Journal Home > Volume 14 , Issue 4

Two-dimensional (2D) materials, such as transition metal dichalcogenides (TMDs), black phosphorus (BP), MXene and borophene, have aroused extensive attention since the discovery of graphene in 2004. They have wide range of applications in many research fields, such as optoelectronic devices, energy storage, catalysis, owing to their striking physical and chemical properties. Among them, anisotropic 2D material is one kind of 2D materials that possess different properties along different directions caused by the intrinsic anisotropic atoms’ arrangement of the 2D materials, mainly including BP, borophene, low-symmetry TMDs (ReSe2 and ReS2) and group IV monochalcogenides (SnS, SnSe, GeS, and GeSe). Recently, a series of new devices has been fabricated based on these anisotropic 2D materials. In this review, we start from a brief introduction of the classifications, crystal structures, preparation techniques, stability, as well as the strategy to discriminate the anisotropic characteristics of 2D materials. Then, the recent advanced applications including electronic devices, optoelectronic devices, thermoelectric devices and nanomechanical devices based on the anisotropic 2D materials both in experiment and theory have been summarized. Finally, the current challenges and prospects in device designs, integration, mechanical analysis, and micro-/nano-fabrication techniques related to anisotropic 2D materials have been discussed. This review is aimed to give a generalized knowledge of anisotropic 2D materials and their current devices applications, and thus inspiring the exploration and development of other kinds of new anisotropic 2D materials and various novel device applications.


menu
Abstract
Full text
Outline
About this article

Recent advances in anisotropic two-dimensional materials and device applications

Show Author's information Jinlai Zhao1,2,3,§Dingtao Ma2,§Cong Wang1Zhinan Guo1( )Bin Zhang1Jianqing Li2Guohui Nie1Ni Xie1( )Han Zhang1( )
Institute of Microscale Optoelectronics and Second People’s Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, China
Faculty of Information Technology, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen 518060, China

§ Jinlai Zhao and Dingtao Ma contributed equally to this work.

Abstract

Two-dimensional (2D) materials, such as transition metal dichalcogenides (TMDs), black phosphorus (BP), MXene and borophene, have aroused extensive attention since the discovery of graphene in 2004. They have wide range of applications in many research fields, such as optoelectronic devices, energy storage, catalysis, owing to their striking physical and chemical properties. Among them, anisotropic 2D material is one kind of 2D materials that possess different properties along different directions caused by the intrinsic anisotropic atoms’ arrangement of the 2D materials, mainly including BP, borophene, low-symmetry TMDs (ReSe2 and ReS2) and group IV monochalcogenides (SnS, SnSe, GeS, and GeSe). Recently, a series of new devices has been fabricated based on these anisotropic 2D materials. In this review, we start from a brief introduction of the classifications, crystal structures, preparation techniques, stability, as well as the strategy to discriminate the anisotropic characteristics of 2D materials. Then, the recent advanced applications including electronic devices, optoelectronic devices, thermoelectric devices and nanomechanical devices based on the anisotropic 2D materials both in experiment and theory have been summarized. Finally, the current challenges and prospects in device designs, integration, mechanical analysis, and micro-/nano-fabrication techniques related to anisotropic 2D materials have been discussed. This review is aimed to give a generalized knowledge of anisotropic 2D materials and their current devices applications, and thus inspiring the exploration and development of other kinds of new anisotropic 2D materials and various novel device applications.

Keywords: two-dimensional (2D) materials, black phosphorus, anisotropic properties, low-symmetry, device applications

References(220)

[1]
K. S. Novoselov,; A. K. Geim,; S. V. Morozov,; D. Jiang,; Y. Zhang,; S. V. Dubonos,; I. V. Grigorieva,; A. A. Firsov, Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
[2]
X. T. Jiang,; S. X. Liu,; W. Y. Liang,; S. J. Luo,; Z. L. He,; Y. Q. Ge,; H. D. Wang,; R. Cao,; F. Zhang,; Q. Wen, et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photonics Rev. 2018, 12, 1700229.
[3]
Y. Q. Ge,; Z. F. Zhu,; Y. H. Xu,; Y. X. Chen,; S. Chen,; Z. M. Liang,; Y. F. Song,; Y. S. Zou,; H. B. Zeng,; S. X. Xu, et al. Broadband nonlinear photoresponse of 2D TiS2 for ultrashort pulse generation and all-optical thresholding devices. Adv. Opt. Mater. 2018, 6, 1701166.
[4]
Y. F. Song,; Z. M. Liang,; X. T. Jiang,; Y. X. Chen,; Z. J. Li,; L. Lu,; Y. Q. Ge,; K. Wang,; J. L Zheng,; S. B. Lu, et al. Few-layer antimonene decorated microfiber: Ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Mater. 2017, 4, 045010.
[5]
J. Du,; M. Zhang,; Z. Guo,; J. Chen,; X. Zhu,; G. Hu,; P. Peng,; Z. Zheng,; H. Zhang, Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers. Sci. Rep. 2017, 7, 42357.
[6]
B. Guo,; S. H. Wang,; Z. X. Wu,; Z. X. Wang,; D. H. Wang,; H. Huang,; F. Zhang,; Y. Q. Ge,; H. Zhang, Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Opt. Express 2018, 26, 22750-22760.
[7]
P. F. Li,; Y. Chen,; T. S. Yang,; Z. Y. Wang,; H. Lin,; Y. H. Xu,; L. Li,; H. R. Mu,; B. N. Shivananju,; Y. P. Zhang, et al. Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl. Mater. Interfaces 2017, 9, 12759-12765.
[8]
J. L. Zheng,; Z. H. Yang,; S. Chen,; Z. M. Liang,; X. Chen,; R. Cao,; Z. N. Guo,; K. Wang,; Y. Zhang,; J. H. Ji, et al. Black phosphorus based all-optical-signal-processing: Toward high performances and enhanced stability. ACS Photonics 2017, 4, 1466-1476.
[9]
Y. Z. Wang,; W. C. Huang,; C. Wang,; J. Guo,; F. Zhang,; Y. F. Song,; Y. Q. Ge,; L. M. Wu,; J. Liu,; J. Q. Li, et al. An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator. Laser Photonics Rev. 2019, 13, 1800313.
[10]
C. Wang,; Y. Z. Wang,; X. T. Jiang,; J. W. Xu,; W. C. Huang,; F. Zhang,; J. F. Liu,; F. M. Yang,; Y. F. Song,; Y. Q. Ge, et al. MXene Ti3C2Tx: A promising photothermal conversion material and application in all-optical modulation and all-optical information loading. Adv. Opt. Mater. 2019, 7, 1900060.
[11]
Y. Z. Wang,; F. Zhang,; X. Tang,; X. Chen,; Y. X. Chen,; W. C. Huang,; Z. M. Liang,; L. M. Wu,; Y. Q. Ge,; Y. F. Song, et al. All-optical phosphorene phase modulator with enhanced stability under ambient conditions. Laser Photonics Rev. 2018, 12, 1800016.
[12]
J. L. Zheng,; X. Tang,; Z. H. Yang,; Z. M. Liang,; Y. X. Chen,; K. Wang,; Y. F. Song,; Y. Zhang,; J. H. Ji,; Y. Liu, et al. Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation. Adv. Opt. Mater. 2017, 5, 1700026.
[13]
L. M. Wu,; W. C. Huang,; Y. Z. Wang,; J. L. Zhao,; D. T. Ma,; Y. J. Xiang,; J. Q. Li,; J. S. Ponraj,; S. C. Dhanabalan,; H. Zhang, 2D tellurium based high-performance all-optical nonlinear photonic devices. Adv. Funct. Mater. 2019, 29, 1806346.
[14]
X. M. Wang,; F. N. Xia, Black phosphorus optoelectronics. In Proceedings of 2016 Conference on Lasers and Electro-Optics, San Jose, USA, 2016, pp. 1-2.
[15]
S. C. Dhanabalan,; J. S. Ponraj,; Z. N. Guo,; S. J. Li,; Q. L. Bao,; H. Zhang, Emerging trends in phosphorene fabrication towards next generation devices. Adv. Sci. 2017, 4, 1600305.
