Journal Home > Volume 13 , Issue 12

Ni-rich oxides, LiNixMnyCozO2 (NMC), are among leading candidates for cathode materials in Li-ion batteries. However, they are mostly fabricated by coprecipitation approach under complex conditions, which usually produces large secondary particles composed of aggregated primary particles. Undesirable cation mixing and crack propagation upon cycling block ion and electron transport, result in fast capacity fading and poor rate capability. Herein, we present an ultrasound-triggered cation chelation and reassembly route for synthesizing one-dimensional precursor with homogeneous element distribution at the atomic level. This process is accomplished by the synergistic combination of ultrasound and surfactant, which can disperse reactants and remove hydration shells surrounding cations so as to accelerate chelating reaction, and then separate and assemble chelates into one dimensional structure. The whole synthesis time is only 20 min (8.9 min of ultrasonic working time) in an open vessel under natural ambient conditions. One-dimensional LiNi0.6Mn0.2Co0.2O2 has a high reversible capacity (184 mAh·g-1 at 0.1 C) and long cycling stability (95.1% and 82.4% capacity retention for 100 and 1000 cycles, respectively). The short charging time of 76 s is realized at super high current rate of 20 C, which is very important to improve the competitiveness of electric vehicles relative to fuel vehicles. Our synthetic approach can provide a general strategy for the growth of mixed-metal-EDTA chelate precursors by changing the feeding ratio of Ni2+, Mn2+ and Co2+ cations in reaction for fabricating NMC cathode materials with other compositions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

An ultrasound-triggered cation chelation and reassembly route to one-dimensional Ni-rich cathode material enabling fast charging and stable cycling of Li-ion batteries

Show Author's information Yongjian Lai1Zhaojie Li1Wenxia Zhao2Xiaoning Cheng2Shuo Xu1Xiao Yu1Yong Liu1( )
School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou 510275, China

Abstract

Ni-rich oxides, LiNixMnyCozO2 (NMC), are among leading candidates for cathode materials in Li-ion batteries. However, they are mostly fabricated by coprecipitation approach under complex conditions, which usually produces large secondary particles composed of aggregated primary particles. Undesirable cation mixing and crack propagation upon cycling block ion and electron transport, result in fast capacity fading and poor rate capability. Herein, we present an ultrasound-triggered cation chelation and reassembly route for synthesizing one-dimensional precursor with homogeneous element distribution at the atomic level. This process is accomplished by the synergistic combination of ultrasound and surfactant, which can disperse reactants and remove hydration shells surrounding cations so as to accelerate chelating reaction, and then separate and assemble chelates into one dimensional structure. The whole synthesis time is only 20 min (8.9 min of ultrasonic working time) in an open vessel under natural ambient conditions. One-dimensional LiNi0.6Mn0.2Co0.2O2 has a high reversible capacity (184 mAh·g-1 at 0.1 C) and long cycling stability (95.1% and 82.4% capacity retention for 100 and 1000 cycles, respectively). The short charging time of 76 s is realized at super high current rate of 20 C, which is very important to improve the competitiveness of electric vehicles relative to fuel vehicles. Our synthetic approach can provide a general strategy for the growth of mixed-metal-EDTA chelate precursors by changing the feeding ratio of Ni2+, Mn2+ and Co2+ cations in reaction for fabricating NMC cathode materials with other compositions.

Keywords: cathode materials, Li-ion batteries, ultrasound, Ni-rich oxides, one dimensional structure

References(48)

