Journal Home > Volume 14 , Issue 6

The development of magnetic two-dimensional (2D) materials in its infancy has generated an enormous amount of attention as it offers an ideal platform for the exploration of magnetic properties down to the 2D limit, paving the way for spintronic devices. Due to the nonnegligible advantages including time efficiency and simplified process, the facile bottom-up chemical vapor deposition (CVD) is regarded as a robust method to fabricate ultrathin magnetic nanosheets. Recently, some ultrathin magnets possessing fascinating properties have been successfully synthesized via CVD. Here, the recent researches toward magnetic 2D materials grown by CVD are systematically summarized with special emphasis on the fabrication methods. Then, heteroatoms doping and phase transition induced in CVD growth to bring or tune the magnetic properties in 2D materials are discussed. Characterizations and applications of these magnetic materials are also discussed and reviewed. Finally, some perspectives in need of urgent attention regarding the development of CVD-grown magnetic 2D materials are proposed.


menu
Abstract
Full text
Outline
About this article

Synthesis of magnetic two-dimensional materials by chemical vapor deposition

Show Author's information Huaning JiangPeng ZhangXingguo WangYongji Gong( )
School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Abstract

The development of magnetic two-dimensional (2D) materials in its infancy has generated an enormous amount of attention as it offers an ideal platform for the exploration of magnetic properties down to the 2D limit, paving the way for spintronic devices. Due to the nonnegligible advantages including time efficiency and simplified process, the facile bottom-up chemical vapor deposition (CVD) is regarded as a robust method to fabricate ultrathin magnetic nanosheets. Recently, some ultrathin magnets possessing fascinating properties have been successfully synthesized via CVD. Here, the recent researches toward magnetic 2D materials grown by CVD are systematically summarized with special emphasis on the fabrication methods. Then, heteroatoms doping and phase transition induced in CVD growth to bring or tune the magnetic properties in 2D materials are discussed. Characterizations and applications of these magnetic materials are also discussed and reviewed. Finally, some perspectives in need of urgent attention regarding the development of CVD-grown magnetic 2D materials are proposed.

Keywords: two-dimensional materials, chemical vapor deposition, magnetic materials, properties tuning

References(93)

[1]
J. C. Meyer,; A. K. Geim,; M. I. Katsnelson,; K. S. Novoselov,; T. J. Booth,; S. Roth, The structure of suspended graphene sheets. Nature 2007, 446, 60-63.
[2]
Y. Kubota,; K. Watanabe,; O. Tsuda,; T. Taniguchi, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932-934.
[3]
L. Viti,; J. Hu,; D. Coquillat,; A. Politano,; C. Consejo,; W. Knap,; M. S. Vitiello, Heterostructured hBN-BP-hBN nanodetectors at Terahertz frequencies. Adv. Mater. 2016, 28, 7390-7396.
[4]
L. K. Li,; Y. J. Yu,; G. J. Ye,; Q. Q. Ge,; X. D. Ou,; H. Wu,; D. L. Feng,; X. H. Chen,; Y. B. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.
[5]
L. Shulenburger,; A. D. Baczewski,; Z. Zhu,; J. Guan,; D. Tománek, The nature of the interlayer interaction in bulk and few-layer phosphorus. Nano Lett. 2015, 15, 8170-8175.
[6]
M. Chhowalla,; H. S. Shin,; G. Eda,; L. J. Li,; K. P. Loh,; H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.
[7]
G. R. Bhimanapati,; Z. Lin,; V. Meunier,; Y. Jung,; J. Cha,; S. Das,; D. Xiao,; Y. Son,; M. S. Strano,; V. Cooper, et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 2015, 9, 11509-11539.
[8]
W. Jiang,; X. D. Wang,; Y. Chen,; G. J. Wu,; K. Ba,; N. N. Xuan,; Y. Y. Sun,; P. Gong,; J. X. Bao,; H. Shen, et al. Larg-area high quality PtSe2 thin film with versatile polarity. InfoMat 2019, 1, 260-267.