[16]
E. Singh,; P. Singh,; K. S. Kim,; G. Y. Yeom,; H. S. Nalwa, Flexible molybdenum disulfide (MoS2) atomic layers for wearable electronics and optoelectronics. ACS Appl. Mater. Interfaces 2019, 11, 11061-11105.
[17]
A. Bablich,; S. Kataria,; M. C. Lemme, Graphene and two-dimensional materials for optoelectronic applications. Electronics 2016, 5, 13.
[18]
F. N. Xia,; H. Wang,; Y. C. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 1158.
[19]
P. F. Yang,; Z. P. Zhang,; M. X. Sun,; F. Lin,; T. Cheng,; J. P. Shi,; C. Y. Xie,; Y. P. Shi,; S. L. Jiang,; Y. H. Huan, et al. Thickness tunable wedding-cake-like MoS2 flakes for high-performance optoelectronics. ACS Nano 2019, 13, 3649-3658.
[20]
H. S. Lee,; S. W. Min,; Y. G. Chang,; M. K. Park,; T. Nam,; H. Kim,; J. H. Kim,; S. Ryu,; S. Im, MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 2012, 12, 3695-3700.
[21]
N. Haratipour,; S. Namgung,; S. H. Oh,; S. J. Koester, Fundamental limits on the subthreshold slope in schottky source/drain black phosphorus field-effect transistors. ACS Nano 2016, 10, 3791-3800.
[22]
Y. M. Wang,; K. Ding,; B. Q. Sun,; S. T. Lee,; J. S. Jie, Two- dimensional layered material/silicon heterojunctions for energy and optoelectronic applications. Nano Res. 2016, 9, 72-93.
[23]
N. J. Huo,; G. Konstantatos, Ultrasensitive all-2D MoS2 phototransistors enabled by an out-of-plane MoS2 PN homojunction. Nat. Commun. 2017, 8, 572.
[24]
Y. J. Xu,; J. Yuan,; K. Zhang,; Y. Hou,; Q. Sun,; Y. M. Yao,; S. J. Li,; Q. L. Bao,; H. Zhang,; Y. G. Zhang, Field-induced n-doping of black phosphorus for CMOS compatible 2D logic electronics with high electron mobility. Adv. Funct. Mater. 2017, 27, 1702211.
[25]
S. C. Dhanabalan,; J. S. Ponraj,; Z. N. Guo,; S. J. Li,; Q. L. Bao,; H. Zhang, Emerging trends in phosphorene fabrication towards next generation devices. Adv. Sci. 2017, 4, 1600305.
[26]
Y. P. Zhang,; C. K. Lim,; Z. G. Dai,; G. N. Yu,; J. W. Haus,; H. Zhang,; P. N. Prasad, Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities. Phys. Rep. 2019, 795, 1-51.
[27]
R. X. Fei,; A. Faghaninia,; R. Soklaski,; J. A. Yan,; C. Lo,; L. Yang, Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett. 2014, 14, 6393-6399.
[28]
L. D. Zhao,; S. H. Lo,; Y. S. Zhang,; H. Sun,; G. J. Tan,; C. Uher,; C. Wolverton,; V. P. Dravid,; M. G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373-377.
[29]
M. J. Lee,; J. H. Ahn,; J. H. Sung,; H. Heo,; S. G. Jeon,; W. Lee,; J. Y. Song,; K. H. Hong,; B. Choi,; S. H. Lee, et al. Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity. Nat. Commun. 2016, 7, 12011.
[30]
B. Anasori,; M. R. Lukatskaya,; Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.
[31]
B. Luo,; B. Wang,; X. L. Li,; Y. Y. Jia,; M. H. Liang,; L. J. Zhi, Graphene-confined Sn nanosheets with enhanced lithium storage capability. Adv. Mater. 2012, 24, 3538-3543.
[32]
L. Zhou,; Z. C. Zhuang,; H. H. Zhao,; M. T. Lin,; D. Y. Zhao,; L. Q. Mai, Intricate hollow structures: Controlled synthesis and applications in energy storage and conversion. Adv. Mater. 2017, 29, 1602914.
[33]
Y. H. Xue,; Q. Zhang,; W. J. Wang,; H. Cao,; Q. H. Yang,; L. Fu, Opening two-dimensional materials for energy conversion and storage: A concept. Adv. Energy Mater. 2017, 7, 1602684.
[34]
M. Qiu,; Z. T. Sun,; D. K. Sang,; X. G. Han,; H. Zhang,; C. M. Niu, Current progress in black phosphorus materials and their applications in electrochemical energy storage. Nanoscale 2017, 9, 13384-13403.
[35]
Z. J. Xie,; C. Y. Xing,; W. C. Huang,; T. J. Fan,; Z. J. Li,; J. L. Zhao,; Y. J. Xiang,; Z. N. Guo,; J. Q. Li,; Z. G. Yang, et al. Ultrathin 2D nonlayered tellurium nanosheets: Facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater. 2018, 28, 1705833.
[36]
Y. Li,; R. H. Wang,; Z. N. Guo,; Z. Xiao,; H. D. Wang,; X. L. Luo,; H. Zhang, Emerging two-dimensional noncarbon nanomaterials for flexible lithium-ion batteries: Opportunities and challenges. J. Mater. Chem. A 2019, 7, 25227-25246.
[37]
R. H. Wang,; X. H. Li,; Z. X. Wang,; H. Zhang, Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: P-Toluenesulfonyl isocyanate as electrolyte additive. Nano Energy 2017, 34, 131-140.
[38]
X. H. Ren,; J. Zhou,; X. Qi,; Y. D. Liu,; Z. Y. Huang,; Z. J. Li,; Y. Q. Ge,; S. C. Dhanabalan,; J. S. Ponraj,; S. Y. Wang, et al. Few-layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction. Adv. Energy Mater. 2017, 7, 1700396.
[39]
J. J. Duan,; S. Chen,; M. Jaroniec,; S. Z. Qiao, Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catal. 2017, 5, 5207-5234.
[40]
H. Wang,; S. L. Jiang,; W. Shao,; X. D. Zhang,; S. H. Chen,; X, S. Sun,; Q. Zhang,; Y. Luo,; Y. Xie, Optically switchable photocatalysis in ultrathin black phosphorus nanosheets. J. Am. Chem. Soc. 2018, 140, 3474-3480.
[41]
X. Tan,; H. A. Tahini,; S. C. Smith, p-doped graphene/graphitic carbon nitride hybrid electrocatalysts: Unraveling charge transfer mechanisms for enhanced hydrogen evolution reaction performance. ACS Catal. 2016, 6, 7071-7077.
[42]
C. Sotelo-Vazquez,; R. Quesada-Cabrera,; M. Ling,; D. O. Scanlon,; A. Kafizas,; P. K. Thakur,; T. L. Lee,; A. Taylor,; G. W. Watson,; R. G. Palgrave, et al. Photocatalysis: Evidence and effect of photogenerated charge transfer for enhanced photocatalysis in WO3/TiO2 heterojunction films: A computational and experimental study. Adv. Funct. Mater. 2017, 27, 1605413.
[43]
H. B. Wang,; T. Maiyalagan,; X. Wang, Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781-794.
[44]
Q. Fu,; X. H. Bao Surface chemistry and catalysis confined under two-dimensional materials. Chem. Soc. Rev. 2017, 46, 1842-1874.
[45]
D. H. Deng,; K. S. Novoselov,; Q. Fu,; N. Zheng,; Z. Q. Tian,; X. H. Bao, Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218-230.
[46]
Z. B. Sun,; H. H. Xie,; S. Y. Tang,; X. F. Yu,; Z. N. Guo,; J. D. Shao,; H. Zhang,; H. Huang,; H. Y. Wang,; P. K. Chu, Ultrasmall black phosphorus quantum dots: Synthesis and use as photothermal agents. Angew. Chem., Int. Ed. 2015, 54, 11526-11530.
