AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Nickel foam supported Cr-doped NiCo2O4/FeOOH nanoneedle arrays as a high-performance bifunctional electrocatalyst for overall water splitting

Tengyi LiuPeng Diao( )
Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Show Author Information

Graphical Abstract

Abstract

Efficient and robust noble-metal-free bifunctional electrocatalysts for overall water splitting (OWS) is of great importance to realize the large-scale hydrogen production. Herein, we report the growth of undoped and Cr-doped NiCo2O4 (Cr-NiCo2O4) nanoneedles (NNs) on nickel foam (NF) as bifunctional electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). We demonstrate that Cr-doping significantly improves activity for HER and OER by increasing the conductivity of NNs and allowing more active sites on NNs electrochemically accessible. When amorphous FeOOH is electrodeposited on the surface of Cr-NiCo2O4 NNs, the resulting FeOOH/Cr-NiCo2O4/NF exhibits itself as an excellent bifunctional catalyst for OWS. In the two-electrode cell where FeOOH/Cr-NiCo2O4/NF is used both as cathode and anode for OWS, a cell voltage of only 1.65 V is required to achieve an electrolysis current density of 100 mA·cm-2. In addition, the catalyst shows a very high stability for OWS, the two-electrode cell can operate at a consist current density of 20 mA·cm-2 for 10 h OWS with the cell voltage being stable at ca. 1.60 V. These results demonstrate that FeOOH/Cr-NiCo2O4/NF possesses an OWS performance superior to most of transition-metal based bifunctional electrocatalysts working in alkaline medium. The excellent bifunctional activity and stability of FeOOH/Cr-NiCo2O4/NF are attributed to the following reasons: (i) The NN structure provides a large specific surface area; (ii) the high conductivity of Cr-NiCo2O4 enables more active centers on the far-end part of NNs to be electrochemically reached; (iii) the deposition of FeOOH supplies additional active sites for OWS.

Electronic Supplementary Material

Download File(s)
12274_2020_3006_MOESM1_ESM.pdf (3.7 MB)

