Journal Home > Volume 13 , Issue 12

Sodium superionic conductor (NASICON)-type compounds have been regarded as promising cathodes for sodium-ion batteries (SIBs) due to their favorable ionic conductivity and robust structural stability. However, their high cost and relatively low energy density restrict their further practical application, which can be tailored by widening the operating voltages with earth-abundant elements such as Mn. Here, we propose a rational strategy of infusing Mn element in NASICON frameworks with sufficiently mobile sodium ions that enhances the redox voltage and ionic migration activity. The optimized structure of Na3.5Mn0.5V1.5(PO4)3/C is achieved and investigated systematically to be a durable cathode (76.6% capacity retention over 5,000 cycles at 20 C) for SIBs, which exhibits high reversible capacity (113.1 mAh·g-1 at 0.5 C) with relatively low volume change (7.6%). Importantly, its high-areal-loading and temperature-resistant sodium ion storage properties are evaluated, and the full-cell configuration is demonstrated. This work indicates that this Na3.5Mn0.5V1.5(PO4)3/C composite could be a promising cathode candidate for SIBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Tuning crystal structure and redox potential of NASICON-type cathodes for sodium-ion batteries

Show Author's information Xuemei Ma1Xinxin Cao1,2( )Yifan Zhou1Shan Guo1Xiaodong Shi1Guozhao Fang1,2Anqiang Pan1,2Bingan Lu3Jiang Zhou1,2( )Shuquan Liang1,2( )
School of Material Science and Engineering, Central South University, Changsha 410083, China
Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha 410083, China
School of Physics and Electronics, Hunan University, Changsha 410082, China

Abstract

Sodium superionic conductor (NASICON)-type compounds have been regarded as promising cathodes for sodium-ion batteries (SIBs) due to their favorable ionic conductivity and robust structural stability. However, their high cost and relatively low energy density restrict their further practical application, which can be tailored by widening the operating voltages with earth-abundant elements such as Mn. Here, we propose a rational strategy of infusing Mn element in NASICON frameworks with sufficiently mobile sodium ions that enhances the redox voltage and ionic migration activity. The optimized structure of Na3.5Mn0.5V1.5(PO4)3/C is achieved and investigated systematically to be a durable cathode (76.6% capacity retention over 5,000 cycles at 20 C) for SIBs, which exhibits high reversible capacity (113.1 mAh·g-1 at 0.5 C) with relatively low volume change (7.6%). Importantly, its high-areal-loading and temperature-resistant sodium ion storage properties are evaluated, and the full-cell configuration is demonstrated. This work indicates that this Na3.5Mn0.5V1.5(PO4)3/C composite could be a promising cathode candidate for SIBs.

Keywords: crystal structure, cathode material, full cell, sodium ion battery, sodium superionic conductor (NASICON)-type

References(50)