[9]
S. Chen,; J. F. Gao,; B. M. Srinivasan,; Y. W. Zhang, A kinetic Monte Carlo study for mono- and bi-layer growth of MoS2 during chemical vapor deposition. Acta Phys. -Chim. Sinica 2019, 35, 1119-1127.
[10]
C. X. Cong,; J. Z. Shang,; L. Niu,; L. S. Wu,; Y. Chen,; C. J. Zou,; S. Feng,; Z. J. Qiu,; L. G. Hu,; P. F. Tian, et al. Anti-Stokes photoluminescence of van der Waals layered semiconductor PbI2. Adv. Opt. Mater. 2017, 5, 1700609.
[11]
Y. G. Guo,; W. A. Saidi,; W. Qian, 2D halide Perovskite-based van der Waals heterostructures: Contact evaluation and performance modulation. 2D Mater. 2017, 4, 035009.
[12]
E. Londero,; E. Schröder, Role of van der Waals bonding in the layered oxide V2O5: First-principles density-functional calculations. Phys. Rev. B 2010, 82, 054116.
[13]
Z. B. Zheng,; J. N. Chen,; Y. Wang,; X. M. Wang,; X. B. Chen,; P. Y. Liu,; J. B. Xu,; W. G. Xie,; H. J. Chen,; S. Z. Deng, et al. Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides. Adv. Mater. 2018, 30, 1705318.
[14]
Z. K. Tang,; C. J. Tong,; W. Geng,; D. Y. Zhang,; L. M. Liu, Two-dimensional Ni(OH)2-XS2 (X = Mo and W) heterostructures. 2D Mater. 2015, 2, 034014.
[15]
S. Kim,; A. Konar,; W. S. Hwang,; J. H. Lee,; J. Lee,; J. Yang,; C. Jung,; H. Kim,; J. B. Yoo,; J. Y. Choi, et al. High-mobility and low- power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.
[16]
H. L. Zeng,; X. D. Cui, An optical spectroscopic study on two- dimensional group-VI transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2629-2642.
[17]
S. M. Li,; M. C. Tian,; Q. G. Gao,; M. F. Wang,; T. Y. Li,; Q. L. Hu,; X. F. Li,; Y. Q. Wu, Nanometre-thin indium tin oxide for advanced high-performance electronics. Nat. Mater. 2019, 18, 1091-1097.
[18]
K. S. Burch,; D. Mandrus,; J. G. Park, Magnetism in two-dimensional van der Waals materials. Nature 2018, 563, 47-52.
[19]
C. Gong,; X. Zhang, Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450.
[20]
M. Gibertini,; M. Koperski,; A. F. Morpurgo,; K. S. Novoselov, Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408-419.
[21]
Z. Y. Lin,; Y. Liu,; U. Halim,; M. N. Ding,; Y. Y. Liu,; Y. L. Wang,; C. C. Jia,; P. Chen,; X. D. Duan,; C. Wang, et al. Solution- processable 2D semiconductors for high-performance large-area electronics. Nature 2018, 562, 254-258.
[22]
Z. Wang,; P. Wang,; F. Wang,; J. F. Ye,; T. He,; F. Wu,; M. Peng,; P. S. Wu,; Y. F. Chen,; F. Zhong, et al. A noble metal dichalcogenide for high-performance field-effect transistors and broadband photodetectors. Adv. Funct. Mater. 2020, 30, 1907945.
[23]
Q. H. Wang,; K. Kalantar-Zadeh,; A. Kis,; J. N. Coleman,; M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[24]
B. W. H. Baugher,; H. O. H. Churchill,; Y. F. Yang,; P. Jarillo-Herrero, Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 2014, 9, 262-267.
[25]
S. W. Jiang,; L. Z. Li,; Z. F. Wang,; J. Shan,; K. F. Mak, Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures. Nat. Electronics 2019, 2, 159-163.
[26]
X. Y. Lin,; W. Yang,; K. L. Wang,; W. S. Zhao, Two-dimensional spintronics for low-power electronics. Nat. Electronics 2019, 2, 274-283.
