Journal Home > Volume 13 , Issue 12

Rationally designing sulfur hosts with the functions of confining lithium polysulfides (LiPSs) and promoting sulfur reaction kinetics is critically important to the real implementation of lithium-sulfur (Li-S) batteries. Herein, the defect-rich carbon black (CB) as sulfur host was successfully constructed through a rationally regulated defect engineering. Thus-obtained defect-rich CB can act as an active electrocatalyst to enable the sulfur redox reaction kinetics, which could be regarded as effective inhibitor to alleviate the LiPS shuttle. As expected, the cathode consisting of sulfur and defect-rich CB presents a high rate capacity of 783.8 mA·h·g-1 at 4 C and a low capacity decay of only 0.07% per cycle at 2 C over 500 cycles, showing favorable electrochemical performances. The strategy in this investigation paves a promising way to the design of active electrocatalysts for realizing commercially viable Li-S batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Defect engineering on carbon black for accelerated Li-S chemistry

Show Author's information Wenlong Cai1Yingze Song2( )Yuting Fang1Weiwei Wang1Songlin Yu2Huaisheng Ao1Yongchun Zhu1( )Yitai Qian1
Hefei National Laboratory for Physical Sciences at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China

Abstract

Rationally designing sulfur hosts with the functions of confining lithium polysulfides (LiPSs) and promoting sulfur reaction kinetics is critically important to the real implementation of lithium-sulfur (Li-S) batteries. Herein, the defect-rich carbon black (CB) as sulfur host was successfully constructed through a rationally regulated defect engineering. Thus-obtained defect-rich CB can act as an active electrocatalyst to enable the sulfur redox reaction kinetics, which could be regarded as effective inhibitor to alleviate the LiPS shuttle. As expected, the cathode consisting of sulfur and defect-rich CB presents a high rate capacity of 783.8 mA·h·g-1 at 4 C and a low capacity decay of only 0.07% per cycle at 2 C over 500 cycles, showing favorable electrochemical performances. The strategy in this investigation paves a promising way to the design of active electrocatalysts for realizing commercially viable Li-S batteries.

Keywords: defect engineering, Li-S chemistry, carbon black, sulfur reaction kinetics

References(35)