[1]
C. Vaalma,; D. Buchholz,; M. Weil,; S. Passerini, A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 2018, 3, 18013.
[2]
P. K. Nayak,; L. T. Yang,; W. Brehm,; P. Adelhelm, From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises. Angew. Chem., Int. Ed. 2018, 57, 102-120.
[3]
Y. You,; H. R. Yao,; S. Xin,; Y. X. Yin,; T. T. Zuo,; C. P. Yang,; Y. G. Guo,; Y. Cui,; L. J. Wan,; J. B. Goodenough, Subzero-temperature cathode for a sodium-ion battery. Adv. Mater. 2016, 28, 7243-7248.
[4]
J. W. Choi,; D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.
[5]
F. X. Wu,; C. L. Zhao,; S. Q. Chen,; Y. X. Lu,; Y. L. Hou,; Y. S. Hu,; J. Maier,; Y. Yu, Multi-electron reaction materials for sodium-based batteries. Mater. Today 2018, 21, 960-973.
[6]
X. X. Cao,; J. Zhou,; A. Q. Pan,; S. Q. Liang, Recent advances in phosphate cathode materials for sodium-ion batteries. Acta Phys.- Chim. Sin. 2020, 36, 1905018.
[7]
W. D. Zhou,; L. G. Xue,; X. J. Lü,; H. C. Gao,; Y. T. Li,; S. Xin,; G. T. Fu,; Z. M. Cui,; Y. Zhu,; J. B. Goodenough, NaxMV(PO4)3 (M = Mn, Fe, Ni) structure and properties for sodium extraction. Nano Lett. 2016, 16, 7836-7841.
[8]
H. C. Gao,; L. D. Seymour,; S. Xin,; L. G. Xue,; G. Henkelman,; J. B. Goodenough, Na3MnZr(PO4)3: A high-voltage cathode for sodium batteries. J. Am. Chem. Soc. 2018, 140, 18192-18199.
[9]
T. Zhu,; P. Hu,; X. P. Wang,; Z. H. Liu,; W. Luo,; K. A. Owusu,; W. W. Cao,; C. W. Shi,; J. T. Li,; L. Zhou, et al. Realizing three-electron redox reactions in NASICON-structured Na3MnTi(PO4)3 for sodium-ion batteries. Adv. Energy Mater. 2019, 9, 1803436.
[10]
J. Zhang,; Y. C. Liu,; X. D. Zhao,; L. H. He,; H. Liu,; Y. Z. Song,; S. D. Sun,; Q. Li,; X. R. Xing,; J. Chen, A novel NASICON-type Na4MnCr(PO4)3 demonstrating the energy density record of phosphate cathodes for sodium-ion batteries. Adv. Mater. 2020, 32, 1906348.
[11]
Y. J. Fang,; L. F. Xiao,; X. P. Ai,; Y. L. Cao,; H. X. Yang, Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv. Mater. 2015, 27, 5895-5900.
[12]
X. X. Cao,; A. Q. Pan,; S. N. Liu,; J. Zhou,; S. T. Li,; G. Z. Cao,; J. Liu,; S. Q. Liang, Chemical synthesis of 3D graphene-like cages for sodium-ion batteries applications. Adv. Energy Mater. 2017, 7, 1700797.
[13]
Y. L. Zhao,; X. X. Cao,; G. Z. Fang,; Y. P. Wang,; H. L. Yang,; S. Q. Liang,; A. Q. Pan,; G. Z. Cao, Hierarchically carbon-coated Na3V2(PO4)3 nanoflakes for high-rate capability and ultralong cycle-life sodium ion batteries. Chem. Eng. J. 2018, 339, 162-169.
[14]
M. Z. Chen,; W. B. Hua,; J. Xiao,; D. Cortie,; W. H. Chen,; E. H. Wang,; Z. Hu,; Q. F. Gu,; X. L. Wang,; S. Indris, et al. NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. Nat. Commun. 2019, 10, 1480.
[15]
C. B. Zhu,; C. Wu,; C. C. Chen,; P. Kopold,; P. A. Van Aken,; J. Maier,; Y. Yu, A high power-high energy Na3V2(PO4)2F3 sodium cathode: Investigation of transport parameters, rational design and realization. Chem. Mater. 2017, 29, 5207-5215.
[16]
J. W. Li,; X. X. Cao,; A. Q. Pan,; Y. L. Zhao,; H. L. Yang,; G. Z. Cao,; S. Q. Liang, Nanoflake-assembled three-dimensional Na3V2(PO4)3/C cathode for high performance sodium ion batteries. Chem. Eng. J. 2018, 335, 301-308.
[17]
X. X. Cao,; A. Q. Pan,; B. Yin,; G. Z. Fang,; Y. P. Wang,; X. Z. Kong,; T. Zhu,; J. Zhou,; G. Z. Cao,; S. Q. Liang, Nanoflake-constructed porous Na3V2(PO4)3/C hierarchical microspheres as a bicontinuous cathode for sodium-ion batteries applications. Nano Energy 2019, 60, 312-323.
[18]
H. X. Li,; T. Jin,; X. B. Chen,; Y. Q. Lai,; Z. A. Zhang,; W. Z. Bao,; L. F. Jiao, Rational architecture design enables superior Na storage in greener NASICON-Na4MnV(PO4)3 cathode. Adv. Energy Mater. 2018, 8, 1801418.
