Journal Home > Volume 14 , issue 6

As an emerging two-dimensional (2D) semiconductor material, monolayer MoS2 has recently attracted considerable attention. Various promising applications of this material have been proposed for electronics, optoelectronics, sensing, catalysis, energy storage, and so on. To realize these practical applications, high-quality and large-area MoS2 with controllable properties is required. Among the many different synthesis techniques, epitaxy provides a promising route for producing MoS2 monolayers. Here, we review the epitaxial growth of monolayer MoS2 on various substrates, with a particular focus on large-scale films with large domain sizes and high domain alignments. Finally, we offer perspectives and challenges for future research and applications of this technology.


menu
Abstract
Full text
Outline
References
About this article
Monolayer MoS2 epitaxy
Show Author's information Zheng Wei1,2Qinqin Wang1,2Lu Li1,2Rong Yang1,2,3Guangyu Zhang1,2,3( )
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract

As an emerging two-dimensional (2D) semiconductor material, monolayer MoS2 has recently attracted considerable attention. Various promising applications of this material have been proposed for electronics, optoelectronics, sensing, catalysis, energy storage, and so on. To realize these practical applications, high-quality and large-area MoS2 with controllable properties is required. Among the many different synthesis techniques, epitaxy provides a promising route for producing MoS2 monolayers. Here, we review the epitaxial growth of monolayer MoS2 on various substrates, with a particular focus on large-scale films with large domain sizes and high domain alignments. Finally, we offer perspectives and challenges for future research and applications of this technology.

Keywords: monolayer MoS2, epitaxy, domain size, domain alignment, heterostructures
Received: 15 May 2020 Revised: 28 July 2020 Accepted: 29 July 2020 Published: 22 August 2020 Issue date: June 2021
References(76)
[1]
S. Bertolazzi,; J. Brivio,; A. Kis, Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703-9709.
[2]
B. Radisavljevic,; A. Radenovic,; J. Brivio,; V. Giacometti,; A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.
[3]
K. Kang,; S. E. Xie,; L. J. Huang,; Y. M. Han,; P. Y. Huang,; K. F. Mak,; C. J. Kim,; D. Muller,; J. Park, High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656-660.
[4]
Y. R. Lim,; W. Song,; J. K. Han,; Y. B. Lee,; S. J. Kim,; S. Myung,; S. S. Lee,; K. S. An,; C. J. Choi,; J. Lim, Wafer-scale, homogeneous MoS2 layers on plastic substrates for flexible visible-light photodetectors. Adv. Mater. 2016, 28, 5025-5030.
[5]
K. F. Mak,; C. Lee,; J. Hone,; J. Shan,; T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
[6]
J. Zhao,; W. Chen,; J. L. Meng,; H. Yu,; M. Z. Liao,; J. Q. Zhu,; R. Yang,; D. X. Shi,; G. Y. Zhang, Integrated flexible and high-quality thin film transistors based on monolayer MoS2. Adv. Electron. Mater. 2016, 2, 1500379.
[7]
J. X. Liu,; X. H. Chen,; Q. Q. Wang,; M. M. Xiao,; D. L. Zhong,; W. Sun,; G. Y. Zhang,; Z. Y. Zhang, Ultrasensitive monolayer MoS2 field-effect transistor based DNA sensors for screening of down syndrome. Nano Lett. 2019, 19, 1437-1444.
[8]
J. Zhao,; N. Li,; H. Yu,; Z. Wei,; M. Z. Liao,; P. Chen,; S. P. Wang,; D. X. Shi,; Q. J. Sun,; G. Y. Zhang, Highly sensitive MoS2 humidity sensors array for noncontact sensation. Adv. Mater. 2017, 29, 1702076.
[9]
J. Zhao,; Z. Wei,; Q. Zhang,; H. Yu,; S. P. Wang,; X. X. Yang,; G. Y. Gao,; S. S. Qin,; G. Y. Zhang,; Q. J. Sun, et al. Static and dynamic piezopotential modulation in piezo-electret gated MoS2 field-effect transistor. ACS Nano 2019, 13, 582-590.