References

[1]
M. Steinberg, Fossil fuel decarbonization technology for mitigating global warming. Int. J. Hydrogen Energy 1999, 24, 771-777.
[2]
G. W. Crabtree,; M. S. Dresselhaus,; M. V. Buchanan, The hydrogen economy. Phys. Today 2004, 57, 39-44.
[3]
H. A. Gasteiger,; N. M. Marković, Just a dream—Or future reality? Science 2009, 324, 48-49.
[4]
N. S. Lewis,; D. G. Nocera, Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729-15735.
[5]
X. X. Zou,; Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148-5180.
[6]
W. F. Chen,; J. T. Muckerman,; E. Fujita, Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 2013, 49, 8896-8909.
[7]
B. You,; Y. J. Sun, Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 2018, 51, 1571-1580.
[8]
M. G. Walter,; E. L. Warren,; J. R. McKone,; S. W. Boettcher,; Q. X. Mi,; E. A. Santori,; N. S. Lewis, Solar water splitting cells. Chem. Rev. 2010, 110, 6446-6473.
[9]
L. M. Gandía,; R. Oroz,; A. Ursúa,; P. Sanchis,; P. M. Diéguez, Renewable hydrogen production: Performance of an alkaline water electrolyzer working under emulated wind conditions. Energy Fuels 2007, 21, 1699-1706.
[10]
Y. Yan,; B. Y. Xia,; B. Zhao,; X. Wang, A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A 2016, 4, 17587-17603.
[11]
C. G. Morales-Guio,; L. A. Stern,; X. L. Hu, Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555-6569.
[12]
C. C. L. McCrory,; S. Jung,; I. M. Ferrer,; S. M. Chatman,; J. C. Peters,; T. F. Jaramillo, Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 2015, 137, 4347-4357.
[13]
N. T. Suen,; S. F. Hung,; Q. Quan,; N. Zhang,; Y. J. Xu,; H. M. Chen, Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337-365.
[14]
Z. H. Xiao,; Y. Wang,; Y. C. Huang,; Z. X. Wei,; C. L. Dong,; J. M. Ma,; S. H. Shen,; Y. F. Li,; S. Y. Wang, Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 2017, 10, 2563-2569.
[15]
S. Klaus,; Y. Cai,; M. W. Louie,; L. Trotochaud,; A. T. Bell, Effects of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity. J. Phys. Chem. C 2015, 119, 7243-7254.
[16]
M. Gong,; H. J. Dai, A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23-39.
[17]
A. Vojvodic,; J. K. Norskov,; F. Abild-Pedersen, Electronic structure effects in transition metal surface chemistry. Top. Catal. 2014, 57, 25-32.
[18]
Y. F. Xu,; M. R. Gao,; Y. R. Zheng,; J. Jiang,; S. H. Yu, Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen. Angew. Chem., Int. Ed. 2013, 52, 8546-8550.
[19]
J. Zhang,; C. Q. Dong,; Z. B. Wang,; H. Gao,; J. Z. Niu,; Z. Q. Peng,; Z. H. Zhang, A new defect-rich CoGa layered double hydroxide as efficient and stable oxygen evolution electrocatalyst. Small Methods 2019, 3, 1800286.
[20]
D. Friebel,; M. W. Louie,; M. Bajdich,; K. E. Sanwald,; Y. Cai,; A. M. Wise,; M. J. Cheng,; D. Sokaras,; T. C. Weng,; R. Alonso-Mori, et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305-1313.
[21]
J. Zhang,; Y. W. Bai,; C. Zhang,; H. Gao,; J. Z. Niu,; Y. J. Shi,; Y. Zhang,; M. J. Song,; Z. H. Zhang, Hybrid Ni(OH)2/FeOOH@NiFe nanosheet catalysts toward highly efficient oxygen evolution reaction with ultralong stability over 1000 hours. ACS Sustainable Chem. Eng. 2019, 7, 14601-14610.
[22]
T. Y. Liu,; P. Diao,; Z. Lin,; H. L. Wang, Sulfur and selenium doped nickel chalcogenides as efficient and stable electrocatalysts for hydrogen evolution reaction: The importance of the dopant atoms in and beneath the surface. Nano Energy 2020, 74, 104787.
[23]