[19]
S. Ghosh,; N. Barman,; M. Mazumder,; S. K. Pati,; G. Rousse,; P. Senguttuvan, High capacity and high-rate NASICON-Na3.75V1.25Mn0.75(PO4)3 cathode for Na-ion batteries via modulating electronic and crystal structures. Adv. Energy Mater. 2020, 10, 1902918.
[20]
F. Chen,; V. M. Kovrugin,; R. David,; O. Mentré,; F. Fauth,; J. N. Chotard,; C. Masquelier, A NASICON-type positive electrode for Na batteries with high energy density: Na4MnV(PO4)3. Small Methods 2019, 3, 1800218.
[21]
C. F. Liu,; Z. G. Neale,; G. Z. Cao, Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 2016, 19, 109-123.
[22]
J. S. Park,; J. Kim,; J. H. Jo,; S. T. Myung, Role of the Mn substituent in Na3V2(PO4)3 for high-rate sodium storage. J. Mater. Chem. A 2018, 6, 16627-16637.
[23]
T. F. Liu,; Y. P. Zhang,; Z. G. Jiang,; X. Q. Zeng,; J. P. Ji,; Z. H. Li,; X. H. Gao,; M. H. Sun,; Z. Lin,; M. Ling, et al. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy Environ. Sci. 2019, 12, 1512-1533.
[24]
Y. X. Wang,; Y. X. Wang,; Y. X. Wang,; X. M. Feng,; W. H. Chen,; X. P. Ai,; H. X. Yang,; Y. L. Cao, Developments and perspectives on emerging high-energy-density sodium-metal batteries. Chem 2019, 5, 2547-2570.
[25]
S. Q. Liang,; X. X. Cao,; Y. P. Wang,; Y. Hu,; A. Q. Pan,; G. Z. Cao, Uniform 8LiFePO4·Li3V2(PO4)3/C nanoflakes for high-performance Li-ion batteries. Nano Energy 2016, 22, 48-58.
[26]
S. B. Wang,; Y. J. Fang,; X. Wang,; X. W. Lou, Hierarchical microboxes constructed by SnS nanoplates coated with nitrogen-doped carbon for efficient sodium storage. Angew. Chem., Int. Ed. 2019, 131, 770-773.
[27]
K. Lan,; Q. L. Wei,; R. C. Wang,; Y. Xia,; S. S. Tan,; Y. X. Wang,; A. Elzatahry,; P. Y. Feng,; L. Q. Mai,; D. Y. Zhao, Two-dimensional mesoporous heterostructure delivering superior pseudocapacitive sodium storage via bottom-up monomicelle assembly. J. Am. Chem. Soc. 2019, 141, 16755-16762.
[28]
K. Saravanan,; C. W. Mason,; A. Rudola,; K. H. Wong,; P. Balaya, The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv. Energy Mater. 2013, 3, 444-450.
[29]
D. D. Zhang,; J. Li,; Z. Su,; S. Y. Hu,; H. P. Li,; Y. W. Yan, Electrospun polyporous VN nanofibers for symmetric all-solid-state supercapacitors. J. Adv. Ceram. 2018, 7, 246-255.
[30]
Z. G. Luo,; J. Zhou,; L. R. Wang,; G. Z. Fang,; A. Q. Pan,; S. Q. Liang, Two-dimensional hybrid nanosheets of few layered MoSe2 on reduced graphene oxide as anodes for long-cycle-life lithium-ion batteries. J. Mater. Chem. A 2016, 4, 15302-15308.
[31]
G. Z. Fang,; Z. X. Wu,; J. Zhou,; C. Y. Zhu,; X. X. Cao,; T. Q. Lin,; Y. M. Chen,; C. Wang,; A. Q. Pan,; S. Q. Liang, Observation of pseudocapacitive effect and fast ion diffusion in bimetallic sulfides as an advanced sodium-ion battery anode. Adv. Energy Mater. 2018, 8, 1703155.
[32]
S. T. Wang,; Y. Yang,; Y. H. Dong,; Z. T. Zhang,; Z. L. Tang, Recent progress in Ti-based nanocomposite anodes for lithium ion batteries. J. Adv. Ceram. 2019, 8, 1-18.
[33]
Y. B. Niu,; Y. X. Yin,; Y. G. Guo, Nonaqueous sodium-ion full cells: Status, strategies, and prospects. Small 2019, 15, 1900233.
[34]
Z. Yang,; Q. Huang,; S. J. Li,; J. Mao, High-temperature effect on electrochemical performance of Li4Ti5O12 based anode material for Li-ion batteries. J. Alloys Compd. 2018, 753, 192-202.
[35]
S. Ma,; M. D. Jiang,; P. Tao,; C. Y. Song,; J. B. Wu,; J. Wang,; T. Deng,; W. Shang, Temperature effect and thermal impact in lithium-ion batteries: A review. Prog. Nat. Sci. Mater. Int. 2018, 28, 653-666.
[36]
