[1]
M. Ming,; Y. Zhang,; C. He,; L. Zhao,; S. Niu,; G. Y. Fang,; J. S. Hu, Room-temperature sustainable synthesis of selected platinum group metal (PGM = Ir, Rh, and Ru) nanocatalysts well-dispersed on porous carbon for efficient hydrogen evolution and oxidation. Small 2019, 15, 1903057.
[2]
H. Cheng,; Y. Z. Su,; P. Y. Kuang,; G. F. Chen,; Z. Q. Liu, Hierarchical NiCo2O4 nanosheet-decorated carbon nanotubes towards highly efficient electrocatalyst for water oxidation. J. Mater. Chem. A 2015, 3, 19314-19321.
[3]
W. B. Lu,; T. T. Liu,; L. S. Xie,; C. Tang,; D. N. Liu,; S. Hao,; F. L. Qu,; G. Du,; Y. J. Ma,; A. M. Asiri,; et al. In situ derived Co-B nanoarray: A high-efficiency and durable 3D bifunctional electrocatalyst for overall alkaline water splitting. Small 2017, 13, 1700805.
[4]
M. S. Faber,; S. Jin, Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519-3542.
[5]
R. Subbaraman,; D. Tripkovic,; D. Strmcnik,; K. C. Chang,; M. Uchimura,; A. P. Paulikas,; V. Stamenkovic,; N. M. Markovic, Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 2011, 334, 1256-1260.
[6]
L. Yang,; Z. L. Guo,; J. Huang,; Y. N. Xi,; R. J. Gao,; G. Su,; W. Wang,; L. X. Cao,; B. H. Dong, Vertical growth of 2D amorphous FePO4 nanosheet on Ni foam: Outer and inner structural design for superior water splitting. Adv. Mater. 2017, 29, 1704574.
[7]
L. Han,; S. J. Dong,; E. K. Wang, Transition-metal (Co, Ni, and Fe)- based electrocatalysts for the water oxidation reaction. Adv. Mater. 2016, 28, 9266-9291.
[8]
S. Anantharaj,; S. R. Ede,; K. Sakthikumar,; K. Karthick,; S. Mishra,; S. Kundu, Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catal. 2016, 6, 8069-8097.
[9]
Y. Yan,; B. Y. Xia,; B. Zhao,; X. Wang, A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A 2016, 4, 17587-17603.
[10]
H. M. Sun,; Z. H. Yan,; F. M. Liu,; W. C. Xu,; F. Y. Cheng,; J. Chen, Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.
[11]
M. S. Faber,; R. Dziedzic,; M. A. Lukowski,; N. S. Kaiser,; Q. Ding,; S. Jin, High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro-and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053-10061.
[12]
L. L. Feng,; G. T. Yu,; Y. Y. Wu,; G. D. Li,; H. Li,; Y. H. Sun,; T. Asefa,; W. Chen,; X. X. Zou, High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14023-14026.
[13]
J. Y. Yu,; G. X. Li,; H. Liu,; L. L. Zhao,; A. Z. Wang,; Z. Liu,; H. D. Li,; H. Liu,; Y. Y. Hu,; W. J. Zhou, Ru-Ru2PΦNPC and NPC@RuO2 synthesized via environment-friendly and solid-phase phosphating process by saccharomycetes as N/P sources and carbon template for overall water splitting in acid electrolyte. Adv. Funct. Mater. 2019, 29, 1901154.
[14]
Y. K. Chen,; J. Y. Yu,; J. Jia,; F. Liu,; Y. W. Zhang,; G. W. Xiong,; R. T. Zhang,; R. Q. Yang,; D. H. Sun,; H. Liu, et al. Metallic Ni3Mo3N porous microrods with abundant catalytic sites as efficient electrocatalyst for large current density and superstability of hydrogen evolution reaction and water splitting. Appl. Catal. B: Environ. 2020, 272, 118956.
[15]
J. Q. Shan,; T. Ling,; K. Davey,; Y. Zheng,; S. Z. Qiao, Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments. Adv. Mater. 2019, 31, 1900510.
[16]
L. S. Xie,; F. L. Qu,; Z. A. Liu,; X. Ren,; S. Hao,; R. X. Ge,; G. Du,; A. M. Asiri,; X. P. Sun,; L. Chen, In situ formation of a 3D core/shell structured Ni3N@Ni-Bi nanosheet array: An efficient non-noble-metal bifunctional electrocatalyst toward full water splitting under near-neutral conditions. J. Mater. Chem. A 2017, 5, 7806-7810.
