Journal Home > Volume 13 , Issue 12

Multimodal imaging in the second near-infrared window (NIR-II) guided cancer therapy is a highly precise and efficient cancer theranostic strategy. However, it is still a challenge to develop activated NIR-II optical imaging and therapy agents. In this study, we develop a pH-responsive hybrid plasmonic-fluorescent vesicle by self-assembly of amphiphilic plasmonic nanogapped gold nanorod (AuNNR) and fluorescent down-conversion nanoparticles (DCNP) (AuNNR-DCNP Ve), showing remarkable and activated NIR-II fluorescence (FL)/NIR-II photoacoustic (PA) imaging performances. The hybrid vesicle also exhibited superior loading capacity of doxorubicin as a superior drug carrier and efficient radiosensitizer for X-ray-induced radiotherapy. Interestingly, the accumulated hybrid AuNNR-DCNP Ve in the tumor resulted in a recovery of NIR-II FL imaging signal and a variation in NIR-II PA imaging signal. Dual activated NIR-II PA and FL imaging of the hybrid vesicle could trace drug release and precisely guided cancer radiotherapy to ultimately reduce the side effects to healthy tissue.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Dual activated NIR-II fluorescence and photoacoustic imaging-guided cancer chemo-radiotherapy using hybrid plasmonic-fluorescent assemblies

Show Author's information Tao ChenLichao SuXiaoguang GeWenmin ZhangQingqing LiXuan ZhangJiamin YeLisen LinJibin Song( )Huanghao Yang( )
MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, China

Abstract

Multimodal imaging in the second near-infrared window (NIR-II) guided cancer therapy is a highly precise and efficient cancer theranostic strategy. However, it is still a challenge to develop activated NIR-II optical imaging and therapy agents. In this study, we develop a pH-responsive hybrid plasmonic-fluorescent vesicle by self-assembly of amphiphilic plasmonic nanogapped gold nanorod (AuNNR) and fluorescent down-conversion nanoparticles (DCNP) (AuNNR-DCNP Ve), showing remarkable and activated NIR-II fluorescence (FL)/NIR-II photoacoustic (PA) imaging performances. The hybrid vesicle also exhibited superior loading capacity of doxorubicin as a superior drug carrier and efficient radiosensitizer for X-ray-induced radiotherapy. Interestingly, the accumulated hybrid AuNNR-DCNP Ve in the tumor resulted in a recovery of NIR-II FL imaging signal and a variation in NIR-II PA imaging signal. Dual activated NIR-II PA and FL imaging of the hybrid vesicle could trace drug release and precisely guided cancer radiotherapy to ultimately reduce the side effects to healthy tissue.

Keywords: fluorescence imaging, photoacoustic imaging, radiotherapy, second near-infrared window (NIR-II), plasmonic gold nanovesicle

References(59)