[47]
J. D. Shao,; H. H. Xie,; H. Huang,; Z. B. Li,; Z. B. Sun,; Y. H. Xu,; Q. L. Xiao,; X. F. Yu,; Y. T. Zhao,; H. Zhang, et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 2016, 7, 12967.
[48]
W. S. Chen,; J. Ouyang,; H. Liu,; M. Chen,; K. Zeng,; J. P. Sheng,; Z. J. Liu,; Y. J. Han,; L. Q. Wang,; J. Li, et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/ photothermal/chemotherapy of cancer. Adv. Mater. 2017, 29, 1603864.
[49]
W. Tao,; X. B. Zhu,; X. H. Yu,; X. W. Zeng,; Q. L. Xiao,; X. D. Zhang,; X. Y. Ji,; X. S. Wang,; J. J Shi,; H. Zhang, et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv. Mater. 2017, 29, 1603276.
[50]
M. Qiu,; D. Wang,; W. Y. Liang,; L. P. Liu,; Y. Zhang,; X. Chen,; D. K. Sang,; C. Y. Xing,; Z. J. Li,; B. Q. Dong, et al. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci. USA 2018, 115, 501-506.
[51]
H. H. Xie,; Z. B. Li,; Z. B. Sun,; J. D. Shao,; X. F. Yu,; Z. N. Guo,; J. H. Wang,; Q. L. Xiao,; H. Y. Wang,; Q. Q. Wang, et al. Metabolizable ultrathin Bi2Se3 nanosheets in imaging-guided photothermal therapy. Small 2016, 12, 4136-4145.
[52]
X. Y. Ji,; N. Kong,; J. Q. Wang,; W. L. Li,; Y. L. Xiao,; S. T. Gan,; Y. Zhang,; Y. J. Li,; X. R. Song,; Q. Q. Xiong, et al. A novel top-down synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy. Adv. Mater. 2018, 30, 1803031.
[53]
M. M. Luo,; T. J. Fan,; Y. Zhou,; H. Zhang,; L. Mei, 2D black phosphorus-based biomedical applications. Adv. Funct. Mater. 2019, 29, 1808306.
[54]
M. Zhang,; Q. Wu,; F. Zhang,; L. L. Chen,; X. X. Jin,; Y. W. Hu,; Z. Zheng,; H. Zhang, 2D Black phosphorus saturable absorbers for ultrafast photonics. Adv. Opt. Mater. 2019, 7, 1800224.
[55]
X. Liang,; X. Y. Ye,; C. Wang,; C. Y. Xing,; Q. W. Miao,; Z. J. Xie,; X. L. Chen,; X. D. Zhang,; H. Zhang,; L. Mei, Photothermal cancer immunotherapy by erythrocyte membrane-coated black phosphorus formulation. J. Control. Release 2019, 296, 150-161.
[56]
T. Y. Xue,; W. Y. Liang,; Y. W. Li,; Y. H. Sun,; Y. J. Xiang,; Y. P. Zhang,; Z. G. Dai,; Y. H. Duo,; L. M. Wu,; K. Qi, et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat. Commun. 2019, 10, 28.
[57]
W. Tao,; N. Kong,; X. Y. Ji,; Y. P. Zhang,; A. Sharma,; J. Ouyang,; B. W. Qi,; J. Q. Wang,; N. Xie,; C. Kang, et al. Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem. Soc. Rev. 2019, 48, 2891-2912.
[58]
Y. Zhou,; M. X. Zhang,; Z. N. Guo,; L. L. Miao,; S. T. Han,; Z. Y. Wang,; X. W. Zhang,; H. Zhang,; Z. C. Peng, Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices. Mater. Horiz. 2017, 4, 997-1019.
[59]
K. F. Mak,; C. Lee,; J. Hone,; J. Shan,; T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
[60]
R. R. Nair,; P. Blake,; A. N. Grigorenko,; K. S. Novoselov,; T. J. Booth,; T. Stauber,; N. M. R. Peres,; A. K. Geim, Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308.
[61]
D. S. Tsai,; K. K. Liu,; D. H. Lien,; M. L. Tsai,; C. F. Kang,; C. A. Lin,; L. J. Li,; J. H. He, Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 2013, 7, 3905-3911.
[62]
G. Eda,; S. A. Maier, Two-dimensional crystals: Managing light for optoelectronics. ACS Nano 2013, 7, 5660-5665.
[63]
S. F. Lan,; S. Rodrigues,; L. Kang,; W. S. Cai, Visualizing optical phase anisotropy in black phosphorus. ACS Photonics 2016, 3, 1176-1181.
[64]
W. S. Yun,; S. W. Han,; S. C. Hong,; I. G. Kim,; J. D. Lee, Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 2012, 85, 033305.
[65]
M. S. Long,; P. Wang,; H. H. Fang,; W. D. Hu, Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807.
[66]
J. J. Lin,; L. B. Liang,; X. Ling,; S. Q. Zhang,; N. N. Mao,; N. Zhang,; B. G. Sumpter,; V. Meunier,; L. M. Tong,; J. Zhang, Enhanced Raman scattering on in-plane anisotropic layered materials. J. Am. Chem. Soc. 2015, 137, 15511-15517.
[67]
Y. L. Wang,; C. X. Cong,; R. X. Fei,; W. H. Yang,; Y. Chen,; B. C. Cao,; L. Yang,; T. Yu, Remarkable anisotropic phonon response in uniaxially strained few-layer black phosphorus. Nano Res. 2015, 8, 3944-3953.
[68]
X. Ling,; S. X. Huang,; E. H. Hasdeo,; L. B. Liang,; W. M. Parkin,; Y. Tatsumi,; A. R. T. Nugraha,; A. A. Puretzky,; P. M. Das,; B. G. Sumpter, et al. Anisotropic electron-photon and electron-phonon interactions in black phosphorus. Nano Lett. 2016, 16, 2260-2267.
[69]
T. Hong,; B. Chamlagain,; W. Z. Lin,; H. J. Chuang,; M. H. Pan,; Z. X. Zhou,; Y. Q. Xu, Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale 2014, 6, 8978-8983.
[70]
R. X. Fei,; L. Yang, Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 2014, 14, 2884-2889.
[71]
X. M. Wang,; A. M. Jones,; K. L. Seyler,; V. Tran,; Y. C. Jia,; H. Zhao,; H. Wang,; L. Yang,; X. D. Xu,; F. N. Xia, Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 2015, 10, 517-521.
[72]
Z. N. Guo,; H. Zhang,; S. B. Lu,; Z. T. Wang,; S. Y. Tang,; J. D. Shao,; Z. B. Sun,; H. H. Xie,; H. Y. Wang,; X. F. Yu, et al. From black phosphorus to phosphorene: Basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics. Adv. Funct. Mater. 2015, 25, 6996-7002.
[73]
E. F. Liu,; Y. J. Fu,; Y. J. Wang,; Y. Q. Feng,; H. M. Liu,; X. G. Wan,; W. Zhou,; B. G. Wang,; L. B. Shao,; C. H. Ho, et al. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun. 2015, 6, 6991.
[74]
Y. C. Lin,; H. P. Komsa,; C. H. Yeh,; T. Björkman,; Z. Y. Liang,; C. H. Ho,; Y. S. Huang,; P. W. Chiu,; A. V. Krasheninnikov,; K. Suenaga, Single-layer ReS2: Two-dimensional semiconductor with tunable in-plane anisotropy. ACS Nano 2015, 9, 11249-11257.
[75]
B. Jariwala,; D. Voiry,; A. Jindal,; B. A. Chalke,; R. Bapat,; A. Thamizhavel,; M. Chhowalla,; M. Deshmukh,; A. Bhattacharya, Synthesis and characterization of ReS2 and ReSe2 layered chalcogenide single crystals. Chem. Mater. 2016, 28, 3352-3359.
[76]
D. T. Ma,; J. L. Zhao,; R. Wang,; C. Y. Xing,; Z. J. Li,; W. C. Huang,; X. T. Jiang,; Z. N. Guo,; Z. Q. Luo,; Y. Li, et al. Ultrathin GeSe nanosheets: From systematic synthesis, to studies of carrier dynamics and applications for high-performance UV-Vis photo-detector. ACS Appl. Mater. Interfaces 2019, 11, 4278-4287.