[17]
Q. Z. Xiong,; X. Zhang,; H. J. Wang,; G. Q. Liu,; G. Z. Wang,; H. M. Zhang,; H. J. Zhao, One-step synthesis of cobalt-doped MoS2 nanosheets as bifunctional electrocatalysts for overall water splitting under both acidic and alkaline conditions. Chem. Commun. 2018, 54, 3859-3862.
[18]
Z. C. Wu,; Z. X. Zou,; J. S. Huang,; F. Gao, Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting. J. Catal. 2018, 358, 243-252.
[19]
C. Z. Yuan,; S. L. Zhong,; Y. F. Jiang,; Z. K. Yang,; Z. W. Zhao,; S. J. Zhao,; N. Jiang,; A. W. Xu, Direct growth of cobalt-rich cobalt phosphide catalysts on cobalt foil: An efficient and self-supported bifunctional electrode for overall water splitting in alkaline media. J. Mater. Chem. A 2017, 5, 10561-10566.
[20]
X. Y. Shan,; J. Liu,; H. R. Mu,; Y. Xiao,; B. B. Mei,; W. G. Liu,; G. Lin,; Z. Jiang,; L. P. Wen,; L. Jiang, An engineered superhydrophilic/ superaerophobic electrocatalyst composed of the supported CoMoSx chalcogel for overall water splitting. Angew. Chem., Int. Ed. 2020, 59, 1659-1665.
[21]
X. Y. Zhu,; X. P. Zhang,; L. Huang,; Y. Q. Liu,; H. Zhang,; S. J. Dong, Cobalt doped β-molybdenum carbide nanoparticles encapsulated within nitrogen-doped carbon for oxygen evolution. Chem. Commun. 2019, 55, 9995-9998.
[22]
G. X. Li,; J. G. Wang,; J. Y. Yu,; H. Liu,; Q. Cao,; J. L. Du,; L. L. Zhao,; J. Jia,; H. Liu,; W. J. Zhou, Ni-Ni3P nanoparticles embedded into N, P-doped carbon on 3D graphene frameworks via in situ phosphatization of saccharomycetes with multifunctional electrodes for electrocatalytic hydrogen production and anodic degradation. Appl. Catal. B: Environ. 2020, 261, 118147.
[23]
X. B. Yu,; S. Zhang,; C. Y. Li,; C. L. Zhu,; Y. J. Chen,; P. Gao,; L. H. Qi,; X. T. Zhang, Hollow CoP nanopaticle/N-doped graphene hybrids as highly active and stable bifunctional catalysts for full water splitting. Nanoscale 2016, 8, 10902-10907.
[24]
Z. X. Yin,; C. L. Zhu,; C. Y. Li,; S. Zhang,; X. T. Zhang,; Y. J. Chen, Hierarchical nickel-cobalt phosphide yolk-shell spheres as highly active and stable bifunctional electrocatalysts for overall water splitting. Nanoscale 2016, 8, 19129-19138.
[25]
T. T. Liu,; L. S. Xie,; J. H. Yang,; R. M. Kong,; G. Du,; A. M. Asiri,; X. P. Sun,; L. Chen, Self-standing CoP nanosheets array: A three-dimensional bifunctional catalyst electrode for overall water splitting in both neutral and alkaline media. ChemElectroChem 2017, 4, 1840-1845.
[26]
E. L. Hu,; Y. F. Feng,; J. W. Nai,; D. A. Zhao,; Y. Hu,; X. W. Lou, Construction of hierarchical Ni-Co-P hollow nanobricks with oriented nanosheets for efficient overall water splitting. Energy Environ. Sci. 2018, 11, 872-880.
[27]
T. T. Liu,; D. N. Liu,; F. L. Qu,; D. X. Wang,; L. Zhang,; R. X. Ge,; S. Hao,; Y. J. Ma,; G. Du,; A. M. Asiri, et al. Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Adv. Energy Mater. 2017, 7, 1700020.
[28]
P. Liu,; J. A. Rodriguez, Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: The importance of ensemble effect. J. Am. Chem. Soc. 2005, 127, 14871-14878.