[1]
Z. W. She,; Y. M. Sun,; Q. F. Zhang,; Y. Cui, Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605-5634.
[2]
I. A. M. Ousmane,; R. Li,; C. Wang,; G. R. Li,; W. L. Cai,; B. H. Liu,; Z. P. Li, Fabrication of oriented-macroporous-carbon incorporated with γ-Al2O3 for high performance lithium-sulfur battery. Microporous Mesoporous Mater. 2018, 266, 276-282.
[3]
H. Yuan,; H. J. Peng,; B. Q. Li,; J. Xie,; L. Kong,; M. Zhao,; X. Chen,; J. Q. Huang,; Q. Zhang, Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1802768.
[4]
A. Bhargav,; J. R. He,; A. Gupta,; A. Manthiram, Lithium-sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285-291.
[5]
C. Ye,; D. L. Chao,; J. Q. Shan,; H. Li,; K. Davey,; S. Z. Qiao, Unveiling the advances of 2D materials for Li/Na-S batteries experimentally and theoretically. Matter 2020, 2, 323-244.
[6]
K. L. Zhang,; L. B. Wang,; W. L. Cai,; C. Wang,; G. R. Li,; Z. P. Li,; W. T. Mao,; Y. T. Qian, A novel class of functional additives for cyclability enhancement of the sulfur cathode in lithium sulfur batteries. Inorg. Chem. Front. 2018, 5, 2013-2017.
[7]
Y. Z. Song,; Z. T. Sun,; Z. D. Fan,; W. L. Cai,; Y. L. Shao,; G. Sheng,; M. L. Wang,; L. X. Song,; Z. F. Liu,; Q. Zhang, et al. Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry. Nano Energy 2020, 70, 104555.
[8]
L. Kong,; Q. Jin,; X. T. Zhang,; B. Q. Li,; J. X. Chen,; W. C. Zhu,; J. Q. Huang,; Q. Zhang, Towards full demonstration of high areal loading sulfur cathode in lithium-sulfur batteries. J. Energy Chem. 2019, 39, 17-22.
[9]
S. Z. Wang,; J. X. Liao,; X. F. Yang,; J. N. Liang,; Q. Sun,; J. W. Liang,; F. P. Zhao,; A. Koo,; F. P. Kong,; Y. Yao, et al. Designing a highly efficient polysulfide conversion catalyst with paramontroseite for high-performance and long-life lithium-sulfur batteries. Nano Energy 2019, 57, 230-240.
[10]
Y. Chen,; W. X. Zhang,; D. Zhou,; H. J. Tian,; D. W. Su,; C. Y. Wang,; D. Stockdale,; F. Y. Kang,; B. H. Li,; G. X. Wang, Co-Fe mixed metal phosphide nanocubes with highly interconnected-pore architecture as an efficient polysulfide mediator for lithium-sulfur batteries. ACS Nano 2019, 13, 4731-4741.
[11]
B. Q. Li,; L. Kong,; C. X. Zhao,; Q. Jin,; X. Chen,; H. J. Peng,; J. L. Qin,; J. X. Chen,; H. Yuan,; Q. Zhang, et al. Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium-sulfur batteries. InfoMat 2019, 1, 533-541.
[12]
X. Chen,; T. Z. Hou,; B. Li,; C. Yan,; L. Zhu,; C. Guan,; X. B. Cheng,; H. J. Peng,; J. Q. Huang,; Q. Zhang, Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode. Energy Storage Mater. 2017, 8, 194-201.
[13]
G. Zhang,; Z. W. Zhang,; H. J. Peng,; J. Q. Huang,; Q. Zhang, A toolbox for lithium-sulfur battery research: Methods and protocols. Small Methods 2017, 1 1700134.
[14]
Z. Yu,; J. J. Zhang,; C. Wang,; R. X. Hu,; X. F. Du,; B. Tang,; H. T. Qu,; H. Wu,; X. Liu,; X. H. Zhou, et al. Flame-retardant concentrated electrolyte enabling a LiF-rich solid electrolyte interface to improve cycle performance of wide-temperature lithium-sulfur batteries. J. Energy Chem. 2020, 51, 154-160.
[15]
Z. H. Li,; Q. He,; X. Xu,; Y. Zhao,; X. W. Liu,; C. Zhou,; D. Ai,, L. X. Xia,; L. Q. Mai, 3D nitrogen-doped graphene/tin nanowires composite as a strong polysulfide anchor for lithium-sulfur batteries with enhanced rate performance and high areal capacity. Adv. Mater. 2018, 30, 1804089.
[16]
C. Ye,; Y. Jiao,; H. Y. Jin,; A. D. Slattery,; K. Davey,; H. H Wang,; S. Z. Qiao, 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium-sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 16703-16707.
[17]
Z. Q. Ye,; Y. Jiang,; T. Feng,; Z. H. Wang,; L. Li,; F. Wu,; R. J. Chen, Curbing polysulfide shuttling by synergistic engineering layer composed of supported Sn4P3 nanodots electrocatalyst in lithium-sulfur batteries. Nano Energy 2020, 70, 104532.
[18]
H. Y. Li,; L. F. Fei,; R. Zhang,; S. L. Yu,; Y. Y. Zhang,; L. L. Shu,; Y. Li,; Y. Wang, FeCo alloy catalysts promoting polysulfide conversion for advanced lithium-sulfur batteries. J. Energy Chem. 2020, 49, 339-347.