[1]
Z. P. Cano,; D. Banham,; S. Y. Ye,; A. Hintennach,; J. Lu,; M. Fowler,; Z. W. Chen, Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279-289.
[2]
D. Andre,; S. J. Kim,; P. Lamp,; S. F. Lux,; F. Maglia,; O. Paschos,; B. Stiaszny, Future generations of cathode materials: An automotive industry perspective. J. Mater. Chem. A 2015, 3, 6709-6732.
[3]
Y. Ding,; D. B. Mu,; B. R. Wu,; R. Wang,; Z. K. Zhao,; F. Wu, Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles. Appl. Energy 2017, 195, 586-599.
[4]
W. Liu,; P. Oh,; X. Liu,; M. J. Lee,; W. Cho,; S. Chae,; Y. Kim,; J. Cho, Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem., Int. Ed. 2015, 54, 4440-4457.
[5]
J. Xu,; F. Lin,; M. M. Doeff,; W. Tong, A review of Ni-based layered oxides for rechargeable Li-ion batteries. J. Mater. Chem. A 2017, 5, 874-901.
[6]
Y. Xia,; J. M. Zheng,; C. M. Wang,; M. Gu, Designing principle for Ni-rich cathode materials with high energy density for practical applications. Nano Energy 2018, 49, 434-452.
[7]
Y. K. Sun,; S. T. Myung,; B. C. Park,; J. Prakash,; I. Belharouak,; K. Amine, High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 2009, 8, 320-324.
[8]
M. H. Lee,; Y. J. Kang,; S. T. Myung,; Y. K. Sun, Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation. Electrochim. Acta 2004, 50, 939-948.
[9]
Z. J. Huang,; Z. X. Wang,; X. B. Zheng,; H. J. Guo,; X. H. Li,; Q. Jing,; Z. H. Yang, Effect of Mg doping on the structural and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials. Electrochim. Acta 2015, 182, 795-802.
[10]
J. Yuan,; J. W. Wen,; J. B. Zhang,; D. M. Chen,; D. W. Zhang, Influence of calcination atmosphere on structure and electrochemical behavior of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries. Electrochim. Acta 2017, 230, 116-122.
[11]
L. W. Liang,; K. Du,; Z. D. Peng,; Y. B. Cao,; J. G. Duan,; J. B. Jiang,; G. R. Hu, Co-precipitation synthesis of Ni0.6Co0.2Mn0.2(OH)2 precursor and characterization of LiNi0.6Co0.2Mn0.2O2 cathode material for secondary lithium batteries. Electrochim. Acta 2014, 130, 82-89.
[12]
C. X. Cheng,; L. Tan,; H. W. Liu,; X. T. Huang, High rate performances of the cathode material LiNi1/3Co1/3Mn1/3O2 synthesized using low temperature hydroxide precipitation. Mater. Res. Bull. 2011, 46, 2032-2035.
[13]
D. Ren,; Y. Shen,; Y. Yang,; L. X. Shen,; B. D. A. Levin,; Y. C. Yu,; D. A. Muller,; H. D. Abruña, Systematic optimization of battery materials: Key parameter optimization for the scalable synthesis of uniform, high-energy, and high stability LiNi0.6Mn0.2Co0.2O2 cathode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 35811-35819.
[14]
U. H. Kim,; D. W. Jun,; K. J. Park,; Q. Zhang,; P. Kaghazchi,; D. Aurbach,; D. T. Major,; G. Goobes,; M. Dixit,; N. Leifer, et al. Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries. Energy Environ. Sci. 2018, 11, 1271-1279.
[15]
P. F. Yan,; J. M. Zheng,; M. Gu,; J. Xiao,; J. G. Zhang,; C. M. Wang, Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 2017, 8, 14101.
[16]
H. Kim,; M. G. Kim,; H. Y. Jeong,; H. Nam,; J. Cho, A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: Nanoscale surface treatment of primary particles. Nano Lett. 2015, 15, 2111-2119.
[17]
S. Watanabe,; M. Kinoshita,; T. Hosokawa,; K. Morigaki,; K. Nakura, Capacity fade of LiAlyNi1-x-yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAlyNi1-x-yCoxO2 cathode after cycle tests in restricted depth of discharge ranges). J. Power Sources 2014, 258, 210-217.
[18]