[10]
J. P. Shi,; D. L. Ma,; G. F. Han,; Y. Zhang,; Q. Q. Ji,; T. Gao,; J. Y. Sun,; X. J. Song,; C. Li,; Y. S. Zhang, et al. Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 2014, 8, 10196-10204.
[11]
J. Q. Zhu,; Z. C. Wang,; H. J. Dai,; Q. Q. Wang,; R. Yang,; H. Yu,; M. Z. Liao,; J. Zhang,; W. Chen,; Z. Wei, et al. Boundary activated hydrogen evolution reaction on monolayer MoS2. Nat. Commun. 2019, 10, 1348.
[12]
H. Li,; C. Tsai,; A. L. Koh,; L. L. Cai,; A. W. Contryman,; A. H. Fragapane,; J. H. Zhao,; H. S. Han,; H. C. Manoharan,; F. Abild-Pedersen, et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48-53.
[13]
J. N. Coleman,; M. Lotya,; A. O'Neill,; S. D. Bergin,; P. J. King,; U. Khan,; K. Young,; A. Gaucher,; S. De,; R. J. Smith, et al. Two- dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568-571.
[14]
A. O’Neill,; U. Khan,; J. N. Coleman, Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chem. Mater. 2012, 24, 2414-2421.
[15]
H. Yu,; M. Z. Liao,; W. J. Zhao,; G. D. Liu,; X. J. Zhou,; Z. Wei,; X. Z. Xu,; K. H. Liu,; Z. H. Hu,; K. Deng, et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano 2017, 11, 12001-12007.
[16]
N. Choudhary,; J. Park,; J. Y. Hwang,; W. Choi, Growth of large-scale and thickness-modulated MoS2 nanosheets. ACS Appl. Mater. Interfaces 2014, 6, 21215-21222.
[17]
P. F. Yang,; X. L. Zou,; Z. P. Zhang,; M. Hong,; J. P. Shi,; S. L. Chen,; J. P. Shu,; L. Y. Zhao,; S. L. Jiang,; X. B. Zhou, et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 2018, 9, 979.
[18]
Y. H. Lee,; X. Q. Zhang,; W. J. Zhang,; M. T. Chang,; C. T. Lin,; K. D. Chang,; Y. C. Yu,; J. T. W. Wang,; C. S. Chang,; L. J. Li, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320-2325.
[19]
J. Zhang,; H. Yu,; W. Chen,; X. Z. Tian,; D. H. Liu,; M. Cheng,; G. B. Xie,; W. Yang,; R. Yang,; X. D. Bai, et al. Scalable growth of high-quality polycrystalline MoS2 monolayers on SiO2 with tunable grain sizes. ACS Nano 2014, 8, 6024-6030.
[20]
Y. J. Zhan,; Z. Liu,; S. Najmaei,; P. M. Ajayan,; J. Lou, Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 2012, 8, 966-971.
[21]
X. S. Wang,; H. B. Feng,; Y. M. Wu,; L. Y. Jiao, Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 2013, 135, 5304-5307.
[22]
J. G. Tao,; J. W. Chai,; X. Lu,; L. M. Wong,; T. I. Wong,; J. S. Pan,; Q. H. Xiong,; D. Z. Chi,; S. J. Wang, Growth of wafer-scale MoS2 monolayer by magnetron sputtering. Nanoscale 2015, 7, 2497-2503.
[23]
L. K. Tan,; B. Liu,; J. H. Teng,; S. F. Guo,; H. Y. Low,; K. P. Loh, Atomic layer deposition of a MoS2 film. Nanoscale 2014, 6, 10584-10588.
[24]
K. K. Liu,; W. J. Zhang,; Y. H. Lee,; Y. C. Lin,; M. T. Chang,; C. Y. Su,; C. S. Chang,; H. Li,; Y. M. Shi,; H. Zhang, et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538-1544.
[25]
S. F. Wu,; C. M. Huang,; G. Aivazian,; J. S. Ross,; D. H. Cobden,; X. D. Xu, Vapor-solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano 2013, 7, 2768-2772.
[26]
Y. F. Yu,; C. Li,; Y. Liu,; L. Q. Su,; Y. Zhang,; L. Y. Cao, Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 2013, 3, 1866.