[27]
W. Zhang,; P. K. J. Wong,; R. Zhu,; A. T. S. Wee, Van der Waals magnets: Wonder building blocks for two-dimensional spintronics? InfoMat 2019, 1, 479-495.
[28]
H. González-Herrero,; J. M. Gómez-Rodríguez,; P. Mallet,; M. Moaied,; J. J. Palacios,; C. Salgado,; M. M. Ugeda,; J. Y. Veuillen,; F. Yndurain,; I. Brihuega, Atomic-scale control of graphene magnetism by using hydrogen atoms. Science 2016, 352, 437-441.
[29]
J. Červenka,; M. I. Katsnelson,; C. F. J. Flipse, Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. Nat. Phys. 2009, 5, 840-844.
[30]
A. Avsar,; A. Ciarrocchi,; M. Pizzochero,; D. Unuchek,; O. V. Yazyev,; A. Kis, Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2. Nat. Nanotechnol. 2019, 14, 674-678.
[31]
S. V. Eremeev,; M. M. Otrokov,; E. V. Chulkov, New universal type of interface in the magnetic insulator/topological insulator heterostructures. Nano Lett. 2018, 18, 6521-6529.
[32]
T. Hu,; G. D. Zhao,; H. Gao,; Y. B. Wu,; J. S. Hong,; A. Stroppa,; W. Ren, Manipulation of valley pseudospin in WSe2/CrI3 heterostructures by the magnetic proximity effect. Phys. Rev. B 2020, 101, 125401.
[33]
N. D. Mermin,; H. Wagner, Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 1966, 17, 1133-1136.
[34]
C. Gong,; L. Li,; Z. L. Li,; H. W. Ji,; A. Stern,; Y. Xia,; T. Cao,; W. Bao,; C. Z. Wang,; Y. Wang, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265-269.
[35]
Z. Y. Fei,; B. Huang,; P. Malinowski,; W. B. Wang,; T. C. Song,; J. Sanchez,; W. Yao,; D. Xiao,; X. Y. Zhu,; A. F. May, et al. Two- dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 2018, 17, 778-782.
[36]
D. J. O’Hara,; T. C. Zhu,; A. H. Trout,; A. S. Ahmed,; Y. K. Luo,; C. H. Lee,; M. R. Brenner,; S. Rajan,; J. A. Gupta,; D. W. McComb, et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 2018, 18, 3125-3131.
[37]
L. X. Kang,; C. Ye,; X. X. Zhao,; X. Y. Zhou,; J. X. Hu,; Q. Li,; D. Liu,; C. Das,; J. F. Yang,; D. Y. Hu, et al. Phase-controllable growth of ultrathin 2D magnetic FeTe crystals. Nat. Commun. 2020, 11, 3729.
[38]
B. Huang,; G. Clark,; E. Navarro-Moratalla,; D. R. Klein,; R. Cheng,; K. L. Seyler,; D. Zhong,; E. Schmidgall,; M. A. McGuire,; D. H. Cobden, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270-273.
[39]
C. F. Van Bruggen,; C. Haas, Magnetic susceptibility and electrical properties of VSe2 single crystals. Solid State Commun. 1976, 20, 251-254.
[40]
M. Bonilla,; S. Kolekar,; Y. J. Ma,; H. C. Diaz,; V. Kalappattil,; R. Das,; T. Eggers,; H. R. Gutierrez,; M. H. Phan,; M. Batzill, Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289-293.
[41]
Y. J. Deng,; Y. J. Yu,; Y. C. Song,; J. Z. Zhang,; N. Z. Wang,; Z. Y. Sun,; Y. F. Yi,; Y. Z. Wu,; S. W. Wu,; J. Y. Zhu, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94-99.
[42]
B., Clark, G. Huang,; D. R. Klein,; D. MacNeill,; E. Navarro-Moratalla,; K. L. Seyler,; N. Wilson,; M. A. McGuire,; D. H. Cobden,; D. Xiao, et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544-548.
