AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dynamic properties of a flexible metal-organic framework exhibiting a unique "picture frame" -like crystal morphology

Kenji Sumida1,2Nao Horike1Shuhei Furukawa1,( )
Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
Centre for Advanced Nanomaterials, School of Physical Sciences, University of Adelaide, SA 5005, Australia
Show Author Information

Graphical Abstract

Abstract

The precise control of the crystal morphology of metal-organic frameworks (MOFs) enables optimization of its adsorptive properties, as well as enables better integration within functional devices. However, the influence of such modifications on the dynamic properties of flexible MOFs is poorly understood. Here, we report the synthesis of a series of Cu2(bdc)2(bpy) (bdc2- = 1,4-benzenedicarboxylate; bpy = 4,4’-bipyridine) crystals having an unusual picture frame-like morphology that results from a restriction in the quantity of bpy pillars added to the reaction mixture during the intercalation of the Cu2(bdc)2(MeOH)2 layers. The width of the frames is found to correlate with the quantity of bpy, and importantly, causes the dynamic properties of the resulting Cu2(bdc)2(bpy) material to vary between rigid, elastic, and shape memory modes. In all, the results demonstrate the potential for the properties of MOFs to be optimized via subtle manipulations in the crystal morphology rather than changes in the overall material composition.

Electronic Supplementary Material

Download File(s)
12274_2020_3002_MOESM1_ESM.pdf (1.3 MB)