[27]
S. H. Baek,; Y. Choi,; W. Choi, Large-area growth of uniform single-layer MoS2 thin films by chemical vapor deposition. Nanoscale Res. Lett. 2015, 10, 388.
[28]
L. N. Liu,; H. L. Qiu,; J. Y. Wang,; G. C. Xu,; L. Y. Jiao, Atomic MoS2 monolayers synthesized from a metal-organic complex by chemical vapor deposition. Nanoscale 2016, 8, 4486-4490.
[29]
X. Ling,; Y. H. Lee,; Y. X. Lin,; W. J. Fang,; L. L. Yu,; M. S. Dresselhaus,; J. Kong, Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett. 2014, 14, 464-472.
[30]
L. N. Liu,; J. X. Wu,; L. Y. Wu,; M. Ye,; X. Z. Liu,; Q. Wang,; S. Y. Hou,; P. F. Lu,; L. .F Sun,; J. Y. Zheng, et al. Phase-selective synthesis of 1T' MoS2 monolayers and heterophase bilayers. Nat. Mater. 2018, 17, 1108-1114.
[31]
G. H. Han,; N. J. Kybert,; C. H. Naylor,; B. S. Lee,; J. L. Ping,; J. H. Park,; J. Kang,; S. Y. Lee,; Y. H. Lee,; R. Agarwal, et al. Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations. Nat. Commun. 2015, 6, 6128.
[32]
Y. J. Gong,; Z. Lin,; G. L. Ye,; G. Shi,; S. M. Feng,; Y. Lei,; A. L. Elias,; N. Perea-Lopez,; R. Vajtai,; H. Terrones, et al. Tellurium-assisted low-temperature synthesis of MoS2 and WS2 monolayers. ACS Nano 2015, 9, 11658-11666.
[33]
S. S. Li,; Y. C. Lin,; W. Zhao,; J. Wu,; Z. Wang,; Z. H. Hu,; Y. D. Shen,; D. M. Tang,; J. Y. Wang,; Q. Zhang, et al. Vapour-liquid-solid growth of monolayer MoS2 nanoribbons. Nat. Mater. 2018, 17, 535-542.
[34]
H. Kim,; D. Ovchinnikov,; D. Deiana,; D. Unuchek,; A. Kis, Suppressing nucleation in metal-organic chemical vapor deposition of MoS2 monolayers by alkali metal halides. Nano Lett. 2017, 17, 5056-5063.
[35]
Y. P. Shi,; P. F. Yang,; S. L. Jiang,; Z. P. Zhang,; Y. H. Huan,; C. Y. Xie,; M. Hong,; J. P. Shi,; Y. F. Zhang, Na-assisted fast growth of large single-crystal MoS2 on sapphire. Nanotechnology 2019, 30, 034002.
[36]
K. H. Zhang,; B. M. Bersch,; F. Zhang,; N. C. Briggs,; S. Subramanian,; K. Xu,; M. Chubarov,; K. Wang,; J. O. Lerach,; J. M. Redwing, et al. Considerations for utilizing sodium chloride in epitaxial molybdenum disulfide. ACS Appl. Mater. Interfaces 2018, 10, 40831-40837.
[37]
P. Wang,; J. Y. Lei,; J. F. Qu,; S. Y. Cao,; H. Jiang,; M. C. He,; H. Y. Shi,; X. D. Sun,; B. Gao,; W. J. Liu, Mechanism of alkali metal compound-promoted growth of monolayer MoS2: Eutectic intermediates. Chem. Mater. 2019, 31, 873-880.
[38]
L. A. Walsh,; C. L. Hinkle, van der Waals epitaxy: 2D materials and topological insulators. Appl. Mater. Today 2017, 9, 504-515.
[39]
W. Chen,; J. Zhao,; J. Zhang,; L. Gu,; Z. Z. Yang,; X. M. Li,; H. Yu,; X. T. Zhu,; R. Yang,; D. X. Shi, et al. Oxygen-assisted chemical vapor deposition growth of Large single-crystal and high-quality monolayer MoS2. J. Am. Chem. Soc. 2015, 137, 15632-15635.