[43]
W. Chen,; Z. Y. Sun,; Z. J. Wang,; L. H. Gu,; X. D. Xu,; S. W. Wu,; C. L. Gao, Direct observation of van der Waals stacking-dependent interlayer magnetism. Science 2019, 366, 983-987.
[44]
W. Yu,; J. Li,; T. S. Herng,; Z. S. Wang,; X. X. Zhao,; X. Chi,; W. Fu,; I. Abdelwahab,; J. Zhou,; J. D. Dan, et al. Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater. 2019, 31, 1903779.
[45]
T. C. Song,; X. H. Cai,; M. W. Y. Tu,; X. O. Zhang,; B. Huang,; N. P. Wilson,; K. L. Seyler,; L. Zhu,; T. Taniguchi,; K. Watanabe, et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 2018, 360, 1214-1218.
[46]
K. S. Kim,; Y. Zhao,; H. Jang,; S. Y. Lee,; J. M. Kim,; K. D. Kim,; J. H. Ahn,; P. Kim,; J. Y. Choi,; B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706-710.
[47]
X. S. Li,; W. W. Cai,; J. An,; S. Kim,; J. Nah,; D. X. Yang,; R. Piner,; A. Velamakanni,; I. Jung,; E. Tutuc, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312-1314.
[48]
L. Song,; L. J. Ci,; H. Lu,; P. B. Sorokin,; C. H. Jin,; J. Ni,; A. G. Kvashnin,; D. G. Kvashnin,; J. Lou,; B. I. Yakobson, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209-3215.
[49]
K. K. Kim,; A. Hsu,; X. T. Jia,; S. M. Kim,; Y. M. Shi,; M. Hofmann,; D. Nezich,; J. F. Rodriguez-Nieva,; M. Dresselhaus,; T. Palacios, et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 2012, 12, 161-166.
[50]
Y. J. Gong,; J. H. Lin,; X. L. Wang,; G. Shi,; S. D. Lei,; Z. Lin,; X. L. Zou,; G. L. Ye,; R. Vajtai,; B. I. Yakobson, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135-1142.
[51]
X. D. Duan,; C. Wang,; J. C. Shaw,; R. Cheng,; Y. Chen,; H. L. Li,; X. P. Wu,; Y. Tang,; Q. L. Zhang,; A. L. Pan, et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024-1030.
[52]
F. Li,; Y. X. Feng,; Z. W. Li,; C. Ma,; J. Y. Qu,; X. P. Wu,; D. Li,; X. H. Zhang,; T. F. Yang,; Y. Q. He, et al. Rational kinetics control toward universal growth of 2D vertically stacked heterostructures. Adv. Mater. 2019, 31, 1901351.
[53]
Q. S. Wang,; K. Xu,; Z. X. Wang,; F. Wang,; Y. Huang,; M. Safdar,; X. Y. Zhan,; F. M. Wang,; Z. Z. Cheng,; J. He, van der Waals epitaxial ultrathin two-dimensional nonlayered semiconductor for highly efficient flexible optoelectronic devices. Nano Lett. 2015, 15, 1183-1189.
[54]
D. D. Zhu,; J. Xia,; L. Wang,; X. Z. Li,; L. F. Tian,; X. M. Meng, van der Waals epitaxy and photoresponse of two-dimensional CdSe plates. Nanoscale 2016, 8, 11375-11379.
[55]
H. F. Ma,; Z. Wan,; J. Li,; R. X. Wu,; Z. W. Zhang,; B. Li,; B. Zhao,; Q. Qian,; Y. Liu,; Q. L. Xia, et al. Phase-tunable synthesis of ultrathin layered tetragonal CoSe and nonlayered hexagonal CoSe nanoplates. Adv. Mater. 2019, 31, 1900901.
[56]
S. S. Zhou,; R. Y. Wang,; J. B. Han,; D. L. Wang,; H. Q. Li,; L. Gan,; T. Y. Zhai, Ultrathin non-van der Waals magnetic Rhombohedral Cr2S3: Space-confined chemical vapor deposition synthesis and Raman scattering investigation. Adv. Funct. Mater. 2019, 29, 1805880.