Q. Ni,; Y. Bai,; Y. Li,; L. M. Ling,; L. M. Li,; G. H. Chen,; Z. H. Wang,; H. X. Ren,; F. Wu,; C. Wu, 3D electronic channels wrapped large-sized Na3V2(PO4)3 as flexible electrode for sodium-ion batteries. Small 2018, 14, 1702864.
[37]
T. Brezesinski,; J. Wang,; S. H. Tolbert,; B. Dunn, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146-151.
[38]
D. L. Chao,; C. R. Zhu,; P. H. Yang,; X. H. Xia,; J. L. Liu,; J. Wang,; X. F. Fan,; S. V. Savilov,; J. Y. Lin,; H. J. Fan, et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. Commun. 2016, 7, 12122.
[39]
S. H. Guo,; H. J. Yu,; P. Liu,; Y. Ren,; T. Zhang,; M. W. Chen,; M. Ishida,; H. S. Zhou, High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2. Energy Environ. Sci. 2015, 8, 1237-1244.
[40]
J. X. Zhang,; Y. J. Fang,; L. F. Xiao,; J. F. Qian,; Y. L. Cao,; X. P. Ai,; H. X. Yang, Graphene-scaffolded Na3V2(PO4)3 microsphere cathode with high rate capability and cycling stability for sodium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 7177-7184.
[41]
H. C. Gao,; W. D. Zhou,; K. Park,; J. B. Goodenough, A sodium-ion battery with a low-cost cross-linked gel-polymer electrolyte. Adv. Energy Mater. 2016, 6, 1600467.
[42]
D. L. Chao,; C. H. Lai,; P. Liang,; Q. L. Wei,; Y. S. Wang,; C. R. Zhu,; G. Deng,; V. V. T. Doan-Nguyen,; J. Y. Lin,; L. Q. Mai, et al. Sodium vanadium fluorophosphates (NVOPF) array cathode designed for high-rate full sodium ion storage device. Adv. Energy Mater. 2018, 8, 1800058.
[43]
Y. S. Wang,; X. Q. Yu,; S. Y. Xu,; J. M. Bai,; R. J. Xiao,; Y. S. Hu,; H. Li,; X. Q. Yang,; L. Q. Chen,; X. J. Huang, A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat. Commun. 2013, 4, 2365.
[44]
W. H. Ren,; Z. P. Zheng,; C. Xu,; C. J. Niu,; Q. L. Wei,; Q. Y. An,; K. N. Zhao,; M. Y. Yan,; M. S. Qin,; L. Q. Mai, Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium-ion full batteries. Nano Energy 2016, 25, 145-153.
[45]
Y. Jiang,; Y. Wu,; Y. X. Chen,; Z. Y. Qi,; J. A. Shi,; L. Gu,; Y. Yu, Design nitrogen (N) and sulfur (S) Co-doped 3D graphene network architectures for high-performance sodium storage. Small 2018, 14, 1703471.
[46]
J. J. Zhang,; H. J. Wen,; L. P. Yue,; J. C. Chai,; J. Ma,; P. Hu,; G. L. Ding,; Q. F. Wang,; Z. H. Liu,; G. L. Cui, et al. In situ formation of polysulfonamide supported poly(ethylene glycol) divinyl ether based polymer electrolyte toward monolithic sodium ion batteries. Small 2017, 13, 1601530.
[47]
Y. S. Wang,; R. J. Xiao,; Y. S. Hu,; M. Avdeev,; L. Q. Chen, P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nat. Commun. 2015, 6, 6954.
[48]
B. Zhang,; G. Rousse,; D. Foix,; R. Dugas,; D. A. D. Corte,; J. M. Tarascon, Microsized Sn as advanced anodes in glyme-based electrolyte for Na-ion batteries. Adv. Mater. 2016, 28, 9824-9830.
[49]
Y. Xiao,; Y. F. Zhu,; H. R. Yao,; P. F. Wang,; X. D. Zhang,; H. L. Li,; X. A. Yang,; L. Gu,; Y. C. Li,; T. Wang, et al. A stable layered oxide cathode material for high-performance sodium-ion battery. Adv. Energy Mater. 2019, 9, 1803978.
[50]
Q. Ni,; R. Q. Dong,; Y. Bai,; Z. H. Wang,; H. X. Ren,; S. Sean,; F. Wu,; H. J. Xu,; C. Wu, Superior sodium-storage behavior of flexible anatase TiO2 promoted by oxygen vacancies. Energy Stor. Mater. 2020, 25, 903-911.
File
12274_2020_3011_MOESM1_ESM.pdf (4.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 June 2020
Revised: 22 July 2020
Accepted: 26 July 2020
Published: 22 August 2020
Issue date: December 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51872334 and 51932011), and the Innovation-Driven Project of Central South University (No. 2020CX024).

Return