[40]
H. Yu,; Z. Z. Yang,; L. J. Du,; J. Zhang,; J. N. Shi,; W. Chen,; P. Chen,; M. Z. Liao,; J. Zhao,; J. L. Meng, et al. Precisely aligned monolayer MoS2 epitaxially grown on h-BN basal plane. Small 2017, 13, 1603005.
[41]
L. Fu,; Y. Y. Sun,; N. Wu,; R. G. Mendes,; L. F. Chen,; Z. Xu,; T. Zhang,; M. H. Rummeli,; B. Rellinghaus,; D. Pohl, et al. Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy. ACS Nano 2016, 10, 2063-2070.
[42]
C. Ahn,; J. Lee,; H. U. Kim,; H. Bark,; M. Jeon,; G. H. Ryu,; Z. Lee,; G. Y. Yeom,; K. Kim,; J. Jung, et al. Low-temperature synthesis of large-scale molybdenum disulfide thin films directly on a plastic substrate using plasma-enhanced chemical vapor deposition. Adv. Mater. 2015, 27, 5223-5229.
[43]
Z. F. Zhang,; X. L. Xu,; J. Song,; Q. G. Gao,; S. C. Li,; Q. L. Hu,; X. F. Li,; Y. Q. Wu, High-performance transistors based on monolayer CVD MoS2 grown on molten glass. Appl. Phys. Lett. 2018, 113, 202103.
[44]
D. Dumcenco,; D. Ovchinnikov,; K. Marinov,; P. Lazić,; M. Gibertini,; N. Marzari,; O. L. Sanchez,; Y. C. Kung,; D. Krasnozhon,; M. W. Chen, et al. Large-area epitaxial monolayer MoS2. ACS Nano 2015, 9, 4611-4620.
[45]
A. Aljarb,; Z. Cao,; H. L. Tang,; J. K. Huang,; M. L. Li,; W. J. Hu,; L. Cavallo,; L. J. Li, Substrate lattice-guided seed formation controls the orientation of 2D transition-metal dichalcogenides. ACS Nano 2017, 11, 9215-9222.
[46]
K. Suenaga,; H. G. Ji,; Y. C. Lin,; T. Vincent,; M. Maruyama,; A. S. Aji,; Y. Shiratsuchi,; D. Ding,; K. Kawahara,; S. Okada, et al. Surface-mediated aligned growth of monolayer MoS2 and in-plane heterostructures with graphene on sapphire. ACS Nano 2018, 12, 10032-10044.
[47]
Y. Zhang,; Q. Q. Ji,; G. F. Han,; J. Ju,; J. P. Shi,; D. L. Ma,; J. Y. Sun,; Y. S. Zhang,; M. J. Li,; X. Y. Lang, et al. Dendritic, transferable, strictly monolayer MoS2 flakes synthesized on SrTiO3 single crystals for efficient electrocatalytic applications. ACS Nano 2014, 8, 8617-8624.
[48]
Q. Q. Ji,; Y. F. Zhang,; T. Gao,; Y. Zhang,; D. L. Ma,; M. X. Liu,; Y. B. Chen,; X. F. Qiao,; P. H. Tan,; M. Kan, et al. Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett. 2013, 13, 3870-3877.
[49]
Y. M. Shi,; W. Zhou,; A. Y. Lu,; W. J. Fang,; Y. H. Lee,; A. L. Hsu,; S. M. Kim,; K. K. Kim,; H. Y. Yang,; L. J. Li, et al. van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 2012, 12, 2784-2791.
[50]
S. S. Wang,; X. C. Wang,; J. H. Warner, All chemical vapor deposition growth of MoS2: h-BN vertical van der Waals heterostructures. ACS Nano 2015, 9, 5246-5254.
[51]
W. F. Zhao,; H. Yu,; M. Z. Liao,; L. Zhang,; S. Z. Zou,; H. J. Yu,; C. J. He,; J. Y. Zhang,; G. Y. Zhang,; X. C. Lin, Large area growth of monolayer MoS2 film on quartz and its use as a saturable absorber in laser mode-locking. Semicond. Sci. Technol. 2017, 32, 025013.