[57]
J. Li,; B. Zhao,; P. Chen,; R. X. Wu,; B. Li,; Q. L. Xia,; G. H. Guo,; J. Luo,; K. T. Zang,; Z. W. Zhang, et al. Synthesis of ultrathin metallic MTe2 (M = V, Nb, Ta) single-crystalline nanoplates. Adv. Mater. 2018, 30, 1801043.
[58]
W. J. Hardy,; J. T. Yuan,; H. Guo,; P. P. Zhou,; J. Lou,; D. Natelson, Thickness-dependent and magnetic-field-driven suppression of antiferromagnetic order in thin V5S8 single crystals. ACS Nano 2016, 10, 5941-5946.
[59]
Y. Z. Xue,; Y. Zhang,; H. C. Wang,; S. H. Lin,; Y. Y. Li,; J. Y. Dai,; S. P. Lau, Thickness-dependent magnetotransport properties in 1T VSe2 single crystals prepared by chemical vapor deposition. Nanotechnology 2020, 31, 145712.
[60]
J. T. Yuan,; A. Balk,; H. Guo,; Q. Y. Fang,; S. Patel,; X. H. Zhao,; T. Terlier,; D. Natelson,; S. Crooker,; J. Lou, Room-temperature magnetic order in air-stable ultrathin iron oxide. Nano Lett. 2019, 19, 3777-3781.
[61]
J. D. Zhou,; J. H. Lin,; X. W. Huang,; Y. Zhou,; Y. Chen,; J. Xia,; H. Wang,; Y. Xie,; H. M. Yu,; J. C. Lei, et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355-359.
[62]
H. T. Liu,; Y. Z. Xue,; J. A. Shi,; R. A. Guzman,; P. P. Zhang,; Z. Zhou,; Y. G. He,; C. Bian,; L. M. Wu,; R. S. Ma, et al. Observation of the kondo effect in multilayer single-crystalline VTe2 nanoplates. Nano Lett. 2019, 19, 8572-8580.
[63]
P. F. Yang,; X. L. Zou,; Z. P. Zhang,; M. Hong,; J. P. Shi,; S. L. Chen,; J. P. Shu,; L. Y. Zhao,; S. L. Jiang,; X. B. Zhou, et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 2018, 9, 979.
[64]
F. F. Cui,; X. X. Zhao,; J. J. Xu,; B. Tang,; Q. Y. Shang,; J. P. Shi,; Y. H. Huan,; J. H. Liao,; Q. Chen,; Y. L. Hou, et al. Controlled growth and thickness-dependent conduction-type transition of 2D ferrimagnetic Cr2S3 semiconductors. Adv. Mater. 2020, 32, 1905896.
[65]
J. W. Chu,; Y. Zhang,; Y. Wen,; R. X. Qiao,; C. C. Wu,; P. He,; L. Yin,; R. Q. Cheng,; F. Wang,; Z. X. Wang, et al. Sub-millimeter-scale growth of one-unit-cell-thick ferrimagnetic Cr2S3 nanosheets. Nano Lett. 2019, 19, 2154-2161.
[66]
Y. Zhang,; J. W. Chu,; L. Yin,; T. A. Shifa,; Z. Z. Cheng,; R. Q. Cheng,; F. Wang,; Y. Wen,; X. Y. Zhan,; Z. X. Wang, et al. Ultrathin magnetic 2D single-crystal CrSe. Adv. Mater. 2019, 31, 1900056.
[67]
X. G. Wang,; Z. Zhou,; P. Zhang,; S. Q. Zhang,; Y. Ma,; W. W. Yang,; H. Wang,; B. X. Li,; L. J. Meng,; H. N. Jiang, et al. Thickness- controlled synthesis of CoX2 (X = S, Se, and Te) single crystalline 2D layers with linear magnetoresistance and high conductivity. Chem. Mater. 2020, 32, 2321-2329.