[1]
X. F. Chen,; J. B. Song,; X. Y. Chen,; H. H. Yang, X-ray-activated nanosystems for theranostic applications. Chem. Soc. Rev. 2019, 48, 3073-3101.
[2]
Y. I. Park,; K. T. Lee,; Y. D. Suh,; T. Hyeon, Upconverting nanoparticles: A versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chem. Soc. Rev. 2015, 44, 1302-1317.
[3]
Y. Cai,; Z. Wei,; C. H. Song,; C. C. Tang,; W. Han,; X. C. Dong, Optical nano-agents in the second near-infrared window for biomedical applications. Chem. Soc. Rev. 2019, 48, 22-37.
[4]
X. L. Huang,; J. B. Song,; B. C. Yung,; X. H. Huang,; Y. H. Xiong,; X. Y. Chen Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem. Soc. Rev. 2018, 47, 2873-2920.
[5]
Z. J. Zhou,; J. B. Song,; L. M. Nie,; X. Y. Chen, Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev. 2016, 45, 6597-6626.
[6]
L. J. Yang,; Z. J. Zhou,; J. B. Song,; X. Y. Chen, Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications. Chem. Soc. Rev. 2019, 48, 5140-5176.
[7]
J. Fan,; Q. J. He,; Y. Liu,; F. W. Zhang,; X. Y. Yang,; Z. Wang,; N. Lu,; W. P. Fan,; L. S. Lin,; G. Niu, et al. Light-responsive biodegradable nanomedicine overcomes multidrug resistance via no-enhanced chemosensitization. ACS Appl. Mater. Interfaces 2016, 8, 13804-13811.
[8]
C. Y. Li,; Q. B. Wang, Challenges and opportunities for intravital near-infrared fluorescence imaging technology in the second transparency window. ACS Nano 2018, 12, 9654-9659.
[9]
M. F. Tsai,; S. H. G. Chang,; F. Y. Cheng,; V. Shanmugam,; Y. S. Cheng,; C. H. Su,; C. S. Yeh, Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. ACS Nano 2013, 7, 5330-5342.
[10]
H. Z. Deng,; A. J. Dong,; J. B. Song,; X. Y. Chen, Injectable thermosensitive hydrogel systems based on functional peg/pcl block polymer for local drug delivery. J. Control. Release 2019, 297, 60-70.
[11]
R. Zhu,; L. C. Su,; J. Y. Dai,; Z. W. Li,; S. M. Bai,; Q. Q. Li,; X. Y. Chen,; J. B. Song,; H. H. Yang, Biologically responsive plasmonic assemblies for second near-infrared window photoacoustic imaging-guided concurrent chemo-immunotherapy. ACS Nano 2020, 14, 3991-4006.
[12]
S. Jung,; X. Y. Chen, Quantum dot-dye conjugates for biosensing, imaging, and therapy. Adv. Healthc Mater. 2018, 7, 1800252.
[13]
J. A. Barreto,; W. O'Malley,; M. Kubeil,; B. Graham,; H. Stephan,; L. Spiccia, Nanomaterials: Applications in cancer imaging and therapy. Adv. Mater. 2011, 23, H18-H40.
[14]
C. Yao,; P. Y. Wang,; X. M. Li,; X. Y. Hu,; J. L. Hou,; L. Y. Wang,; F. Zhang, Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance. Adv. Mater. 2016, 28, 9341-9348.
[15]
R. Vankayala,; K. C. Hwang, Near-infrared-light-activatable nanomaterial-mediated phototheranostic nanomedicines: An emerging paradigm for cancer treatment. Adv. Mater. 2018, 30, 1706320.
[16]
K. J. McHugh,; L. H. Jing,; A. M. Behrens,; S. Jayawardena,; W. Tang,; M. Y. Gao,; R. Langer,; A. Jaklenec, Biocompatible semiconductor quantum dots as cancer imaging agents. Adv. Mater. 2018, 30, 1706356.
[17]
Z. Li,; Y. H. Hu,; Q. R. Fu,; Y. Liu,; J. Wang,; J. B. Song,; H. H. Yang, Nir/ros-responsive black phosphorus QD vesicles as immunoadjuvant carrier for specific cancer photodynamic immunotherapy. Adv. Funct. Mater. 2020, 30, 1905758.
[18]
T. J. Liu,; L. L. Tong,; N. N. Lv,; X. G. Ge,; Q. R. Fu,; S. Gao,; Q. J. Ma,; J. B. Song, Two-stage size decrease and enhanced photoacoustic performance of stimuli-responsive polymer-gold nanorod assembly for increased tumor penetration. Adv. Funct. Mater. 2019, 29, 1806429.
[19]
X. H. Lin,; S. Y. Liu,; X. Zhang,; R. Zhu,; S. Chen,; X. Y. Chen,; J. B. Song,; H. H. Yang, An ultrasound activated vesicle of Janus au-MnO nanoparticles for promoted tumor penetration and sono-chemodynamic therapy of orthotopic liver cancer. Angew. Chem., Int. Ed. 2020, 59, 1682-1688.
[20]
S. Wang,; J. Lin,; T. F. Wang,; X. Y. Chen,; P. Huang, Recent advances in photoacoustic imaging for deep-tissue biomedical applications. Theranostics 2016, 6, 2394-2413.
[21]