[77]
D. J. Xue,; J. H. Tan,; J. S. Hu,; W. P. Hu,; Y. G. Guo,; L. J. Wan, Anisotropic photoresponse properties of single micrometer-sized GeSe nanosheet. Adv. Mater. 2012, 24, 4528-4533.
[78]
L. C. Gomes,; A. Carvalho, Phosphorene analogues: Isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure. Phys. Rev. B 2015, 92, 085406.
[79]
T. Hu,; J. M. Dong, Two new phases of monolayer group-IV monochalcogenides and their piezoelectric properties. Phys. Chem. Chem. Phys. 2016, 18, 32514-32520.
[80]
D. Z. Tan,; H. E. Lim,; F. J. Wang,; N. B. Mohamed,; S. Mouri,; W. J. Zhang,; Y. Miyauchi,; M. Ohfuchi,; K. Matsuda, Anisotropic optical and electronic properties of two-dimensional layered germanium sulfide. Nano Res. 2017, 10, 546-555.
[81]
X. Z. Li,; J. Xia,; L. Wang,; Y. Y. Gu,; H. Q. Cheng,; X. M. Meng, Layered SnSe nano-plates with excellent in-plane anisotropic properties of Raman spectrum and photo-response. Nanoscale 2017, 9, 14558-14564.
[82]
Z. Tian,; C. L. Guo,; M. X. Zhao,; R. R. Li,; J. M. Xue, Two- dimensional SnS: A phosphorene analogue with strong in-plane electronic anisotropy. ACS Nano 2017, 11, 2219-2226.
[83]
X. T. Wang,; Y. T. Li,; L. Huang,; X. W. Jiang,; L. Jiang,; H. L. Dong,; Z. M. Wei,; J. B. Li,; W. P. Hu, Short-wave near-infrared linear dichroism of two-dimensional germanium selenide. J. Am. Chem. Soc. 2017, 139, 14976-14982.
[84]
J. Liu,; S. T. Pantelides, Anisotropic thermal expansion of group-IV monochalcogenide monolayers. Appl. Phys. Express 2018, 11, 101301.
[85]
A. J. Mannix,; Z. H. Zhang,; N. P. Guisinger,; B. I. Yakobson,; M. C. Hersam, Borophene as a prototype for synthetic 2D materials development. Nat. Nanotechnol. 2018, 13, 444-450.
[86]
V. Wang,; W. T. Geng, Lattice defects and the mechanical anisotropy of borophene. J. Phys. Chem. C 2017, 121, 10224-10232.
[87]
Z. A. Piazza,; H. S. Hu,; W. L. Li,; Y. F. Zhao,; J. Li,; L. S. Wang, Planar hexagonal B(36) as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 2014, 5, 1-6.
[88]
L. K. Li,; Y. J. Yu,; G. L. Ye,; Q. Q. Ge,; X. D. Ou,; H. Wu,; D. L. Feng,; X. H. Chen,; Y. B. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372-377.
[89]
Y. C. Du,; H. Liu,; Y. X. Deng,; P. D. Ye, Device perspective for black phosphorus field-effect transistors: Contact resistance, ambipolar behavior, and scaling. ACS Nano 2014, 8, 10035-10042.
[90]
H. Liu,; A. T. Neal,; Z. Zhu,; Z. Luo,; X. F. Xu,; D. Tománek,; P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033-4041.
[91]
J. S. Qiao,; X. H. Kong,; Z. X. Hu,; F. Yang,; W. Ji, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.
[92]
J. Kim,; S. S. Baik,; S. H. Ryu,; Y. Sohn,; S. Park,; B. G. Park,; J. Denlinger,; Y. Yi,; H. J. Choi,; K. S. Kim, Observation of tunable band gap and anisotropic dirac semimetal state in black phosphorus. Science. 2015, 349, 723-726.
[93]
Z. Luo,; J. Maassen,; Y. X. Deng,; Y. C. Du,; R. P. Garrelts,; M. S. Lundstrom,; P. D. Ye,; X. F. Xu, Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 2015, 6, 8572.
[94]
H. Chen,; P. Huang,; D. Guo,; G. X. Xie, Anisotropic mechanical properties of black phosphorus nanoribbons. J. Phys. Chem. C 2016, 120, 29491-29497.
[95]
Y. Wang,; G. Z. Xu,; Z. P. Hou,; B. C. Yang,; X. M. Zhang,; E. K. Liu,; X. K. Xi,; Z. Y. Liu,; Z. M. Zeng,; W. H. Wang, et al. Large anisotropic thermal transport properties observed in bulk single crystal black phosphorus. Appl. Phys. Lett. 2016, 108, 092102.
[96]
X. L. Liu,; C. R. Ryder,; S. A. Wells,; M. C. Hersam, Resolving the in-plane anisotropic properties of black phosphorus. Small Methods 2017, 1, 1700143.
[97]
S. Chen,; Y. Cheng,; G. Zhang,; Q. X. Pei,; Y. W. Zhang, Anisotropic wetting characteristics of water droplets on phosphorene: Roles of layer and defect engineering. J. Phys. Chem. C 2018, 122, 4622-4627.
[98]
H. Jiang,; H. Y. Shi,; X. D. Sun,; B. Gao, Optical anisotropy of few-layer black phosphorus visualized by scanning polarization modulation microscopy. ACS Photonics 2018, 5, 2509-2515.
[99]
H. Yang,; H. Jussila,; A. Autere,; H. P. Komsa,; G. J. Ye,; X. H. Chen,; T. Hasan,; Z. P. Sun, Optical waveplates based on birefringence of anisotropic two-dimensional layered materials. ACS Photonics 2017, 4, 3023-3030.
[100]
Y. B. Chen,; C. Y. Chen,; R. Kealhofer,; H. L. Liu,; Z. Q. Yuan,; L. L. Jiang,; J. Suh,; J. Park,; C. Ko,; H. S. Choe, et al. Black arsenic: A layered semiconductor with extreme in-plane anisotropy. Adv. Mater. 2018, 30, 1800754.
[101]
J. X. Wu,; N. N. Mao,; L. M. Xie,; H. Xu,; J. Zhang, Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem. 2015, 127, 2396-2399.
[102]
J. Tao,; W. F. Sheng,; S. Wu,; L. Liu,; Z. H. Feng,; C. Wang,; C. G. Hu,; P. Yao,; H. Zhang,; W. Pang, et al. Mechanical and electrical anisotropy of few-layer black phosphorus. ACS Nano 2015, 9, 11362-11370.
[103]
S. Lee,; F. Yang,; J. Suh,; S. J. Yang,; Y. Lee,; G. Li,; H. S. Choe,; A. Suslu,; Y. B. Chen,; C. Ko, et al. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat. Commun. 2015, 6, 8573.
[104]
J. L. Zhao,; J. J. Zhu,; R. Cao,; H. D. Wang,; Z. N. Guo,; D. K. Sang,; J. N. Tang,; D. Y. Fan,; J. Q. Li,; H. Zhang, Liquefaction of water on the surface of anisotropic two-dimensional atomic layered black phosphorus. Nat. Commun. 2019, 10, 4062.
[105]
P. W. Bridgman, Two new modifications of phosphorus. J. Am. Chem. Soc. 1914, 36, 1344-1363.
[106]
R. Hultgren,; N. S. Gingrich,; B. E. Warren, The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus. J. Chem. Phys. 1935, 3, 351-355.
[107]
Y. Maruyama,; S. Suzuki,; K. Kobayashi,; S. Tanuma, Synthesis and some properties of black phosphorus single crystals. Physica B+C 1981, 105, 99-102.
[108]
S. Endo,; Y. Akahama,; S. I. Terada,; S. I. Narita, Growth of large single crystals of black phosphorus under high pressure. Jpn. J. Appl. Phys. 1982, 21, L482-L484.
[109]
I. Shirotani, Growth of large single crystals of black phosphorus at high pressures and temperatures, and its electrical properties. Mol. Cryst. Liq. Cryst. 1982, 86, 203-211.