[29]
M. Ledendecker,; S. K. Calderón,; C. Papp,; H. P. Steinrück,; M. Antonietti,; M. Shalom, The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 12361-12365.
[30]
K. Li,; D. Rakov,; W. Zhang,; P. Xu, Improving the intrinsic electrocatalytic hydrogen evolution activity of few-layer NiPS3 by cobalt doping. Chem. Commun. 2017, 53, 8199-8202.
[31]
S. F. Fu,; C. Z. Zhu,; J. H. Song,; M. H. Engelhard,; X. L. Li,; D. Du,; Y. H. Lin, Highly ordered mesoporous bimetallic phosphides as efficient oxygen evolution electrocatalysts. ACS Energy Lett. 2016, 1, 792-796.
[32]
X. Liang,; B. X. Zheng,; L. G. Chen,; J. T. Zhang,; Z. B. Zhuang,; B. H. Chen, MOF-derived formation of Ni2P-CoP bimetallic phosphides with strong interfacial effect toward electrocatalytic water splitting. ACS Appl. Mater. Interfaces 2017, 9, 23222-23229.
[33]
Y. Wang,; Y. Sun,; F. Yan,; C. L. Zhu,; P. Gao,; X. T. Zhang,; Y. J. Chen, Self-supported NiMo-based nanowire arrays as bifunctional electrocatalysts for full water splitting. J. Mater. Chem. A 2018, 6, 8479-8487.
[34]
J. R. McKone,; B. F. Sadtler,; C. A. Werlang,; N. S. Lewis,; H. B. Gray, Ni-Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal. 2013, 3, 166-169.
[35]
Y. Wang,; M. Y. Wang,; Z. S. Zhang,; Q. Wang,; Z. Jiang,; M. Lucero,; X. Zhang,; X. X. Li,; M. Gu,; Z. X. Feng, et al. Phthalocyanine precursors to construct atomically dispersed iron electrocatalysts. ACS Catal. 2019, 9, 6252-6261.
[36]
Y. Zhang,; Y. W. Liu,; M. Ma,; X. Ren,; Z. A. Liu,; G. Du,; A. M. Asiri,; X. P. Sun, A Mn-doped Ni2P nanosheet array: An efficient and durable hydrogen evolution reaction electrocatalyst in alkaline media. Chem. Commun. 2017, 53, 11048-11051.
[37]
Z. H. Du,; H. L. Zhao,; S. Yi,; Q. Xia,; Y. Gong,; Y. Zhang,; X. Cheng,; Y. Li,; L. Gu,; K. Świerczek, High-performance anode material Sr2FeMo0.65Ni0.35O6-δ with in situ exsolved nanoparticle catalyst. ACS Nano 2016, 10, 8660-8669.
[38]
X. J. Wei,; Y. H. Zhang,; H. C. He,; D. Gao,; J. R. Hu,; H. R. Peng,; L. Peng,; S. H. Xiao,; P. Xiao, Carbon-incorporated NiO/Co3O4 concave surface microcubes derived from a MOF precursor for overall water splitting. Chem. Commun. 2019, 55, 6515-6518.
[39]
S. E. Moosavifard,; S. Fani,; M. Rahmanian, Hierarchical CuCo2S4 hollow nanoneedle arrays as novel binder-free electrodes for high-performance asymmetric supercapacitors. Chem. Commum. 2016, 52, 4517-4520.
[40]
L. H. He,; S. Zhang,; H. F. Ji,; M. H. Wang,; D. L. Peng,; F. F. Yan,; S. M. Fang,; H. Z. Zhang,; C. X. Jia,; Z. H. Zhang, Protein-templated cobaltous phosphate nanocomposites for the highly sensitive and selective detection of platelet-derived growth factor-BB. Biosens. Bioelectron. 2016, 79, 553-560.
[41]
R. Zhang,; X. X. Wang,; S. J. Yu,; T. Wen,; X. W. Zhu,; F. X. Yang,; X. N. Sun,; X. K. Wang,; W. P. Hu, Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv. Mater. 2017, 29, 1605502.
[42]
Y. Q. Gong,; Z. F. Xu,; H. L. Pan,; Y. Lin,; Z. Yang,; J. L. Wang, A 3D well-matched electrode pair of Ni-Co-S//Ni-Co-P nanoarrays grown on nickel foam as a high-performance electrocatalyst for water splitting. J. Mater. Chem. A 2018, 6, 12506-12514.