[68]
H. T. Liu,; L. H. Bao,; Z. Zhou,; B. Y. Che,; R. Z. Zhang,; C. Bian,; R. S. Ma,; L. M. Wu,; H. F. Yang,; J. J. Li, et al. Quasi-2D transport and weak antilocalization effect in few-layered VSe2. Nano Lett. 2019, 19, 4551-4559.
[69]
C. Y. Yan,; L. Gan,; X. Zhou,; J. Guo,; W. J. Huang,; J. W. Huang,; B. Jin,; J. Xiong,; T. Y. Zhai,; Y. R. Li, Space-confined chemical vapor deposition synthesis of ultrathin HfS2 flakes for optoelectronic application. Adv. Funct. Mater. 2017, 27, 1702918.
[70]
D. J. Lee,; Y. Lee,; Y. H. Kwon,; S. H. Choi,; W. Yang,; D. Y. Kim,; S. Lee, Room-temperature ferromagnetic ultrathin α-MoO3: Te nanoflakes. ACS Nano 2019, 13, 8717-8724.
[71]
H. J. Xu,; J. W. Wei,; H. A. Zhou,; J. F. Feng,; T. Xu,; H. F. Du,; C. L. He,; Y. Huang,; J. W. Zhang,; Y. Z. Liu, et al. High spin hall conductivity in large-area type-II dirac semimetal PtTe2. Adv. Mater. 2020, 32, 2000513.
[72]
S. J. Yun,; D. L. Duong,; D. M. Ha,; K. Singh,; T. L. Phan,; W. Choi,; Y. M. Kim,; Y. H. Lee, Ferromagnetic order at room temperature in monolayer WSe2 semiconductor via vanadium dopant. Adv. Sci. 2020, 7, 1903076.
[73]
L. B. Wang,; C. Xu,; Z. B. Liu,; L. Chen,; X. L. Ma,; H. M. Cheng,; W. C. Ren,; N. Kang, Magnetotransport properties in high-quality ultrathin two-dimensional superconducting Mo2C crystals. ACS Nano 2016, 10, 4504-4510.
[74]
J. S. Qi,; X. Li,; X. F. Chen,; K. G. Hu, Strain tuning of magnetism in Mn doped MoS2 monolayer. J. Phys.: Condens. Matter 2014, 26, 256003.
[75]
X. L. Fan,; Y. R. An,; W. J. Guo, Ferromagnetism in transitional metal-doped MoS2 monolayer. Nanoscale Res. Lett. 2016, 11, 154.
[76]
R. Mishra,; W. Zhou,; S. J. Pennycook,; S. T. Pantelides,; J. C. Idrobo, Long-range ferromagnetic ordering in manganese-doped two- dimensional dichalcogenides. Phys. Rev. B 2013, 88, 144409.
[77]
Q. Li,; X. X. Zhao,; L. J. Deng,; Z. T. Shi,; S. Liu,; Q. L. Wei,; L. B. Zhang,; Y. C. Cheng,; L. Zhang,; H. P. Lu, et al. Enhanced valley zeeman splitting in Fe-doped monolayer MoS2. ACS Nano 2020, 14, 4636-4645.
[78]
J. D. Zhou,; J. H. Lin,; H. Sims,; C. Y. Jiang,; C. X. Cong,; J. A. Brehm,; Z. W. Zhang,; L. Niu,; Y. Chen,; Y. Zhou, et l. Synthesis of Co-doped MoS2 monolayers with enhanced valley splitting. Adv. Mater. 2020, 32, 1906536.
[79]
K. H. Zhang,; S. M. Feng,; J. J. Wang,; A. Azcatl,; N. Lu,; R. Addou,; N. Wang,; C. J. Zhou,; J. Lerach,; V. Bojan, et al. Manganese doping of monolayer MoS2: The substrate is critical. Nano Lett. 2015, 15, 6586-6591.
[80]
V. Kochat,; A. Apte,; J. A. Hachtel,; H. Kumazoe,; A. Krishnamoorthy,; S. Susarla,; J. C. Idrobo,; F. Shimojo,; P. Vashishta,; R. Kalia, et al. Re doping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism. Adv. Mater. 2017, 29, 1703754.