[19]
G. R. Li,; W. L. Cai,; B. H. Liu,; Z. P. Li, A multi functional binder with lithium ion conductive polymer and polysulfide absorbents to improve cycleability of lithium-sulfur batteries. J. Power Sources 2015, 294, 187-192.
[20]
J. Q. Huang,; X. F. Liu,; Q. Zhang,; C. M. Chen,; M. Q. Zhao,; S. M. Zhang,; W. C. Zhu,; W. Z. Qian,; F. Wei, Entrapment of sulfur in hierarchical porous graphene for lithium-sulfur batteries with high rate performance from -40 to 60 oC. Nano Energy 2013, 2, 314-321.
[21]
S. Xin,; L. Gu,; N. H. Zhao,; Y. X. Yin,; L. J. Zhou,; Y. G. Guo,; L. J. Wan, Smaller sulfur molecules promise better lithium-sulfur batteries. J. Am. Chem. Soc. 2012, 134, 18510-18513.
[22]
J. X. Song,; T. Xu,; M. L. Gordin,; P. Y. Zhu,; D. P. Lv,; Y. B. Jiang,; Y. S. Chen,; Y. H. Duan,; D. H. Wang, Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 1243-1250.
[23]
Q. C. Li,; Y. Z. Song,; R. Z. Xu,; L. Zhang,; J. Gao,; Z. Xia,; Z. N. Tian,; N. Wei,; M. H. Rümmeli,; X. L. Zou, et al. Biotemplating growth of nepenthes-like n-doped graphene as a bifunctional polysulfide scavenger for Li-S batteries. ACS Nano 2018, 12, 10240-10250.
[24]
Y. Z. Wang,; D. Adekoya,; J. Q. Sun,; T. Y. Tang,; H. L. Qiu,; L. Xu,; S. Q. Zhang,; Y. L. Hou, Manipulation of edge-site Fe-N2 moiety on holey Fe, N codoped graphene to promote the cycle stability and rate capacity of Li-S batteries. Adv. Funct. Mater. 2018, 29, 1807485.
[25]
Y. Jia,; J. Chen,; X. D. Yao, Defect electrocatalytic mechanism: Concept, topological structure and perspective. Mater. Chem. Front. 2018, 2, 1250-1268.
[26]
W. Wang,; L. Shang,, G. J. Chang,; C. Y. Yan,; R. Shi,; Y. X. Zhao,; G. I. N. Waterhouse,; D. J. Yang,; T. R. Zhang, Intrinsic carbon-defect-driven electrocatalytic reduction of carbon dioxide. Adv. Mater. 2019, 31, 1808276.
[27]
A. L. Shen,; Y. Q. Zou,; Q. Wang,; R. A. W. Dryfe,; X. B. Huang,; S. Dou,; L. M. Dai,; S. Y. Wang, Oxygen reduction reaction in a droplet on graphite: Direct evidence that the edge is more active than the basal plane. Angew. Chem., Int. Ed. 2014, 53, 10804-10808.
[28]
G. Kresse,; D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.
[29]
J. P. Perdew,; K. Burke,; M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
[30]
J. Yu,; Y. L. Wang,; C. F. Zhao,; S. M. Chen,; S. J. Zhang, A 3D molecular cantilever based on interfacial self-assembly and the cobra-like actuation of long-chain imidazolium ionic liquids. Nanoscale 2019, 11, 7277-7286.
[31]
W. L. Cai,; G. R. Li,; K. L. Zhang,; J. B. Zhou,; Y. T. Qian,; J. Du, A scalable in situ surfactant-free synthesis of a uniform MnO/graphene composite for highly reversible lithium storage. Dalton Trans. 2016, 45, 19221-19225.
[32]
L. Tao,; Q. Wang,; S. Dou,; Z. L. Ma,; J. Huo,; S. Y. Wang,; L. M. Dai, Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 2016, 52, 2764-2767.
[33]
Y. Y. Zhao,; W. L. Cai,; Y. T. Fang,; H. S. Ao,; Y. C. Zhu,; Y. T. Qian, Sulfur-deficient TiS2-x for promoted polysulfide redox conversion in lithium-sulfur batteries. ChemElectroChem 2019, 6, 2231-2237.
[34]
J. Liu,; M. G. Jiao,; B. B. Mei,; Y. X. Tong,; Y. P. Li,; M. B. Ruan,; P. Song,; G. Q. Sun,; L. H. Jiang,; Y. Wang, et al. Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction. Angew. Chem. 2019, 131, 1175-1179.
[35]
Y. Q. Zhang,; L. Tao,; C. Xie,; D. D. Wang,; Y. Q. Zou,; R. Chen,; Y. Y. Wang,; C. K. Jia,; S. Y. Wang, Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 2020, 32, 1905923.
File
12274_2020_3009_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 May 2020
Revised: 23 July 2020
Accepted: 26 July 2020
Published: 02 September 2020
Issue date: December 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2017YFA0206703), the National Natural Science Foundation of China (No. 21671183), and the Project of State Key Laboratory of Environment-Friendly Energy Materials (SWUST, Nos. 19FKSY16 and 18ZD320304).

Return