References

[1]
H. C. Zhou,; J. R. Long,; O. M. Yaghi, Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673-674.
[2]
H. C. Zhou,; S. Kitagawa, Metal-organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415-5418.
[3]
S. Furukawa,; J. Reboul,; S. Diring,; K. Sumida,; S. Kitagawa, Structuring of metal-organic frameworks at the mesoscopic/ macroscopic scale. Chem. Soc. Rev. 2014, 43, 5700-5734.
[4]
O. M. Linder-Patton,; B, T. Rogers,; K. Sumida, Impact of higher-order structuralization on the adsorptive properties of metal-organic frameworks. Chem.—Asian J. 2018, 13, 1979-1991.
[5]
L. Feng,; K. Y. Wang,; J. Powell,; H. C. Zhou, Controllable synthesis of metal-organic frameworks and their hierarchical assemblies. Matter 2019, 1, 801-824.
[6]
T. M. Tovar,; J. J. Zhao,; W. T. Nunn,; H. F. Barton,; G. W. Peterson,; G. N. Parsons,; M. D. LeVan, Diffusion of CO2 in large crystals of Cu-BTC MOF. J. Am. Chem. Soc. 2016, 138, 11449-11452.
[7]
W. X. Cai,; T. Lee,; M. Lee,; W. Cho,; D. Y. Han,; N. Choi,; A. C. K. Yip,; J. Choi, Thermal structural transitions and carbon dioxide adsorption properties of zeolitic imidazolate framework-7 (ZIF-7). J. Am. Chem. Soc. 2014, 136, 7961-7971.
[8]
K. M. Choi,; H. J. Jeon,; J. K. Kang,; O. M. Yaghi, Heterogeneity within order in crystals of a porous metal-organic framework. J. Am. Chem. Soc. 2011, 133, 11920-11923.
[9]
R. Ameloot,; F. Vermoortele,; W. Vanhove,; M. B. J. Roeffaers,; B. F. Sels,; D. E. De Vos, Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability. Nat. Chem. 2011, 3, 382-387.
[10]
X. Yang,; H. L. Zhou,; C. T. He,; Z. W. Mo,; J. W. Ye,; X. M. Chen,; J. P. Zhang, Flexibility of metal-organic framework tunable by crystal size at the micrometer to submillimeter scale for efficient xylene isomer separation. Research 2019, 2019, 9463719.
[11]
S. Krause,; V. Bon,; I. Senkovska,; D. M. Többens,; D. Wallacher,; R. S. Pillai,; G. Maurin,; S. Kaskel, The effect of crystallite size on pressure amplification in switchable porous solids. Nat. Commun. 2018, 9, 1573.
[12]
K. Hirai,; K. Sumida,; M. Meilikhov,; N. Louvain,; M. Nakahama,; H. Uehara,; S. Kitagawa,; S. Furukawa, Impact of crystal orientation on the adsorption kinetics of a porous coordination polymer-quartz crystal microbalance hybrid sensor. J. Mater. Chem. C 2014, 2, 3336-3344.
[13]
S. Sakaida,; K. Otsubo,; O. Sakata,; C. Song,; A. Fujiwara,; M. Takata,; H. Kitagawa, Crystalline coordination framework endowed with dynamic gate-opening behaviour by being downsized to a thin film. Nat. Chem. 2016, 8, 377-383.
[14]
Y. W. Liu,; S. M. Liu,; D. F. He,; N. Li,; Y. J. Ji,; Z. P. Zheng,; F. Luo,; S. X. Liu,; Z. Shi,; C. W. Hu, Crystal facets make a profound difference in polyoxometalate-containing metal-organic frameworks as catalysts for biodiesel production. J. Am. Chem. Soc. 2015, 137, 12697-12703.
[15]
S. Horike,; S. Shimomura,; S. Kitagawa, Soft porous crystals. Nat. Chem. 2009, 1, 695-704.
[16]
G. Férey,; C. Serre, Large breathing effects in three-dimensional porous hybrid matter: Facts, analyses, rules and consequences. Chem. Soc. Rev. 2009, 38, 1380-1399.
[17]
A. Schneemann,; V. Bon,; I. Schwedler,; I. Senkovska,; S. Kaskel,; R. Fischer, Flexible metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 6062-6069.
[18]
F. X. Coudert, Responsive metal-organic frameworks and framework materials: Under pressure, taking the heat, in the spotlight, with friends. Chem. Mater. 2015, 27, 1905-1916.
[19]
J. D. Evans,; V. Bon,; I. Senkovska,; H. C. Lee,; S. Kaskel, Four-dimensional metal-organic frameworks. Nat. Commun. 2020, 11, 2690.
[20]
S. Krause,; N. Hosono,; S. Kitagawa, Chemistry of soft porous crystals—Structural dynamics and gas adsorption properties. Angew. Chem., Int. Ed., in press, .
[21]
Y. Sakata,; S. Furukawa,; M. Kondo,; K. Hirai,; N. Horike,; Y. Takashima,; H. Uehara,; N. Louvain,; M. Meilikhov,; T. Tsuruoka, et al. Shape-memory nanopores induced in coordination frameworks by crystal downsizing. Science 2013, 339, 193-196.
[22]
M. Shivanna,; Q. Y. Yang,; A. Bajpai,; S. S. Sen,; N. Hosono,; S. Kusaka,; T. Pham,; K. A. Forrest,; B. Space,; S. Kitagawa, et al. Readily accessible shape-memory effect in a porous interpenetrated coordination network. Sci. Adv. 2018, 4, eaaq1636.
[23]
K. Sumida,; N. Moitra,; J. Reboul,; S. Fukumoto,; K. Nakanishi,; K. Kanamori,; S. Furukawa,; S. Kitagawa, Mesoscopic superstructures of flexible porous coordination polymers synthesized via coordination replication. Chem. Sci. 2015, 6, 5938-5946.
Nano Research
Pages 432-437
Cite this article:
Sumida K, Horike N, Furukawa S. Dynamic properties of a flexible metal-organic framework exhibiting a unique "picture frame" -like crystal morphology. Nano Research, 2021, 14(2): 432-437. https://doi.org/10.1007/s12274-020-3002-7
Topics:

705

Views

6

Crossref

N/A

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 28 February 2020
Revised: 03 July 2020
Accepted: 19 July 2020
Published: 15 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature
Return