[52]
M. Z. Liao,; Z. Wei,; L. J. Du,; Q. Q. Wang,; J. Tang,; H. Yu,; F. F. Wu,; J. J. Zhao,; X. Z. Xu,; B. Han, et al. Precise control of the interlayer twist angle in large scale MoS2 homostructures. Nat. Commun. 2020, 11, 2153.
[53]
P. F. Yang,; S. Q. Zhang,; S. Y. Pan,; B. Tang,; Y. Liang,; X. X. Zhao,; Z. P. Zhang,; J. P. Shi,; Y. H. Huan,; Y. P. Shi, et al. Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano 2020, 14, 5036-5045.
[54]
J. Zhang,; J. H. Wang,; P. Chen,; Y. Sun,; S. Wu,; Z. Y. Jia,; X. B. Lu,; H. Yu,; W. Chen,; J. Q. Zhu, et al. Observation of strong interlayer coupling in MoS2/WS2 heterostructures. Adv. Mater. 2016, 28, 1950-1956.
[55]
K. M. McCreary,; A. T. Hanbicki,; J. T. Robinson,; E. Cobas,; J. C. Culbertson,; A. L. Friedman,; G. G. Jernigan,; B. T. Jonker, Large-area synthesis of continuous and uniform MoS2 monolayer films on graphene. Adv. Funct. Mater. 2014, 24, 6449-6454.
[56]
W. Zhou,; X. L. Zou,; S. Najmaei,; Z. Liu,; Y. M. Shi,; J. Kong,; J. Lou,; P. M. Ajayan,; B. I. Yakobson,; J. C. Idrobo, Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615-2622.
[57]
J. H. Hong,; Z. X. Hu,; M. Probert,; K. Li,; D. H. Lv,; X. A. Yang,; L. Gu,; N. N. Mao,; Q. L. Feng,; L. N. Xie, et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 2015, 6, 6293.
[58]
A. M. van der Zande,; P. Y. Huang,; D. A. Chenet,; T. C. Berkelbach,; Y. M. You,; G. H. Lee,; T. F. Heinz,; D. R. Reichman,; D. A. Muller,; J. C. Hone, Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554-561.
[59]
S. Najmaei,; Z. Liu,; W. Zhou,; X. L. Zou,; G. Shi,; S. D. Lei,; B. I. Yakobson,; J. C. Idrobo,; P. M. Ajayan,; J. Lou, Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754-759.
[60]
D. F. Wang,; H. Yu,; L. Tao,; W. D. Xiao,; P. Fan,; T. T. Zhang,; M. Z. Liao,; W. Guo,; D. X. Shi,; S. X. Du, et al. Bandgap broadening at grain boundaries in single-layer MoS2. Nano Res. 2018, 11, 6102-6109.
[61]
S. Najmaei,; M. Amani,; M. L. Chin,; Z. Liu,; A. G. Birdwell,; T. P. O'Regan,; P. M. Ajayan,; M. Dubey,; J. Lou, Electrical transport properties of polycrystalline monolayer molybdenum disulfide. ACS Nano 2014, 8, 7930-7937.
[62]
Z. Y. Lin,; Y. D. Zhao,; C. J. Zhou,; R. Zhong,; X. S. Wang,; Y. H. Tsang,; Y. Chai, Controllable growth of large-size crystalline MoS2 and resist-free transfer assisted with a cu thin film. Sci. Rep. 2016, 5, 18596.
[63]
J. Q. Zhu,; Z. C. Wang,; H. Yu,; N. Li,; J. Zhang,; J. L. Meng,; M. Z. Liao,; J. Zhao,; X. B. Lu,; L. J. Du, et al. Argon plasma induced phase transition in monolayer MoS2. J. Am. Chem. Soc. 2017, 139, 10216-10219.
[64]
R. Kappera,; D. Voiry,; S. E. Yalcin,; B. Branch,; G. Gupta,; A. D. Mohite,; M. Chhowalla, Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128-1134.