H. F. Wang,; Y. I. Jang,; B. Y. Huang,; D. R. Sadoway,; Y. M. Chiang, TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries. J. Electrochem. Soc. 1999, 146, 473.
[19]
K. L. Cheng,; D. B. Mu,; B. R. Wu,; L. Wang,; Y. Jiang,; R. Wang, Electrochemical performance of a nickel-rich LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion batteries under different cut-off voltages. Int. J. Miner. Metall. Mater. 2017, 24, 342-351.
[20]
J. Kim,; H. Cho,; H. Y. Jeong,; H. Ma,; J. Lee,; J. Hwang,; M. Park,; J. Cho, Self-induced concentration gradient in nickel-rich cathodes by sacrificial polymeric bead clusters for high-energy lithium-Ion Batteries. Adv. Energy Mater. 2017, 7, 1602559.
[21]
A. Singer,; M. Zhang,; S. Hy,; D. Cela,; C. Fang,; T. A. Wynn,; B. Qiu,; Y. Xia,; Z. Liu,; A. Ulvestad, et al. Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy 2018, 3, 641-647.
[22]
N. Y. Kim,; T. Yim,; J. H. Song,; J. S. Yu,; Z. Lee, Microstructural study on degradation mechanism of layered LiNi0.6Co0.2Mn0.2O2 cathode materials by analytical transmission electron microscopy. J. Power Sources 2016, 307, 641-648.
[23]
T. Chen,; X. Li,; H. Wang,; X. X. Yan,; L. Wang,; B. W. Deng,; W. J. Ge,; M. Z. Qu, The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material. J. Power Sources 2018, 374, 1-11.
[24]
J. M. Lim,; T. Hwang,; D. Kim,; M. S. Park,; K. Cho,; M. Cho, Intrinsic origins of crack generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 layered oxide cathode material. Sci. Rep. 2017, 7, 39669.
[25]
W. E. Gent,; Y. Y. Li,; S. Ahn,; J. Lim,; Y. J. Liu,; A. M. Wise,; C. B. Gopal,; D. N. Mueller,; R. Davis,; J. N. Weker, et al. Persistent state-of-charge heterogeneity in relaxed, partially charged Li1-xNi1/3Co1/3Mn1/3O2 secondary particles. Adv. Mater. 2016, 28, 6631-6638.
[26]
G. L. Xu,; Q. Liu,; K. K. S. Lau,; Y. Z. Liu,; X. Liu,; H. Gao,; X. W. Zhou,; M. H. Zhuang,; Y. Ren,; J. D. Li, et al. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy 2019, 4, 484-494.
[27]
S. W. Lee,; H. Kim,; M. S. Kim,; H. C. Youn,; K. Kang,; B. W. Cho,; K. C. Roh,; K. B. Kim, Improved electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries. J. Power Sources 2016, 315, 261-268.
[28]
M. Y. Liu,; N. Liu,; J. Tan,; Y. F. Su,; W. S. Deng,; L. Chen,; R. X. Xue,; Q. Y. Zhang, Micromixer-assisted co-precipitation method for fast synthesis of layered Ni-rich materials for lithium-ion batteries. ChemElectroChem 2019, 6, 3057-3064.
[29]
J. M. Zheng,; M. Gu,; A. Genc,; J. Xiao,; P. H. Xu,; X. L. Chen,; Z. H. Zhu,; W. B. Zhao,; L. Pullan,; C. M. Wang, et al. Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution. Nano Lett. 2014, 14, 2628-2635.
[30]
Y. G. Guo,; J. S. Hu,; L. J. Wan, Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878-2887.
[31]
J. Zhao,; X. Yu,; Z. G. Gao,; W. X. Zhao,; R. M. Xu,; Y. Liu,; H. Shen, One step synthesis of SnS2 nanosheets assembled hierarchical tubular structures using metal chelate nanowires as a soluble template for improved Na-ion storage. Chem. Eng. J. 2018, 332, 548-555.
[32]
E. Faulques,; D. L. Perry,; S. Lott,; J. D. Zubkowski,; E. J. Valente, Study of coordination and ligand structure in cobalt-EDTA complexes with vibrational microspectroscopy. Spectro. Acta Part A 1998, 54, 869-878.
[33]
L. Wang,; F. J. Uribe-Romo,; L. J. Mueller,; J. K. Harper, Predicting anisotropic thermal displacements for hydrogens from solid-state NMR: A study on hydrogen bonding in polymorphs of palmitic acid. Phys. Chem. Chem. Phys. 2018, 20, 8475-8487.
[34]
J. Powell,; K. Kalakewich,; F. J. Uribe-Romo,; J. K. Harper, Solid-state NMR and DFT predictions of differences in COOH hydrogen bonding in odd and even numbered n-alkyl fatty acids. Phys. Chem. Chem. Phys. 2016, 18, 12541-12549.
