteau,; A. Thill,; M. Lansalot,; E. Bourgeat-Lami,; E. Duguet, et al. Synthesis and site-specific functionalization of tetravalent, hexavalent, and dodecavalent silica particles. Angew. Chem., Int. Ed. 2013, 52, 11068-11072.
[41]
D. G. Duff,; A. Baiker,; P. P. Edwards, A new hydrosol of gold clusters. J. Chem. Soc., Chem. Commun. 1993, 96-98.
[42]
C. Chomette,; E. Duguet,; S. Mornet,; E. Yammine,; V. N. Manoharan,; N. B. Schade,; C. Hubert,; S. Ravaine,; A. Perro,; M. Tréguer-Delapierre, Templated growth of gold satellites on dimpled silica cores. Faraday Discuss. 2016, 191, 105-116.
[43]
C. L. Yi,; Y. Q. Yang,; Z. H. Nie, Alternating copolymerization of inorganic nanoparticles. J. Am. Chem. Soc. 2019, 141, 7917-7925.
[44]
P. J. Flory, Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, 1953.
[45]
I. Coluzza,; P. D. J. Van Oostrum,; B. Capone,; E. Reimhult,; C. Dellago, Design and folding of colloidal patchy polymers. Soft Matter 2013, 9, 938-944.
File
12274_2020_3024_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 January 2020
Revised: 31 July 2020
Accepted: 01 August 2020
Published: 09 September 2020
Issue date: December 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the Agence Nationale de la Recherche (ENLARgER project, No. ANR-15-CE09-0010), the LabEx AMADEus (No. ANR-10-LABX-42) and IdEx Bordeaux (No. ANR-10-IDEX-03-02), that is, the Investissements d’Avenir programme of the French government managed by the Agence Nationale de la Recherche. W. Y. L. and B. L. are supported by a grant from the China Scholarship Council. Some of the TEM experiments were performed at the Plateforme de Caractérisation des Matériaux (UMS 3626, Pessac, France). A. Arnould, R. Soulas and S. Aguy are greatly thanked for their help during the liquid cell electron microscopy experiments.

Return