[110]
V. H. Krebs,; F. Schultze-Gebhardt, Über die struktur und eigenschaften der halbmetalle. VII. neubestimmung der struktur des glasigen selens nach verbesserten röntgenographischen methoden. Acta Crystallogr. 1955, 8, 412-419.
[111]
H. Liu,; Y. C. Du,; Y. X. Deng,; P. D. Ye, Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem. Soc. Rev. 2015, 44, 2732-2743.
[112]
T. Nilges,; M. Kersting,; T. Pfeifer, A fast low-pressure transport route to large black phosphorus single crystals. J. Solid State Chem. 2008, 181, 1707-1711.
[113]
M. Köpf,; N. Eckstein,; D. Pfister,; C. Grotz,; I. Krüger,; M. Greiwe,; T. Hansen,; H. Kohlmann,; T. Nilges, Access and in situ growth of phosphorene-precursor black phosphorus. J. Cryst. Growth 2014, 405, 6-10.
[114]
X. S. Li,; B. C. Deng,; X. M. Wang,; S. Z. Chen,; M. Vaisman,; S. I. Karato,; G. Pan,; M. L. Lee,; J. Cha,; H. Wang, et al. Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mater. 2015, 2, 031002.
[115]
D. K. Sang,; H. D. Wang,; Z. N. Guo,; N. Xie,; H. Zhang, Recent developments in stability and passivation techniques of phosphorene toward next-generation device applications. Adv. Funct. Mater. 2019, 29, 1903419.
[116]
J. J. Pei,; X. Gai,; J. Yang,; X. B. Wang,; Z. F. Yu,; D. Y. Choi,; B. Luther-Davies,; Y. R. Lu, Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun. 2016, 7, 10450.
[117]
Y T. Zhao,; H. Y. Wang,; H. Huang,; Q. L. Xiao,; Y. H. Xu,; Z. N. Guo,; H. H. Xie,; J. D. Shao,; Z. B. Sun,; W. J. Han, et al. Surface coordination of black phosphorus for robust air and water stability. Angew. Chem., Int. Ed. 2016, 55, 5003-5007.
[118]
Q. H. Zhou,; Q. Chen,; Y. L. Tong,; J. L. Wang, Light-induced ambient degradation of few-layer black phosphorus: Mechanism and protection. Angew. Chem., Int. Ed. 2016, 55, 11437-11441.
[119]
G. Abellán,; S. Wild,; V. Lloret,; N. Scheuschner,; R. Gillen,; U. Mundloch,; J. Maultzsch,; M. Varela,; F. Hauke,; A. Hirsch, Fundamental insights into the degradation and stabilization of thin layer black phosphorus. J. Am. Chem. Soc. 2017, 139, 10432-10440.
[120]
A. Avsar,; J. Y. Tan,; X. Luo,; K. H. Khoo,; Y. Yeo,; K. Watanabe,; T. Taniguchi,; S. Y. Quek,; B. Ozyilmaz, Van der waals bonded Co/h-BN contacts to ultrathin black phosphorus devices. Nano Lett. 2017, 17, 5361-5367.
[121]
H. Zhu,; S. McDonnell,; X. Y. Qin,; A. Azcatl,; L. X. Cheng,; R. Addou,; J. Kim,; P. D. Ye,; R. M. Wallace, Al2O3 on black phosphorus by atomic layer deposition: An in situ interface study. ACS Appl. Mater. Interfaces 2015, 7, 13038-13043.
[122]
X. Luo,; Y. Rahbarihagh,; J. C. M. Hwang,; H. Liu,; Y. C. Du,; P. D. Ye, Temporal and thermal stability of Al2O3-passivated phosphorene MOSFETs. IEEE Electron Device Lett. 2014, 35, 1314-1316.
[123]
J. S. Kim,; Y. N. Liu,; W. N. Zhu,; S. Kim,; D. Wu,; L. Tao,; A. Dodabalapur,; K. J. Lai,; D. Akinwande, Toward air-stable multilayer phosphorene thin-films and transistors. Sci. Rep. 2015, 5, 8989.
[124]
Z. N. Guo,; S. Chen,; Z. Z. Wang,; Z. Y. Yang,; F. Liu,; Y. H. Xu,; J. H. Wang,; Y. Yi,; H. Zhang,; L. Liao, et al. Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater. 2017, 29, 1703811.
[125]
H. D. Wang,; D. K. Sang,; Z. N. Guo,; R. Cao,; J. L. Zhao,; M. N. U. Shah,; T. J. Fan,; D. Y. Fan,; H. Zhang, Black phosphorus-based field effect transistor devices for Ag ions detection. Chin. Phys. B 2018, 27, 087308.
[126]
X. Tang,; W. Y. Liang,; J. L. Zhao,; Z. J. Li,; M. Qiu,; T. J. Fan,; C. S. Luo,; Y. Zhou,; Y. Li,; Z. N. Guo, et al. Fluorinated phosphorene: Electrochemical synthesis, atomistic fluorination, and enhanced stability. Small 2017, 13, 1702739.
[127]
Y. H. Xu,; Z. T. Wang,; Z. N. Guo,; H. Huang,; Q. L Xiao,; H. Zhang,; X. F. Yu, Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots. Adv. Opt. Mater. 2016, 4, 1223-1229.
[128]
X. F. Jiang,; Z. K. Zeng,; S. Li,; Z. N. Guo,; H. Zhang,; F. Huang,; Q. H. Xu, Tunable broadband nonlinear optical properties of black phosphorus quantum dots for femtosecond laser pulses. Materials 2017, 10, 210.
[129]
C. Lin,; R. Grassi,; T. Low,; A. S. Helmy, Multilayer black phosphorus as a versatile mid-infrared electro-optic material. Nano Lett. 2016, 16, 1683-1689.
[130]
Y. H. Xu,; X. F. Jiang,; Y. Q. Ge,; Z. N. Guo,; Z. K. Zeng,; Q. H. Xu,; H. Zhang,; X. F. Yu,; D. Y. Fan, Size-dependent nonlinear optical properties of black phosphorus nanosheets and their applications in ultrafast photonics. J. Mater. Chem. C 2017, 3007-3013.
[131]
J. J. Liu,; J. Liu,; Z. N. Guo,; H. Zhang,; W. W. Ma,; J. Y. Wang,; L. B. Su, Dual-wavelength Q-switched Er: SrF2 laser with a black phosphorus absorber in the mid-infrared region. Opt. Express 2016, 24, 30289-30295.
[132]
C. Li,; J. Liu,; Z. N. Guo,; H. Zhang,; W. W. Ma,; J. Y. Wang,; X. D. Xue,; L B. Su, Black phosphorus saturable absorber for a diode-pumped passively Q-switched Er: CaF2 mid-infrared laser. Opt. Commun. 2018, 406, 158-162.
[133]
R. Cao,; H. D. Wang,; Z. N. Guo,; D. K. Sang,; L. Y. Zhang,; Q. L. Xiao,; Y. P. Zhang,; D. Y. Fan,; J. Q. Li,; H. Zhang, Black phosphorous/indium selenide photoconductive detector for visible and near-infrared light with high sensitivity. Adv. Opt. Mater. 2019, 7, 1900020.
[134]
Z. H. Hu,; Q. Li,; B. Lei,; J. Wu,; Q. H. Zhou,; C. D. Gu,; X. L. Wen,; J. Y. Wang,; Y. P. Liu,; S. S. Li, et al. Abnormal near-infrared absorption in 2D black phosphorus induced by Ag nanoclusters surface functionalization. Adv. Mater. 2018, 30, 1801931.
[135]
J. H. Na,; K. Park,; J. T. Kim,; W. K. Choi,; Y. W. Song, Air-stable few-layer black phosphorus phototransistor for near-infrared detection. Nanotechnology 2017, 28, 085201.
[136]
Y. S. Yang,; S. C. Liu,; W. Yang,; Z. B. Li,; Y. Wang,; X. Wang,; S. S. Zhang,; Y. Zhang,; M. S. Long,; G. M. Zhang, et al. Air-stable in-plane anisotropic GeSe2 for highly polarization-sensitive photodetection in short wave region. J. Am. Chem. Soc. 2018, 140, 4150-4156.
