[1]
Z. W. She,; Y. M. Sun,; Q. F. Zhang,; Y. Cui, Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605-5634.
[2]
I. A. M. Ousmane,; R. Li,; C. Wang,; G. R. Li,; W. L. Cai,; B. H. Liu,; Z. P. Li, Fabrication of oriented-macroporous-carbon incorporated with γ-Al2O3 for high performance lithium-sulfur battery. Microporous Mesoporous Mater. 2018, 266, 276-282.
[3]
H. Yuan,; H. J. Peng,; B. Q. Li,; J. Xie,; L. Kong,; M. Zhao,; X. Chen,; J. Q. Huang,; Q. Zhang, Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1802768.
[4]
A. Bhargav,; J. R. He,; A. Gupta,; A. Manthiram, Lithium-sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285-291.
[5]
C. Ye,; D. L. Chao,; J. Q. Shan,; H. Li,; K. Davey,; S. Z. Qiao, Unveiling the advances of 2D materials for Li/Na-S batteries experimentally and theoretically. Matter 2020, 2, 323-244.
[6]
K. L. Zhang,; L. B. Wang,; W. L. Cai,; C. Wang,; G. R. Li,; Z. P. Li,; W. T. Mao,; Y. T. Qian, A novel class of functional additives for cyclability enhancement of the sulfur cathode in lithium sulfur batteries. Inorg. Chem. Front. 2018, 5, 2013-2017.
[7]
Y. Z. Song,; Z. T. Sun,; Z. D. Fan,; W. L. Cai,; Y. L. Shao,; G. Sheng,; M. L. Wang,; L. X. Song,; Z. F. Liu,; Q. Zhang, et al. Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry. Nano Energy 2020, 70, 104555.
[8]
L. Kong,; Q. Jin,; X. T. Zhang,; B. Q. Li,; J. X. Chen,; W. C. Zhu,; J. Q. Huang,; Q. Zhang, Towards full demonstration of high areal loading sulfur cathode in lithium-sulfur batteries. J. Energy Chem. 2019, 39, 17-22.
[9]
S. Z. Wang,; J. X. Liao,; X. F. Yang,; J. N. Liang,; Q. Sun,; J. W. Liang,; F. P. Zhao,; A. Koo,; F. P. Kong,; Y. Yao, et al. Designing a highly efficient polysulfide conversion catalyst with paramontroseite for high-performance and long-life lithium-sulfur batteries. Nano Energy 2019, 57, 230-240.
[10]
Y. Chen,; W. X. Zhang,; D. Zhou,; H. J. Tian,; D. W. Su,; C. Y. Wang,; D. Stockdale,; F. Y. Kang,; B. H. Li,; G. X. Wang, Co-Fe mixed metal phosphide nanocubes with highly interconnected-pore architecture as an efficient polysulfide mediator for lithium-sulfur batteries. ACS Nano 2019, 13, 4731-4741.
[11]
B. Q. Li,; L. Kong,; C. X. Zhao,; Q. Jin,; X. Chen,; H. J. Peng,; J. L. Qin,; J. X. Chen,; H. Yuan,; Q. Zhang, et al. Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium-sulfur batteries. InfoMat 2019, 1, 533-541.
[12]
X. Chen,; T. Z. Hou,; B. Li,; C. Yan,; L. Zhu,; C. Guan,; X. B. Cheng,; H. J. Peng,; J. Q. Huang,; Q. Zhang, Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode. Energy Storage Mater. 2017, 8, 194-201.
[13]
G. Zhang,; Z. W. Zhang,; H. J. Peng,; J. Q. Huang,; Q. Zhang, A toolbox for lithium-sulfur battery research: Methods and protocols. Small Methods 2017, 1 1700134.
[14]
Z. Yu,; J. J. Zhang,; C. Wang,; R. X. Hu,; X. F. Du,; B. Tang,; H. T. Qu,; H. Wu,; X. Liu,; X. H. Zhou, et al. Flame-retardant concentrated electrolyte enabling a LiF-rich solid electrolyte interface to improve cycle performance of wide-temperature lithium-sulfur batteries. J. Energy Chem. 2020, 51, 154-160.
[15]
Z. H. Li,; Q. He,; X. Xu,; Y. Zhao,; X. W. Liu,; C. Zhou,; D. Ai,, L. X. Xia,; L. Q. Mai, 3D nitrogen-doped graphene/tin nanowires composite as a strong polysulfide anchor for lithium-sulfur batteries with enhanced rate performance and high areal capacity. Adv. Mater. 2018, 30, 1804089.
[16]
C. Ye,; Y. Jiao,; H. Y. Jin,; A. D. Slattery,; K. Davey,; H. H Wang,; S. Z. Qiao, 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium-sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 16703-16707.
[17]
Z. Q. Ye,; Y. Jiang,; T. Feng,; Z. H. Wang,; L. Li,; F. Wu,; R. J. Chen, Curbing polysulfide shuttling by synergistic engineering layer composed of supported Sn4P3 nanodots electrocatalyst in lithium-sulfur batteries. Nano Energy 2020, 70, 104532.