L. L. Feng,; G. T. Yu,; Y. Y. Wu,; G. D. Li,; H. Li,; Y. H. Sun,; T. Asefa,; W. Chen,; X. X. Zou, High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 2015, 137, 14023-14026.
[24]
X. Y. Zhang,; S. Zhang,; J. Li,; E. K. Wang, One-step synthesis of well-structured NiS-Ni2P2S6 nanosheets on nickel foam for efficient overall water splitting. J. Mater. Chem. A 2017, 5, 22131-22136.
[25]
D. Ansovini,; C. J. Jun Lee,; C. S. Chua,; L. T. Ong,; H. R. Tan,; W. R. Webb,; R. Raja,; Y. F. Lim, A highly active hydrogen evolution electrocatalyst based on a cobalt-nickel sulfide composite electrode. J. Mater. Chem. A 2016, 4, 9744-9749.
[26]
N. Xue,; Z. Lin,; P. K. Li,; P. Diao,; Q. F. Zhang, Sulfur-doped CoSe2 porous nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 28288-28297.
[27]
A. M. Alexander,; J. S. J. Hargreaves, Alternative catalytic materials: Carbides, nitrides, phosphides and amorphous boron alloys. Chem. Soc. Rev. 2010, 39, 4388-4401.
[28]
P. Jiang,; Q. Liu,; Y. H. Liang,; J. Q. Tian,; A. M. Asiri,; X. P. Sun, A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew. Chem., Int. Ed. 2014, 53, 12855-12859.
[29]
M. Schalenbach,; G. Tjarks,; M. Carmo,; W. Lueke,; M. Mueller,; D. Stolten, Acidic or alkaline? Towards a new perspective on the efficiency of water electrolysis. J. Electrochem. Soc. 2016, 163, F3197-F3208.
[30]
M. W. Louie,; A. T. Bell, An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329-12337.
[31]
M. Gong,; Y. G. Li,; H. L. Wang,; Y. Y. Liang,; J. Z. Wu,; J. G. Zhou,; J. Wang,; T. Regier,; F. Wei,; H. J. Dai, An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452-8455.
[32]
X. Long,; J. K. Li,; S. Xiao,; K. Y. Yan,; Z. L. Wang,; H. N. Chen,; S. H. Yang, A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7584-7588.
[33]
Z. Y. Lu,; W. W. Xu,; W. Zhu,; Q. Yang,; X. D. Lei,; J. F. Liu,; Y. P. Li,; X. M. Sun,; X. Duan, Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 2014, 50, 6479-6482.
[34]
L. An,; L. Huang,; P. P. Zhou,; J. Yin,; H. Y. Liu,; P. X. Xi, A self-standing high-performance hydrogen evolution electrode with nanostructured NiCo2O4/CuS heterostructures. Adv. Funct. Mater. 2015, 25, 6814-6822.
[35]
Y. B. Shao,; M. Y. Zheng,; M. M. Cai,; L. He,; C. L. Xu, Improved electrocatalytic performance of core-shell NiCo/NiCoOx with amorphous FeOOH for oxygen-evolution reaction. Electrochim. Acta 2017, 257, 1-8.
[36]
J. X. Feng,; H. Xu,; Y. T. Dong,; S. H. Ye,; Y. X. Tong,; G. R. Li, FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 3694-3698.
[37]
O. Diaz-Morales,; I. Ledezma-Yanez,; M. T. M. Koper,; F. Calle-Vallejo, Guidelines for the rational design of Ni-based double hydroxide electrocatalysts for the oxygen evolution reaction. ACS Catal. 2015, 5, 5380-5387.
[38]
R. Elakkiya,; R. Ramkumar,; G. Maduraiveeran, Flower-like nickel-cobalt oxide nanomaterials as bi-functional catalyst for electrochemical water splitting. Mater. Res. Bull. 2019, 116, 98-105.
[39]
J. Yin,; P. P. Zhou,; L. An,; L. Huang,; C. W. Shao,; J. Wang,; H. Y. Liu,; P. X. Xi, Self-supported nanoporous NiCo2O4 nanowires with cobalt-nickel layered oxide nanosheets for overall water splitting. Nanoscale 2016, 8, 1390-1400.
[40]
C. L. Xiao,; Y. B. Li,; X. Y. Lu,; C. Zhao, Bifunctional porous NiFe/NiCo2O4/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting. Adv. Funct. Mater. 2016, 26, 3515-3523.
[41]
L. Wang,; C. Lin,; F. X. Zhang,; J. Jin, Phase transformation guided single-layer β-Co(OH)2 nanosheets for pseudocapacitive electrodes. ACS Nano 2014, 8, 3724-3734.