[137]
H. Tian,; Q. S. Guo,; Y. J. Xie,; H. Zhao,; C. Li,; J. J. Cha,; F. N. Xia,; H. Wang, Anisotropic black phosphorus synaptic device for neuromorphic applications. Adv. Mater. 2016, 28, 4991-4997.
[138]
G. H. Yang,; X. J. Wan,; Z. P. Gu,; X. R. Zeng,; J. N. Tang, Near infrared photothermal-responsive poly(vinyl alcohol)/black phosphorus composite hydrogels with excellent on-demand drug release capacity. J. Mater. Chem. B 2018, 6, 1622-1632.
[139]
M. Pumera, Phosphorene and black phosphorus for sensing and biosensing. TrAC Trends Anal. Chem. 2017, 93, 1-6.
[140]
G. Lee,; S. Kim,; S. Jung,; S. Jang,; J. Kim, Suspended black phosphorus nanosheet gas sensors. Sensors Actuators B Chem. 2017, 250, 569-573.
[141]
Q. S. Guo,; A. Pospischil,; M. Bhuiyan,; H. Jiang,; H. Tian,; D. Farmer,; B. C. Deng,; C. Li,; S. J. Han,; H. Wang, et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 2016, 16, 4648-4655.
[142]
Y. Q. Zhang,; N. N. Dong,; H. C. Tao,; C. Yan,; J. W. Huang,; T. F. Liu,; A. W. Robertson,; J. Texter,; J. Wang,; Z. Y. Sun, Exfoliation of stable 2D black phosphorus for device fabrication. Chem. Mater. 2017, 29, 6445-6456.
[143]
N. Youngblood,; M. Li, Ultrafast photocurrent measurements of a black phosphorus photodetector. Appl. Phys. Lett. 2017, 110, 051102.
[144]
E. Flores,; J. R. Ares,; A. Castellanos-Gomez,; M. Barawi,; I. J. Ferrer,; C. Sánchez, Thermoelectric power of bulk black-phosphorus. Appl. Phys. Lett. 2015, 106, 022102.
[145]
X. L. Chen,; X. B. Lu,; B. C. Deng,; O. Sinai,; Y. C. Shao,; C. Li,; S. F. Yuan,; V. Tran,; K. Watanabe,; T. Taniguchi, et al. Widely tunable black phosphorus mid-infrared photodetector. Nat. Commun. 2017, 8, 1672.
[146]
H. T. Yuan,; X. G. Liu,; F. Afshinmanesh,; W. Li,; G. Xu,; J. Sun,; B. Lian,; A. G. Curto,; G. J. Ye,; Y. Hikita, et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. Nat. Nanotechnol. 2015, 10, 707-713.
[147]
A. Jain,; A. J. H. McGaughey, Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 2015, 5, 8501.
[148]
G. Z. Qin,; Q. B. Yan,; Z. Z. Qin,; S. Y. Yue,; M. Hu,; G. Su, Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Phys. Chem. Chem. Phys. 2015, 17, 4854-4858.
[149]
Y. Q. Cai,; Q. Q. Ke,; G. Zhang,; Y. P. Feng,; V. B. Shenoy,; Y. W. Zhang, Giant phononic anisotropy and unusual anharmonicity of phosphorene: Interlayer coupling and strain engineering. Adv. Funct. Mater. 2015, 25, 2230-2236.
[150]
B. Smith,; B. Vermeersch,; J. Carrete,; E. Ou,; J. Kim,; N. Mingo,; D. Akinwande,; L. Shi, Temperature and thickness dependences of the anisotropic in-plane thermal conductivity of black phosphorus. Adv. Mater. 2017, 29, 1603756.
[151]
Z. H. Wang,; H. Jia,; X. Q. Zheng,; R. Yang,; G. J. Ye,; X. H. Chen,; P. X. L. Feng, Resolving and tuning mechanical anisotropy in black phosphorus via nanomechanical multimode resonance spectromicroscopy. Nano Lett. 2016, 16, 5394-5400.
[152]
W. N. Zhu,; M. N. Yogeesh,; S. X. Yang,; S. H. Aldave,; J. S. Kim,; S. Sonde,; L. Tao,; N. S. Lu,; D. Akinwande, Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett. 2015, 15, 1883-1890.
[153]
S. K. Kim,; R. Bhatia,; T. H. Kim,; D. Seol,; J. H. Kim,; H. Kim,; W. Seung,; Y. Kim,; Y. H. Lee,; S. W. Kim, Directional dependent piezoelectric effect in CVD grown monolayer MoS2 for flexible piezoelectric nanogenerators. Nano Energy 2016, 22, 483-489.
[154]
Z. H. Wang,; H. Jia,; X. Q. Zheng,; R. Yang,; Z. F. Wang,; G. J. Ye,; X. H. Chen,; J. Shan,; P. X. L. Feng, Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies. Nanoscale 2015, 7, 877-884.
[155]
J. W. Jiang,; H. S. Park, Mechanical properties of single-layer black phosphorus. J. Phys. D Appl. Phys. 2014, 47, 385304.
[156]
W. Z. Wu,; L. Wang,; Y. L. Li,; F. Zhang,; L. Lin,; S. M. Niu,; D. Chenet,; X. Zhang,; Y. F. Hao,; T. F. Heinz, et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470-474.
[157]
Y. Wang,; R. Yang,; Z. W. Shi,; L. C. Zhang,; D. X. Shi,; E. G. Wang,; G. Y. Zhang, Super-elastic graphene ripples for flexible strain sensors. ACS Nano 2011, 5, 3645-3650.
[158]
Y. J. Park,; B. K. Sharma,; S. M. Shinde,; M. S. Kim,; B. Jang,; J. H. Kim,; J. H. Ahn, All MoS2-based large area, skin-attachable active-matrix tactile sensor. ACS Nano 2019, 13, 3023-3030.
[159]
A. N. Abbas,; B. L. Liu,; L. Chen,; Y. Q. Ma,; S. Cong,; N. Aroonyadet,; M. Köpf,; T. Nilges,; C. W. Zhou, Black phosphorus gas sensors. ACS Nano 2015, 9, 5618-5624.
[160]
B. L. Liu,; M. Köpf,; A. N. Abbas,; X. M. Wang,; Q. S. Guo,; Y. C. Jia,; F. N. Xia,; R. Weihrich,; F. Bachhuber,; F. Pielnhofer, et al. Black arsenic-phosphorus: Layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater. 2015, 27, 4423-4429.
[161]
Z. Liu,; L. L. Ma,; G. Shi,; W. Zhou,; Y. J. Gong,; S. D. Lei,; X. B. Yang,; J. N. Zhang,; J. J. Yu,; K. P. Hackenberg, et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotechnol. 2013, 8, 119-124.
[162]
Q. L. Feng,; Y. M. Zhu,; J. H. Hong,; M. Zhang,; W. J. Duan,; N. N. Mao,; J. X. Wu,; H. Xu,; F. L. Dong,; F. Lin, et al. Growth of large-area 2D MoS2(1-x)Se2x semiconductor alloys. Adv. Mater. 2014, 26, 2648-2653.
[163]
Y. J. Gong,; Z. Liu,; A. R. Lupini,; G. Shi,; J. H. Lin,; S. Najmaei,; Z. Lin,; A. L. Elías,; A. Berkdemir,; G. You, et al. Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Lett. 2014, 14, 442-449.
[164]
H. L. Li,; X. D. Duan,; X. P. Wu,; X. J. Zhuang,; H. Zhou,; Q. L. Zhang,; X. L. Zhu,; W. Hu,; P. Y. Ren,; P. F. Guo, et al. Growth of alloy MoS2xSe2(1-x) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc. 2014, 136, 3756-3759.
[165]
Y. Jing,; Y. D. Ma,; Y. F. Li,; T. Heine, GeP3: A small indirect band gap 2D crystal with high carrier mobility and strong interlayer quantum confinement. Nano Lett. 2017, 17, 1833-1838.