V. Zubkovs,; A. Antonucci,; N. Schuergers,; B. Lambert,; A. Latini,; R. Ceccarelli,; A. Santinelli,; A. Rogov,; D. Ciepielewski,; A. A. Boghossian, Spinning-disc confocal microscopy in the second near-infrared window (NIR-II). Sci. Rep. 2018, 8, 13770.
[22]
G. S. Hong,; A. L. Antaris,; H. J. Dai, Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017, 1, 0010.
[23]
J. B. Song,; L. S. Lin,; Z. Yang,; R. Zhu,; Z. J. Zhou,; Z. W. Li,; F. Wang,; J. Y. Chen,; H. H. Yang,; X. Y. Chen, Self-assembled responsive bilayered vesicles with adjustable oxidative stress for enhanced cancer imaging and therapy. J. Am. Chem. Soc. 2019, 141, 8158-8170.
[24]
J. Wei,; Z. K. Sun,; W. Luo,; Y. H. Li,; A. A. Elzatahry,; A. M. Al-Enizi,; Y. H. Deng,; D. Y. Zhao, New insight into the synthesis of large-pore ordered mesoporous materials. J. Am. Chem. Soc. 2017, 139, 1706-1713.
[25]
J. Y. Zhao,; D. Zhong,; S. B. Zhou, NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy. J. Mater. Chem. B 2018, 6, 349-365.
[26]
Q. L. Fan,; K. Cheng,; Z. Yang,; R. P. Zhang,; M. Yang,; X. Hu,; X. W. Ma,; L. H. Bu,; X. M. Lu,; X. X. Xiong, et al. Perylene-diimide-based nanoparticles as highly efficient photoacoustic agents for deep brain tumor imaging in living mice. Adv. Mater. 2015, 27, 843-847.
[27]
M. Y. Zhao,; B. H. Li,; P. Y. Wang,; L. F. Lu,; Z. C. Zhang,; L. Liu,; S. F. Wang,; D. D. Li,; R. Wang,; F. Zhang, Supramolecularly engineered NIR-II and upconversion nanoparticles in vivo assembly and disassembly to improve bioimaging. Adv. Mater. 2018, 30, 1804982.
[28]
S. J. Zhu,; S. Herraiz,; J. Y. Yue,; M. X. Zhang,; H. Wan,; Q. L. Yang,; Z. R. Ma,; Y. Wang,; J. H. He,; A. L. Antaris, et al. 3D NIR-II molecular imaging distinguishes targeted organs with high-performance NIR-II bioconjugates. Adv. Mater. 2018, 30, 1705799.
[29]
Q. Wang,; Y. N. Dai,; J. Z. Xu,; J. Cai,; X. R. Niu,; L. Zhang,; R. F. Chen,; Q. M. Shen,; W. Huang,; Q. L. Fan, All-in-one phototheranostics: Single laser triggers NIR-II fluorescence/photoacoustic imaging guided photothermal/photodynamic/chemo combination therapy. Adv. Funct. Mater. 2019, 29, 1901480.
[30]
Q. X. Wen,; Y. J. Zhang,; C. Y. Li,; S. S. Ling,; X. H. Yang,; G. C. Chen,; Y. Yang,; Q. B. Wang, NIR-II fluorescent self-assembled peptide nanochain for ultrasensitive detection of peritoneal metastasis. Angew. Chem., Int. Ed. 2019, 58, 11001-11006.
[31]
S. F. Wang,; L. Liu,; Y. Fan,; A. M. El-Toni,; M. S. Alhoshan,; D. D. Li,; F. Zhang, In vivo high-resolution ratiometric fluorescence imaging of inflammation using NIR-II nanoprobes with 1550 nm emission. Nano Lett. 2019, 19, 2418-2427.
[32]
P. Y. Wang,; Y. Fan,; L. F. Lu,; L. Liu,; L. L. Fan,; M. Y. Zhao,; Y. Xie,; C. J. Xu,; F. Zhang, NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer. Nat. Commun. 2018, 9, 2898.
[33]
W. M. Zhang,; T. Chen,; L. C. Su,; X. G. Ge,; X. Y. Chen,; J. B. Song,; H. H. Yang, Quantum dot-based sensitization system for boosted photon absorption and enhanced second near-infrared luminescence of lanthanide-doped nanoparticle. Anal. Chem. 2020, 92, 6094-6102.
[34]
L. Ceppi,; N. M. Bardhan,; Y. J. Na,; A. Siegel,; N. Rajan,; R. Fruscio,; M. G. Del Carmen,; A. M. Belcher,; M. J. Birrer, Real-time single-walled carbon nanotube-based fluorescence imaging improves survival after debulking surgery in an ovarian cancer model. ACS Nano 2019, 13, 5356-5365.
[35]
J. J. Liu,; C. Wang,; X. J. Wang,; X. Wang,; L. Cheng,; Y. G. Li,; Z. Liu, Mesoporous silica coated single-walled carbon nanotubes as a multifunctional light-responsive platform for cancer combination therapy. Adv. Funct. Mater. 2015, 25, 384-392.
[36]
G. C. Yu,; J. Yang,; X. Fu,; Z. T. Wang,; L. Shao,; Z. W. Mao,; Y. J. Liu,; Z. Yang,; F. W. Zhang,; W. P. Fan, et al. A supramolecular hybrid material constructed from graphene oxide and a pillar[6]arene-based host-guest complex as an ultrasound and photoacoustic signal nanoamplifier. Mater. Horiz. 2018, 5, 429-435.
[37]