[42]
M. S. Burke,; L. J. Enman,; A. S. Batchellor,; S. H. Zou,; S. W. Boettcher, Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: Activity trends and design principles. Chem. Mater. 2015, 27, 7549-7558.
[43]
Z. C. Wang,; H. L. Liu,; R. X. Ge,; X. Ren,; J. Ren,; D. J. Yang,; L. X. Zhang,; X. P. Sun, Phosphorus-doped Co3O4 nanowire array: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal. 2018, 8, 2236-2241.
[44]
J. Wang,; F. Xu,; H. Y. Jin,; Y. Q. Chen,; Y. Wang, Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater. 2017, 29, 1605838.
[45]
Y. Jia,; L. Z. Zhang,; G. P. Gao,; H. Chen,; B. Wang,; J. Z. Zhou,; M. T. Soo,; M. Hong,; X. C. Yan,; G. R. Qian, et al. A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 2017, 29, 1700017.
[46]
N. Xue,; P. Diao, Composite of few-layered MoS2 grown on carbon black: Tuning the ratio of terminal to total sulfur in MoS2 for hydrogen evolution reaction. J. Phys. Chem. C 2017, 121, 14413-14425.
[47]
X. Bo,; Y. B. Li,; R. K. Hocking,; C. Zhao, NiFeCr hydroxide holey nanosheet as advanced electrocatalyst for water oxidation. ACS Appl. Mater. Interfaces 2017, 9, 41239-41245.
[48]
M. Gong,; W. Zhou,; M. J. Kenney,; R. Kapusta,; S. Cowley,; Y. P. Wu,; B. A. Lu,; M. C. Lin,; D. Y. Wang,; J. Yang, et al. Blending Cr2O3 into a NiO-Ni electrocatalyst for sustained water splitting. Angew. Chem., Int. Ed. 2015, 54, 11989-11993.
[49]
W. Ye,; X. Y. Fang,; X. B. Chen,; D. P. Yan, A three-dimensional nickel-chromium layered double hydroxide micro/nanosheet array as an efficient and stable bifunctional electrocatalyst for overall water splitting. Nanoscale 2018, 10, 19484-19491.
[50]
Y. Yang,; L. N. Dang,; M. J. Shearer,; H. Y. Sheng,; W. J. Li,; J. Chen,; P. Xiao,; Y. H. Zhang,; R. J. Hamers,; S. Jin, Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction. Adv. Energ. Mater. 2018, 8, 1703189.
[51]
C. L. Dong,; X. T. Yuan,; X. Wang,; X. Y. Liu,; W. J. Dong,; R. Q. Wang,; Y. H. Duan,; F. Q. Huang, Rational design of cobalt-chromium layered double hydroxide as a highly efficient electrocatalyst for water oxidation. J. Mater. Chem. A 2016, 4, 11292-11298.
[52]
L. Zhang,; Y. Y. Li,; J. H. Peng,; K. Peng, Bifunctional NiCo2O4 porous nanotubes electrocatalyst for overall water-splitting. Electrochim. Acta 2019, 318, 762-769.
[53]
C. G. Pope, X-ray diffraction and the Bragg equation. J. Chem. Educ. 1997, 74, 129.
[54]
J. A. Seabold,; K. S. Choi, Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 2186-2192.
[55]
X. H. Gao,; H. X. Zhang,; Q. G. Li,; X. G. Yu,; Z. L. Hong,; X. W. Zhang,; C. D. Liang,; Z. Lin, Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angew. Chem., Int. Ed. 2016, 55, 6290-6294.
[56]
S. J. Peng,; F. Gong,; L. L. Li,; D. S. Yu,; D. X. Ji,; T. R. Zhang,; Z. Hu,; Z. Q. Zhang,; S. L. Chou,; Y. H. Du, et al. Necklace-like multishelled hollow spinel oxides with oxygen vacancies for efficient water electrolysis. J. Am. Chem. Soc. 2018, 140, 13644-13653.
[57]
Y. Ha,; L. X. Shi,; X. X. Yan,; Z. L. Chen,; Y. P. Li,; W. Xu,; R. B. Wu, Multifunctional electrocatalysis on a porous N-doped NiCo2O4@C Nanonetwork. ACS Appl. Mater. Interfaces 2019, 11, 45546-45553.
[58]
J. Deng,; H. J. Zhang,; Y. Zhang,; P. Luo,; L. Liu,; Y. Wang, Striking hierarchical urchin-like peapoded NiCo2O4@C as advanced bifunctional electrocatalyst for overall water splitting. J. Power Sources 2017, 372, 46-53.
[59]