[166]
J. Guan,; D. Liu,; Z. Zhu,; D. Tománek, Two-dimensional phosphorus carbide: Competition between sp2 and sp3 bonding. Nano Lett. 2016, 16, 3247-3252.
[167]
M. Amani,; E. Regan,; J. Bullock,; G. H. Ahn,; A. Javey, Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano 2017, 11, 11724-11731.
[168]
L. Li,; W. K. Wang,; P. L. Gong,; X. D. Zhu,; B. Deng,; X. Q. Shi,; G. Y. Gao,; H. Q. Li,; T. Y. Zhai, 2D GeP: An unexploited low- symmetry semiconductor with strong in-plane anisotropy. Adv. Mater. 2018, 30, 1706771.
[169]
B. C. Yang,; B. S. Wan,; Q. H. Zhou,; Y. Wang,; W. T. Hu,; W. M. Lv,; Q. Chen,; Z. M. Zeng,; F. S. Wen,; J. Y. Xiang, et al. Te-doped black phosphorus field-effect transistors. Adv. Mater. 2016, 28, 9408-9415.
[170]
J. Guo,; D. Z. Huang,; Y. Zhang,; H. Z. Yao,; Y. Z. Wang,; F. Zhang,; R. Wang,; Y. Q. Ge,; Y. F. Song,; Z. N. Guo, et al. 2D GeP as a novel broadband nonlinear optical material for ultrafast photonics. Laser Photonics Rev. 2019, 13, 1900123.
[171]
I. Shirotani,; J. Mikami,; T. Adachi,; Y. Katayama,; K. Tsuji,; H. Kawamura,; O. Shimomura,; T. Nakajima, Phase transitions and superconductivity of black phosphorus and phosphorus-arsenic alloys at low temperatures and high pressures. Phys. Rev. B 1994, 50, 16274-16278.
[172]
C. Barreteau,; B. Michon,; C. Besnard,; E. Giannini, High-pressure melt growth and transport properties of SiP, SiAs, GeP, and GeAs 2D layered semiconductors. J. Cryst. Growth 2016, 443, 75-80.
[173]
M. S. Long,; A. Y. Gao,; P. Wang,; H. Xia,; C. Ott,; C. Pan,; Y. J. Fu,; E. F. Liu,; X. S. Chen,; W. Lu, et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 2017, 3, e1700589.
[174]
B. J. Feng,; J. Zhang,; Q. Zhong,; W. B. Li,; S. Li,; H. Li,; P. Cheng,; S. Meng,; L. Chen,; K. H. Wu, Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 563-568.
[175]
Z. H. Zhang,; Y. Yang,; E. S. Penev,; B. I. Yakobson, Elasticity, flexibility, and ideal strength of borophenes. Adv. Funct. Mater. 2017, 27, 1605059.
[176]
A. Lherbier,; A. R. Botello-Méndez,; J. C. Charlier, Electronic and optical properties of pristine and oxidized borophene. 2D Mater. 2016, 3, 045006.
[177]
B. Peng,; H. Zhang,; H. Z. Shao,; Y. F. Xu,; R. J. Zhang,; H. Y. Zhu, The electronic, optical, and thermodynamic properties of borophene from first-principles calculations. J. Mater. Chem. C 2016, 4, 3592-3598.
[178]
H. B. Zhou,; Y. Q. Cai,; G. Zhang,; Y. W. Zhang, Superior lattice thermal conductance of single-layer borophene. npj 2D Mater. Appl. 2017, 1, 14.
[179]
Z. Q. Wang,; T. Y. Lü,; H. Q. Wang,; Y. P. Feng,; J. C. Zheng, High anisotropy of fully hydrogenated borophene. Phys. Chem. Chem. Phys. 2016, 18, 31424-31430.
[180]
L. J. Kong,; K. H. Wu,; L. Chen, Recent progress on borophene: Growth and structures. Front. Phys. 2018, 13, 138105.
[181]
T. Tsafack,; B. I. Yakobson, Thermomechanical analysis of two- dimensional boron monolayers. Phys. Rev. B 2016, 93, 165434.
[182]
R. T. Wu,; I. K. Drozdov,; S. Eltinge,; P. Zahl,; S. I. Beigi,; I. Božović,; A. Gozar, Large-area single-crystal sheets of borophene on Cu(111) surfaces. Nat. Nanotechnol. 2019, 14, 44-49.
[183]
Z. H. Zhang,; E. S. Penev,; B. I. Yakobson, Two-dimensional boron: Structures, properties and applications. Chem. Soc. Rev. 2017, 46, 6746-6763.
[184]
A. J. Mannix,; X. F. Zhou,; B. Kiraly,; J. D. Wood,; D. Alducin,; B. D. Myers,; X. L. Liu,; B. L. Fisher,; U. Santiago,; J. R. Guest, et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513-1516.
[185]
Z. H. Zhang,; A. J. Mannix,; X. L. Liu,; Z. L. Hu,; N. P. Guisinger,; M. C. Hersam,; B. I. Yakobson, Near-equilibrium growth from borophene edges on silver. Sci. Adv. 2019, 5, eaax0246.
[186]
G. A. Tai,; T. S. Hu,; Y. G. Zhou,; X. F. Wang,; J. Z. Kong,; T. Zeng,; Y. C. You,; Q. Wang, Synthesis of atomically thin boron films on copper foils. Angew. Chem., Int. Ed. 2015, 54, 15473-15477.
[187]
B. Kiraly,; X. L. Liu,; L. Q. Wang,; Z. H. Zhang,; A. J. Mannix,; B. L. Fisher,; B. I. Yakobson,; M. C. Hersam,; N. P. Guisinger, Borophene synthesis on Au(111). ACS Nano 2019, 13, 3816-3822.
[188]
Z. H. Zhang,; Y. Yang,; G. Y. Gao,; B. I. Yakobson, Two-dimensional boron monolayers mediated by metal substrates. Angew. Chem., Int. Ed. 2015, 54, 13022-13026.
[189]
X. Y. Ji,; N. Kong,; J. Q. Wang,; W. L. Li,; Y. L. Xiao,; S. T. Gan,; Y. Zhang,; Y. J. Li,; X. R. Song,; Q. Q. Xiong, et al. A novel top-down synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy. Adv. Mater. 2018, 30, 1803031.
[190]
D. T. Ma,; R. Wang,; J. L. Zhao,; Q. Y. Chen,; L. M. Wu,; D. L. Li,; L. M. Su,; X. T. Jiang,; Z. Luo; Y. Q. Ge, et al. A self-powered photodetector based on two-dimensional boron nanosheets. Nanoscale 2020, 12, 5313-5323.
[191]
D. T. Ma,; J. L. Zhao,; J. L. Xie,; F. Zhang,; R. Wang,; L. M. Wu,; W. Y. Liang,; D. L. Li,; Y. Q. Ge,; J. Q. Li, et al. Ultrathin boron nanosheets as an emerging two-dimensional photoluminescence material for bioimaging. Nanoscale Horiz. 2020, 5, 705-713.
[192]
Y. J. Wang,; J. F. Fan,; M. Trenary, Surface chemistry of boron oxidation. 1. reactions of oxygen and water with boron films grown on Tantalum(110). Chem. Mater. 1993, 5, 192-198.
[193]
Z. H. Cui,; E. J. Jimenez-Izal,; A. N. Alexandrova, Prediction of two-dimensional phase of boron with anisotropic electric conductivity. J. Phys. Chem. Lett. 2017, 8, 1224-1228.
[194]
F. C. Liu,; S. J. Zheng,; X. X. He,; A. Chaturvedi,; J. F. He,; W. L. Chow,; T. R. Mion,; X. L. Wang,; J. D. Zhou,; Q. D. Fu et al. Highly sensitive detection of polarized light using anisotropic 2D ReS2. Adv. Funct. Mater. 2016, 26, 1169-1177.
[195]
E. Z. Zhang,; P. Wang,; Z. Li,; H. F. Wang,; C. Y. Song,; C. Huang,; Z. G. Chen,; L. Yang,; K. T. Zhang,; S. H. Lu, et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 2016, 10, 8067-8077.