[81]
H. L. Duan,; P. Guo,; C. Wang,; H. Tan,; W. Hu,; W. S. Yan,; C. Ma,; L. Cai,; L. Song,; W. H. Zhang, et al. Beating the exclusion rule against the coexistence of robust luminescence and ferromagnetism in chalcogenide monolayers. Nat. Commun. 2019, 10, 1584.
[82]
S. Cho,; S. Kim,; J. H. Kim,; J. Zhao,; J. Seok,; D. H. Keum,; J. Baik,; D. H. Choe,; K. J. Chang,; K. Suenaga, et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 2015, 349, 625-628.
[83]
X. L. Xu,; B. Han,; S. Liu,; S. Q. Yang,; X. H. Jia,; W. J. Xu,; P. Gao,; Y. Ye,; L. Dai, Atomic-precision repair of a few-layer 2H-MoTe2 thin film by phase transition and recrystallization induced by a heterophase interface. Adv. Mater. 2020, 32, 2000236.
[84]
S. H. Zhao,; T. Hotta,; T. Koretsune,; K. Watanabe,; T. Taniguchi,; K. Sugawara,; T. Takahashi,; H. Shinohara,; R. Kitaura, Two- dimensional metallic NbS2: Growth, optical identification and transport properties. 2D Mater. 2016, 3, 025027.
[85]
I. Guillamón,; H. Suderow,; S. Vieira,; L. Cario,; P. Diener,; P. Rodière, Superconducting density of states and vortex cores of 2H-NbS2. Phys. Rev. Lett. 2008, 101, 166407.
[86]
X. L. Sun,; B. N. Shi,; H. Y. Wang,; N. Lin,; S. D. Liu,; K. J. Yang,; B. T. Zhang,; J. L. He, Optical properties of 2D 3R phase niobium disulfide and its applications as a saturable absorber. Adv. Opt. Mater. 2020, 8, 1901181.
[87]
L. Craco,; S. Leoni, Comparative study of tetragonal and hexagonal FeSe: An orbital-selective scenario. EPL 2010, 92, 67003.
[88]
Y. Mizuguchi,; F. Tomioka,; S. Tsuda,; T. Yamaguchi,; Y. Takano, Superconductivity at 27 K in tetragonal FeSe under high pressure. Appl. Phys. Lett. 2008, 93, 152505.
[89]
F. J. Ma,; W. Ji,; J. P. Hu,; Z. Y. Lu,; T. Xiang, First-principles calculations of the electronic structure of tetragonal α-FeTe and α-FeSe crystals: Evidence for a bicollinear antiferromagnetic order. Phys. Rev. Lett. 2009, 102, 177003.
[90]
D. S. Parker, Strong 3D and 1D magnetism in hexagonal Fe- chalcogenides FeS and FeSe vs. weak magnetism in hexagonal FeTe. Sci. Rep. 2017, 7, 3388.
[91]
C. S. Park,; Y. Shon,; J. Lee,; E. K. Kim, Ferromagnetic properties of MoS2 film doped by Fe using chemical vapour deposition. Solid State Commun. 2020, 306, 113776.
[92]
J. J. Niu,; B. M. Yan,; Q. Q. Ji,; Z. F. Liu,; M. Q. Li,; P. Gao,; Y. F. Zhang,; D. P. Yu,; X. S. Wu, Anomalous Hall effect and magnetic orderings in nanothick V5S8. Phys. Rev. B 2017, 96, 075402.
[93]
B. Huang,; G. Clark,; D. R. Klein,; D. MacNeill,; E. Navarro-Moratalla,; K. L. Seyler,; N. Wilson,; M. A. McGuire,; D. H. Cobden,; D. Xiao, et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544-548.
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 May 2020
Revised: 25 July 2020
Accepted: 29 July 2020
Published: 26 August 2020
Issue date: June 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2018YFA0306900) and the National Natural Science Foundation of China (No. 51872012).

Return