[35]
V. Rozyyev,; D. Thirion,; R. Ullah,; J. Lee,; M. Jung,; H. Oh,; M. Atilhan,; C. T. Yavuz, High-capacity methane storage in flexible alkane-linked porous aromatic network polymers. Nat. Energy 2019, 4, 604-611.
[36]
C. J. Johnson,; E. Dujardin,; S. A. Davis,; C. J. Murphy,; S. Mann, Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J. Mater. Chem. 2002, 12, 1765-1770.
[37]
Y. G. Sun,; B. Mayers,; T. Herricks,; Y. N. Xia, Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Lett. 2003, 3, 955-960.
[38]
J. B. Peng,; D. Y. Cao,; Z. L. He,; J. Guo,; P. Hapala,; R. Z. Ma,; B. W. Cheng,; J. Chen,; W. J. Xie,; X. Z. Li, et al. The effect of hydration number on the interfacial transport of sodium ions. Nature 2018, 557, 701-705.
[39]
J. L. Li,; C. B. Cao,; X. Y. Xu,; Y. Q. Zhu,; R. M. Yao, LiNi1/3Co1/3Mn1/3O2 hollow nano-micro hierarchical microspheres with enhanced performances as cathodes for lithium-ion batteries. J. Mater. Chem. A 2013, 1, 11848-11852.
[40]
G. Q. Zhang,; E. S. Han,; L. Z. Zhu,; M. Lu,; S. Chen, Synthesis and electrochemical properties of Li (Ni0.56Co0.19Mn0.24Al0.01)1-yAlyO2 as cathode material for lithium-ion batteries. Ionics 2017, 23, 2259-2267.
[41]
M. Song,; G. Zhou,; N. Lu,; J. Lee,; E. Nakouzi,; H. Wang,; D. S. Li, Oriented attachment induces fivefold twins by forming and decomposing high-energy grain boundaries. Science 2020, 367, 40-45.
[42]
W. Liu,; X. F. Li,; D. B. Xiong,; Y. C. Hao,; J. W. Li,; H. R. Kou,; B. Yan,; D. J. Li,; S. G. Lu,; A. Koo, et al. Significantly improving cycling performance of cathodes in lithium ion batteries: The effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2. Nano Energy 2018, 44, 111-120.
[43]
M. Kruk,; M. Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater. 2001, 13, 3169-3183.
[44]
S. H. Cui,; Y. Wei,; T. C. Liu,; W. J. Deng,; Z. X. Hu,; Y. T. Su,; H. Li,; M. F. Li,; H. Guo,; Y. D. Duan, et al. Optimized temperature effect of Li-ion diffusion with layer distance in Li(NixMnyCoz)O2 cathode materials for high performance Li-ion battery. Adv. Energy Mater. 2016, 6, 1501309.
[45]
X. W. Zhan,; S. Gao,; Y. T. Cheng, Influence of annealing atmosphere on Li2ZrO3-coated LiNi0.6Co0.2Mn0.2O2 and its high-voltage cycling performance. Electrochim. Acta 2019, 300, 36-44.
[46]
L. Yao,; F. Q. Liang,; J. Jin,; B. V. R. Chowdari,; J. H. Yang,; Z. Y. Wen, Improved electrochemical property of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode via in-situ ZrO2 coating for high energy density lithium ion batteries. Chem. Eng. J. 2020, 389, 124403.
[47]
J. N. Liang,; Y. Lu,; J. Wang,; X. P. Liu,; K. Chen,; W. H. Ji,; Y. Zhu,; D. L. Wang, Well-ordered layered LiNi0.8Co0.1Mn0.1O2 submicron sphere with fast electrochemical kinetics for cathodic lithium storage. J. Energy Chem. 2020, 47, 188-195.
[48]
X. Zhao,; Y. Ding,; Q. Xu,; X. Yu,; Y. Liu,; H. Shen, Low-temperature growth of hard carbon with graphite crystal for sodium-ion storage with high initial coulombic efficiency: A general method. Adv. Energy Mater. 2019, 9, 1803648.
Video
12274_2020_3015_MOESM1_ESM.mp4
File
12274_2020_3015_MOESM2_ESM.pdf (14.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 May 2020
Revised: 12 July 2020
Accepted: 27 July 2020
Published: 25 August 2020
Issue date: December 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51772337) and Free Exploration Fund of State Key Laboratory of Optoelectronic Materials and Technologies of China (No. OEMT-2017-ZY-09).

Return