L. Y. Wang,; C. D. Gu,; X. Ge,; J. L. Zhang,; H. Y. Zhu,; J. P. Tu, A NiCo2O4 shell on a hollow Ni Nanorod array core for water splitting with enhanced electrocatalytic performance. ChemNanoMat 2018, 4, 124-131.
[60]
B. Zhang,; X. M. Zhang,; Y. Wei,; L. Xia,; C. R. Pi,; H. Song,; Y. Zheng,; B. Gao,; J. J. Fu,; P. K. Chu, General synthesis of NiCo alloy nanochain arrays with thin oxide coating: A highly efficient bifunctional electrocatalyst for overall water splitting. J. Alloy. Compd. 2019, 797, 1216-1223.
[61]
W. X. Liu,; L. H. Yu,; R. L. Yin,; X. L. Xu,; J. X. Feng,; X. Jiang,; D. Zheng,; X. L. Gao,; X. B. Gao,; W. B. Que, et al. Non-3d metal modulation of a 2D Ni-Co heterostructure array as multifunctional electrocatalyst for portable overall water splitting. Small 2020, 16, 1906775.
[62]
Z. Peng,; D. S. Jia,; A. M. Al-Enizi,; A. A. Elzatahry,; G. F. Zheng, From water oxidation to reduction: Homologous Ni-Co based nanowires as complementary water splitting electrocatalysts. Adv. Energ. Mater. 2015, 5, 1402031.
[63]
X. Q. Du,; J. P. Fu,; X. S. Zhang, NiCo2O4@NiMoO4 supported on nickel foam for electrocatalytic water splitting. ChemCatChem 2018, 10, 5533-5540.
[64]
D. P. Zhao,; M. Z. Dai,; H. Q. Liu,; K. F. Chen,; X. F. Zhu,; D. F. Xue,; X. Wu,; J. P. Liu, Sulfur-induced interface engineering of hybrid NiCo2O4@NiMo2S4 structure for overall water splitting and flexible hybrid energy storage. Adv. Mater. Interfaces 2019, 6, 1901308.
[65]
Z. Q. Wang,; S. Zeng,; W. H. Liu,; X. W. Wang,; Q. W. Li,; Z. G. Zhao,; F. X. Geng, Coupling molecularly ultrathin sheets of NiFe-layered double hydroxide on NiCo2O4 nanowire arrays for highly efficient overall water-splitting activity. ACS Appl. Mater. Interfaces 2017, 9, 1488-1495.
[66]
M. Li,; L. M. Tao,; X. Xiao,; X. W. Lv,; X. X. Jiang,; M. K. Wang,; Z. Q. Peng,; Y. Shen, Core-shell structured NiCo2O4@FeOOH nanowire arrays as bifunctional electrocatalysts for efficient overall water splitting. ChemCatChem 2018, 10, 4119-4125.
[67]
J. T. Ren,; G. G. Yuan,; C. C. Weng,; L. Chen,; Z. Y. Yuan, Uniquely integrated Fe-doped Ni(OH)2 nanosheets for highly efficient oxygen and hydrogen evolution reactions. Nanoscale 2018, 10, 10620-10628.
[68]
D. N. Liu,; Q. Lu,; Y. L. Luo,; X. P. Sun,; A. M. Asiri, NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity. Nanoscale 2015, 7, 15122-15126.
[69]
A. Sivanantham,; P. Ganesan,; S. Shanmugam, Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 2016, 26, 4661-4672.
[70]
T. M. Roffi,; K. Uchida,; S. Nozaki, Structural, electrical, and optical properties of CoxNi1-xO films grown by metalorganic chemical vapor deposition. J. Cryst. Growth 2015, 414, 123-129.
[71]
R. Venkatesh,; C. R. Dhas,; R. Sivakumar,; T. Dhandayuthapani,; P. Sudhagar,; C. Sanjeeviraja,; A. M. E. Raj, Analysis of optical dispersion parameters and electrochromic properties of manganese-doped Co3O4 dendrite structured thin films. J. Phys. Chem. Solids 2018, 122, 118-129.
Nano Research
Pages 3299-3309
Cite this article:
Liu T, Diao P. Nickel foam supported Cr-doped NiCo2O4/FeOOH nanoneedle arrays as a high-performance bifunctional electrocatalyst for overall water splitting. Nano Research, 2020, 13(12): 3299-3309. https://doi.org/10.1007/s12274-020-3006-3
Topics:

1036

Views

105

Crossref

N/A

Web of Science

101

Scopus

10

CSCD

Altmetrics

Received: 17 May 2020
Revised: 17 July 2020
Accepted: 23 July 2020
Published: 15 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return