[18]
H. Y. Li,; L. F. Fei,; R. Zhang,; S. L. Yu,; Y. Y. Zhang,; L. L. Shu,; Y. Li,; Y. Wang, FeCo alloy catalysts promoting polysulfide conversion for advanced lithium-sulfur batteries. J. Energy Chem. 2020, 49, 339-347.
[19]
G. R. Li,; W. L. Cai,; B. H. Liu,; Z. P. Li, A multi functional binder with lithium ion conductive polymer and polysulfide absorbents to improve cycleability of lithium-sulfur batteries. J. Power Sources 2015, 294, 187-192.
[20]
J. Q. Huang,; X. F. Liu,; Q. Zhang,; C. M. Chen,; M. Q. Zhao,; S. M. Zhang,; W. C. Zhu,; W. Z. Qian,; F. Wei, Entrapment of sulfur in hierarchical porous graphene for lithium-sulfur batteries with high rate performance from -40 to 60 oC. Nano Energy 2013, 2, 314-321.
[21]
S. Xin,; L. Gu,; N. H. Zhao,; Y. X. Yin,; L. J. Zhou,; Y. G. Guo,; L. J. Wan, Smaller sulfur molecules promise better lithium-sulfur batteries. J. Am. Chem. Soc. 2012, 134, 18510-18513.
[22]
J. X. Song,; T. Xu,; M. L. Gordin,; P. Y. Zhu,; D. P. Lv,; Y. B. Jiang,; Y. S. Chen,; Y. H. Duan,; D. H. Wang, Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 1243-1250.
[23]
Q. C. Li,; Y. Z. Song,; R. Z. Xu,; L. Zhang,; J. Gao,; Z. Xia,; Z. N. Tian,; N. Wei,; M. H. Rümmeli,; X. L. Zou, et al. Biotemplating growth of nepenthes-like n-doped graphene as a bifunctional polysulfide scavenger for Li-S batteries. ACS Nano 2018, 12, 10240-10250.
[24]
Y. Z. Wang,; D. Adekoya,; J. Q. Sun,; T. Y. Tang,; H. L. Qiu,; L. Xu,; S. Q. Zhang,; Y. L. Hou, Manipulation of edge-site Fe-N2 moiety on holey Fe, N codoped graphene to promote the cycle stability and rate capacity of Li-S batteries. Adv. Funct. Mater. 2018, 29, 1807485.
[25]
Y. Jia,; J. Chen,; X. D. Yao, Defect electrocatalytic mechanism: Concept, topological structure and perspective. Mater. Chem. Front. 2018, 2, 1250-1268.
[26]
W. Wang,; L. Shang,, G. J. Chang,; C. Y. Yan,; R. Shi,; Y. X. Zhao,; G. I. N. Waterhouse,; D. J. Yang,; T. R. Zhang, Intrinsic carbon-defect-driven electrocatalytic reduction of carbon dioxide. Adv. Mater. 2019, 31, 1808276.
[27]
A. L. Shen,; Y. Q. Zou,; Q. Wang,; R. A. W. Dryfe,; X. B. Huang,; S. Dou,; L. M. Dai,; S. Y. Wang, Oxygen reduction reaction in a droplet on graphite: Direct evidence that the edge is more active than the basal plane. Angew. Chem., Int. Ed. 2014, 53, 10804-10808.
[28]
G. Kresse,; D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
[29]
J. P. Perdew,; K. Burke,; M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[30]
J. Yu,; Y. L. Wang,; C. F. Zhao,; S. M. Chen,; S. J. Zhang, A 3D molecular cantilever based on interfacial self-assembly and the cobra-like actuation of long-chain imidazolium ionic liquids. Nanoscale 2019, 11, 7277-7286.
[31]
W. L. Cai,; G. R. Li,; K. L. Zhang,; J. B. Zhou,; Y. T. Qian,; J. Du, A scalable in situ surfactant-free synthesis of a uniform MnO/graphene composite for highly reversible lithium storage. Dalton Trans. 2016, 45, 19221-19225.
[32]
L. Tao,; Q. Wang,; S. Dou,; Z. L. Ma,; J. Huo,; S. Y. Wang,; L. M. Dai, Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 2016, 52, 2764-2767.
[33]
Y. Y. Zhao,; W. L. Cai,; Y. T. Fang,; H. S. Ao,; Y. C. Zhu,; Y. T. Qian, Sulfur-deficient TiS2-x for promoted polysulfide redox conversion in lithium-sulfur batteries. ChemElectroChem 2019, 6, 2231-2237.
[34]
J. Liu,; M. G. Jiao,; B. B. Mei,; Y. X. Tong,; Y. P. Li,; M. B. Ruan,; P. Song,; G. Q. Sun,; L. H. Jiang,; Y. Wang, et al. Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction. Angew. Chem. 2019, 131, 1175-1179.
[35]
Y. Q. Zhang,; L. Tao,; C. Xie,; D. D. Wang,; Y. Q. Zou,; R. Chen,; Y. Y. Wang,; C. K. Jia,; S. Y. Wang, Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 2020, 32, 1905923.