[43]
Y. Q. Deng,; L. J. Yang,; Y. K. Wang,; L. L. Zeng,; J. Y. Yu,; B. Chen,; X. L. Zhang,; W. J. Zhou, Ruthenium nanoclusters anchored on cobalt phosphide hollow microspheres by green phosphating process for full water splitting in acidic electrolyte. Chin. Chem. Lett., in press, .
[44]
Y. Q. Zhao,; B. Jin,; A. Vasileff,; Y. Jiao,; S. Z. Qiao, Interfacial nickel nitride/sulfide as a bifunctional electrode for highly efficient overall water/seawater electrolysis. J. Mater. Chem. A 2019, 7, 8117-8121.
[45]
P. Z. Chen,; K. Xu,; S. Tao,; T. P. Zhou,; Y. Tong,; H. Ding,; L. D. Zhang,; W. S. Chu,; C. Z. Wu,; Y. Xie, Phase-transformation engineering in cobalt diselenide realizing enhanced catalytic activity for hydrogen evolution in an alkaline medium. Adv. Mater. 2016, 28, 7527-7532.
[46]
Y. Zheng,; Y. Jiao,; Y. H. Zhu,; L. H. Li,; Y. Han,; Y. Chen,; A. J. Du,; M. Jaroniec,; S. Z. Qiao, Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783.
[47]
R. Deng,; Q. Chen,; Q. Luo,; L. X. Zhou,; Y. Wang,; Y. Zhang,; G. Y. Fan, Salt template-assisted in situ construction of Ru nanoclusters and porous carbon: Excellent catalysts toward hydrogen evolution, ammonia-borane hydrolysis, and 4-nitrophenol reduction. Green Chem. 2020, 22, 835-842.
[48]
S. Jin, Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett. 2017, 2, 1937-1938.
[49]
X. Luo,; P. X. Ji,; P. Y. Wang,; R. L. Cheng,; D. Chen,; C. Lin,; J. N. Zhang,; J. W. He,; Z. H. Shi,; N. Li, et al. Interface engineering of hierarchical branched Mo-doped Ni3S2/Nix Py hollow heterostructure nanorods for efficient overall water splitting. Adv. Energy Mater. 2020, 10, 1903891.
[50]
C. Tang,; N. Y. Cheng,; Z. H. Pu,; W. Xing,; X. P. Sun, NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed. 2015, 54, 9351-9355.
[51]
L. Y. Zeng,; K. A. Sun,; X. B. Wang,; Y. Q. Liu,; Y. Pan,; Z. Liu,; D. W. Cao,; Y. Song,; S. H. Liu,; C. G. Liu, Three-dimensional-networked Ni2P/Ni3S2 heteronanoflake arrays for highly enhanced electrochemical overall-water-splitting activity. Nano Energy 2018, 51, 26-36.
[52]
L. A. Stern,; L. G. Feng,; F. Song,; X. L. Hu, Ni2P as a Janus catalyst for water splitting: The oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 2015, 8, 2347-2351.
[53]
Y. Q. Sun,; L. F. Hang,; Q. Shen,; T. Zhang,; H. L. Li,; X. M. Zhang,; X. J. Lyu,; Y. Li, Mo doped Ni2P nanowire arrays: An efficient electrocatalyst for the hydrogen evolution reaction with enhanced activity at all pH values. Nanoscale 2017, 9, 16674-16679.
[54]
M. A. Lukowski,; A. S. Daniel,; C. R. English,; F. Meng,; A. Forticaux,; R. J. Hamers,; S. Jin, Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ. Sci. 2014, 7, 2608-2613.
[55]
H. F. Liang,; A. N. Gandi,; D. H. Anjum,; X. B. Wang,; U. Schwingenschlögl,; H. N. Alshareef, Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Lett. 2016, 16, 7718-7725.
[56]
C. Du,; L. Yang,; F. L. Yang,; G. Z. Cheng,; W. Luo, Nest-like NiCoP for highly efficient overall water splitting. ACS Catal. 2017, 7, 4131-4137.
[57]
G. Kresse,; J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[58]
G. Kresse,; J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
[59]
J. P. Perdew,; K. Burke,; M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.