[65]
Y. C. Lin,; D. O. Dumcenco,; Y. S. Huang,; K. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9, 391-396.
[66]
X. D. Guo,; R. N. Liu,; D. B. Hu,; H. Hu,; Z. Wei,; R. Wang,; Y. Y. Dai,; Y. Cheng,; K. Chen,; K. H. Liu, et al. Efficient all-optical plasmonic modulators with atomically thin van der Waals heterostructures. Adv. Mater. 2020, 32, 1907105.
[67]
J. Zhang,; L. J. Du,; S. Feng,; R. W. Zhang,; B. C. Cao,; C. J. Zou,; Y. Chen,; M. Z. Liao,; B. L. Zhang,; S. A. Yang, et al. Enhancing and controlling valley magnetic response in MoS2/WS2 heterostructures by all-optical route. Nat. Commun. 2019, 10, 4226.
[68]
H. L. Chen,; X. W. Wen,; J. Zhang,; T. M. Wu,; Y. J. Gong,; X. Zhang,; J. T. Yuan,; C. Y. Yi,; J. Lou,; P. M. Ajayan, et al. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat. Commun. 2016, 7, 12512.
[69]
Y. Z. Xue,; Y. P. Zhang,; Y. Liu,; H. T. Liu,; J. C. Song,; J. Sophia,; J. Y. Liu,; Z. Q. Xu,; Q. Y. Xu,; Z. Y. Wang, et al. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano 2016, 10, 573-580.
[70]
R. Ionescu,; I. Ruiz,; Z. Favors,; B. Campbell,; M. R. Neupane,; D. Wickramaratne,; K. Ahmed,; C. Liu,; N. Abrahamian,; R. K. Lake, et al. Two step growth phenomena of molybdenum disulfide- tungsten disulfide heterostructures. Chem. Commun. 2015, 51, 11213-11216.
[71]
N. Choudhary,; J. Park,; J. Y. Hwang,; H. S. Chung,; K. H. Dumas,; S. I. Khondaker,; W. Choi,; Y. Jung, Centimeter scale patterned growth of vertically stacked few layer only 2D MoS2/WS2 van der Waals heterostructure. Sci. Rep. 2016, 6, 25456.
[72]
M. Y. Li,; Y. M. Shi,; C. C. Cheng,; L. S. Lu,; Y. C. Lin,; H. L. Tang,; M. L. Tsai,; C. W. Chu,; K. H. Wei,; J. H. He, et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 2015, 349, 524-528.
[73]
Y. J. Gong,; J. H. Lin,; X. L. Wang,; G. Shi,; S. D. Lei,; Z. Lin,; X. L. Zou,; G. L. Ye,; R. Vajtai,; B. I. Yakobson, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135-1142.
[74]
H. Heo,; J. H. Sung,; G. Jin,; J. H. Ahn,; K. Kim,; M. J. Lee,; S. Cha,; H. Choi,; M. H. Jo, Rotation-misfit-free heteroepitaxial stacking and stitching growth of hexagonal transition-metal dichalcogenide monolayers by nucleation kinetics controls. Adv. Mater. 2015, 27, 3803-3810.
[75]
Y. Yoo,; Z. P. Degregorio,; J. E. Johns, Seed crystal homogeneity controls lateral and vertical heteroepitaxy of monolayer MoS2 and WS2. J. Am. Chem. Soc. 2015, 137, 14281-14287.
[76]
F. Li,; Y. X. Feng,; Z. W. Li,; C. Ma,; J. Y. Qu,; X. P. Wu,; D. Li,; X. H. Zhang,; T. F. Yang,; Y. Q. He, et al. Rational kinetics control toward universal growth of 2D vertically stacked heterostructures. Adv. Mater. 2019, 31, 1901351.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 15 May 2020
Revised: 28 July 2020
Accepted: 29 July 2020
Published: 22 August 2020
Issue date: June 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11834017 and 61888102), the National Key Research and Development Program of China (No. 2016YFA0300904), the Key Research Program of Frontier Sciences of CAS (No. QYZDB-SSW-SLH004), and the Strategic Priority Research Program of CAS (Nos. XDB30302000 and XDB33010300).

Rights and permissions

Reprints and Permission requests may be sought directly from editorial office.
Email: nanores@tup.tsinghua.edu.cn

Return