[196]
G. Z. Qin,; Z. Z. Qin,; W. Z. Fang,; L. C. Zhang,; S. Y. Yue,; Q. B. Yan,; M. Hu,; G. Su, Diverse anisotropy of phonon transport in two-dimensional group IV-VI compounds: A comparative study. Nanoscale 2016, 8, 11306-11319.
[197]
L. C. Gomes,; A. Carvalho,; A. H. C. Neto, Enhanced piezoelectricity and modified dielectric screening of two-dimensional group-IV monochalcogenides. Phys. Rev. B 2015, 92, 214103.
[198]
Y. Guo,; S. Zhou,; Y. Z. Bai,; J. J. Zhao, Oxidation resistance of monolayer group-IV monochalcogenides. ACS Appl. Mater. Interfaces 2017, 9, 12013-12020.
[199]
C. Kamal,; A. Chakrabarti,; M. Ezawa, Direct band gaps in group IV-VI monolayer materials: Binary counterparts of phosphorene. Phys. Rev. B 2016, 93, 125428.
[200]
C. R. Ryder,; J. D. Wood,; S. A. Wells,; Y. Yang,; D. Jariwala,; T. J. Marks,; G. C. Schatz,; M. C. Hersam, Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 2016, 8, 597-602.
[201]
W. Hofmann, Ergebnisse der strukturbestimmung komplexer sulfide. Z. Krist-Cryst. Mater. 1935, 92, 161-185.
[202]
A. Okazaki,; I. Ueda, The crystal structure of stannous selenide SnSe. J. Phys. Soc. Jpn. 1956, 11, 470.
[203]
A. Okazaki, The crystal structure of germanium selenide GeSe. J. Phys. Soc. Jpn. 1958, 13, 1151-1155.
[204]
J. R. Brent,; D. J. Lewis,; T. Lorenz,; E. A. Lewis,; N. Savjani,; S. J. Haigh,; G. Seifert,; B. Derby,; P. O'Brien, Tin(II) sulfide (SnS) nanosheets by liquid-phase exfoliation of herzenbergite: IV-VI main group two-dimensional atomic crystals. J. Am. Chem. Soc. 2015, 137, 12689-12696.
[205]
K. Ramasamy,; V. L. Kuznetsov,; K. Gopal,; M. A. Malik,; J. Raftery,; P. P. Edwards,; P. O’Brien, Correction to organotin dithiocarbamates: Single-source precursors for tin sulfide thin films by aerosol-assisted chemical vapor deposition (AACVD). Chem. Mater. 2014, 25, 3348.
[206]
L. C. Gomes,; A. Carvalho,; A. H. C. Neto, Vacancies and oxidation of two-dimensional group-IV monochalcogenides. Phys. Rev. B 2016, 94, 054103.
[207]
K. C. Santosh,; R. C. Longo,; R. M. Wallace,; K. Cho, Surface oxidation energetics and kinetics on MoS2 monolayer. J. Appl. Phys. 2015, 117, 135301.
[208]
T. M. Zhang,; Y. Y. Wan,; H. Y. Xie,; Y. Mu,; P. W. Du,; D. Wang,; X. J. Wu,; H. X. Ji,; L. J. Wan, Degradation chemistry and stabilization of exfoliated few-layer black phosphorus in water. J. Am. Chem. Soc. 2018, 140, 7561-7567.
[209]
P. K. Venuthurumilli,; P. D. Ye,; X. F. Xu, Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared. ACS Nano 2018, 12, 4861-4867.
[210]
W. H. Zhou,; S. L. Zhang,; Y. Y. Wang,; S. Y. Guo,; H. Z. Qu,; P. X. Bai,; Z. Li,; H. B. Zeng, Anisotropic in-plane ballistic transport in monolayer black arsenic-phosphorus FETs. Adv. Electron. Mater. 2020, 6, 1901281.
[211]
M. Z. Zhong,; Q. L. Xia,; L. F. Pan,; Y. Q. Liu,; Y. B. Chen,; H. X. Deng,; J. B. Li,; Z. M. Wei, Thickness-dependent carrier transport characteristics of a new 2D elemental semiconductor: Black arsenic. Adv. Funct. Mater. 2018, 28, 1802581.
[212]
M. M. A. Mahmoud,; D. P. Joubert, First principles study of the structural, stability properties and lattice thermal conductivity of bulk ReSe2. Mater. Today Proc. 2018, 5, 10424-10430.
[213]
J. B. Wu,; H. Zhao,; Y. R. Li,; D. Ohlberg,; W. Shi,; W. Wu,; H. Wang,; P. H. Tan, Monolayer molybdenum disulfide nanoribbons with high optical anisotropy. Adv. Opt. Mater. 2016, 4, 756-762.
[214]
S. J. Liu,; W. B. Xiao,; M. Z. Zhong,; L. F. Pan,; X. T. Wang,; H. X. Deng,; J. Liu,; J. B. Li,; Z. M. Wei, Highly polarization sensitive photodetectors based on quasi-1D titanium trisulfide (TiS3). Nanotechnology 2018, 29, 184002.
[215]
S. Y. Niu,; G. Joe,; H. Zhao,; Y. C. Zhou,; T. Orvis,; H. X. Huyan,; J. Salman,; K. Mahalingam,; B. Urwin,; J. B. Wu, et al. Giant optical anisotropy in a quasi-one-dimensional crystal. Nat. Photonics 2018, 12, 392-396.
[216]
Y. Q. Ma,; C. F. Shen,; A. Y. Zhang,; L. Chen,; Y. H. Liu,; J. H. Chen,; Q. Z. Liu,; Z. Li,; M. R. Amer,; T. Nilges, et al. Black phosphorus field-effect transistors with work function tunable contacts. ACS Nano 2017, 11, 7126-7133.
[217]
Y. T. Chen,; R. Ren,; H. H. Pu,; J. B. Chang,; S. Mao,; J. H. Chen, Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. Biosens. Bioelectron. 2017, 89, 505-510.
[218]
L. M. Wu,; Y. Z. Dong,; J. L. Zhao,; D. T. Ma,; W. C. Huang,; Y. Zhang,; Y. Z. Wang,; X. T. Jiang,; Y. J. Xiang,; J. Q. Li, et al. Kerr nonlinearity in 2D graphdiyne for passive photonic diodes. Adv. Mater. 2019, 31, 1807981.
[219]
X. H. Ren,; Z. J. Li,; Z. Y. Huang,; D. Sang,; H. Qiao,; X. Qi,; J. Q. Li,; J. X. Zhong,; H. Zhang, Environmentally robust black phosphorus nanosheets in solution: Application for self-powered photodetector. Adv. Funct. Mater. 2017, 27, 1606834.
[220]
C. X. Hao,; B. C. Yang,; F. S. Wen,; J. Y. Xiang,; L. Li,; W. H. Wang,; Z. M. Zeng,; B. Xu,; Z. S. Zhao,; Z. Y. Liu, et al. Flexible all-solid- state supercapacitors based on liquid-exfoliated black-phosphorus nanoflakes. Adv. Mater. 2016, 28, 3194-3201.
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 May 2020
Revised: 28 July 2020
Accepted: 29 July 2020
Published: 23 October 2020
Issue date: April 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work is supported by the State Key Research Development Program of China (No. 2019YFB2203503), the National Natural Science Foundation of China (Nos. 61875138, 61961136001, 61435010, and U1801254), the Guangdong Science Foundation for Distinguished Young Scholars (No. 2018B030306038), the Science and Technology Innovation Commission of Shenzhen (Nos. JCYJ20180507182047316, KQJSCX20180328095501798, KQTD2015032416270385, and GJHZ20180928160209731), the Natural Science Foundation of SZU (No. 860-000002110429), the Educational Commission of Guangdong Province (Nos. 2016KCXTD006 and 2018KCXTD026), and the Science and Technology Development Fund (Nos. 007/2017/A1 and 132/ 2017/A3), Macao SAR, China.

Return