D. J. Naczynski,; C. Sun,; S. Turkcan,; C. Jenkins,; A. L. Koh,; D. Ikeda,; G. Pratx,; L. Xing, X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes. Nano Lett. 2015, 15, 96-102.
[38]
X. Z. Ai,; C. J. H. Ho,; J. Aw,; A. B. E. Attia,; J. Mu,; Y. Wang,; X. Y. Wang,; Y. Wang,; X. G. Liu,; H. B. Chen, et al. In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics. Nat. Commun. 2016, 7, 10432.
[39]
D. S. Wang,; T. Xie,; P. Qing,; Y. D. Li, Ag, Ag2S, and Ag2Se nanocrystals: Synthesis, assembly, and construction of mesoporous structures. J. Am. Chem. Soc. 2008, 130, 4016-4022.
[40]
J. T. Robinson,; G. S. Hong,; Y. Y. Liang,; B. Zhang,; O. K. Yaghi,; H. J. Dai, In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake. J. Am. Chem. Soc. 2012, 134, 10664-10669.
[41]
W. Tang,; Z. Yang,; S. Wang,; Z. T. Wang,; J. B. Song,; G. C. Yu,; W. P. Fan,; Y. L. Dai,; J. J. Wang,; L. L. Shan, et al. Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy. ACS Nano 2018, 12, 2610-2622.
[42]
X. X. Hao,; C. Y. Li,; Y. J. Zhang,; H. Z. Wang,; G. C. Chen,; M. Wang,; Q. B. Wang, Programmable chemotherapy and immunotherapy against breast cancer guided by multiplexed fluorescence imaging in the second near-infrared window. Adv. Mater. 2018, 30, 1804437.
[43]
X. Y. Yang,; Z. Wang,; F. W. Zhang,; G. Z. Zhu,; J. B. Song,; G. J. Teng,; G. Niu,; X. Y. Chen, Mapping sentinel lymph node metastasis by dual-probe optical imaging. Theranostics 2017, 7, 153-163.
[44]
F. Ren,; L. H. Ding,; H. H. Liu,; Q. Huang,; H. Zhang,; L. J. Zhang,; J. F. Zeng,; Q. Sun,; Z. Li,; M. Y. Gao, Ultra-small nanocluster mediated synthesis of Nd3+-doped core-shell nanocrystals with emission in the second near-infrared window for multimodal imaging of tumor vasculature. Biomaterials 2018, 175, 30-43.
[45]
Q. R. Fu,; Z. Li,; J. M. Ye,; Z. Li,; F. F. Fu,; S. L. Lin,; C. A. Chang,; H. H. Yang,; J. B. Song, Magnetic targeted near-infrared II PA/MR imaging guided photothermal therapy to trigger cancer immunotherapy. Theranostics 2020, 10, 4997-5010.
[46]
D. Cui,; J. G. Huang,; X. Zhen,; J. C. Li,; Y. Y. Jiang, A semiconducting polymer nano-prodrug for hypoxia-activated photodynamic cancer therapy. Angew. Chem., Int. Ed. 2019, 58, 5920-5924.
[47]
H. Z. Deng,; L. S. Lin,; S. Wang,; G. C. Yu,; Z. J. Zhou,; Y. J. Liu,; G. Niu,; J. B. Song,; X. Y. Chen, X-ray-controlled bilayer permeability of bionic nanocapsules stabilized by nucleobase pairing interactions for pulsatile drug delivery. Adv. Mater. 2019, 31, 1903443.
[48]
; Y. K. Duan,; B. Liu, Recent advances of optical imaging in the second near-infrared window. Adv. Mater. 2018, 30, 1802394.
[49]
Y. Wu,; T. Guo,; Y. Qiu,; Y. Lin,; Y. Y. Yao,; W. B. Lian,; L. S. Lin,; J. B. Song,; H. H. Yang, An inorganic prodrug, tellurium nanowires with enhanced ros generation and gsh depletion for selective cancer therapy. Chem. Sci. 2019, 10, 7068-7075.
[50]
C. R. Maldonado,; L. Salassa,; N. Gomez-Blanco,; J. C. Mareque-Rivas, Nano-functionalization of metal complexes for molecular imaging and anticancer therapy. Coordin. Chem. Rev. 2013, 257, 2668-2688.
[51]
P. Y. Wang,; X. D. Wang,; Q. Luo,; Y. Li,; X. X. Lin,; L. L. Fan,; Y. Zhang,; J. F. Liu,; X. L. Liu, Fabrication of red blood cell-based multimodal theranostic probes for second near-infrared window fluorescence imaging-guided tumor surgery and photodynamic therapy. Theranostics 2019, 9, 369-380.
[52]
K. D. Lu,; C. B. He,; N. N. Guo,; C. Chan,; K. Y. Ni,; G. X. Lan,; H. D. Tang,; C. Pelizzari,; Y. X. Fu,; M. T. Spiotto, et al. Low-dose X-ray radiotherapy-radiodynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2018, 2, 600-610.
[53]
J. Liu,; X. L. Cai,; H. C. Pan,; A. Bandla,; C. K. Chuan,; S. W. Wang,; N. Thakor,; L. D. Liao,; B. Liu, Molecular engineering of photoacoustic performance by chalcogenide variation in conjugated polymer nanoparticles for brain vascular imaging. Small 2018, 14, 1703732.
[54]
Z. Du,; X. Zhang,; Z. Guo,; J. N. Xie,; X. H. Dong,; S. Zhu,; J. F. Du,; Z. J. Gu,; Y. L. Zhao, X-ray-controlled generation of peroxynitrite based on nanosized LiLuF4: Ce3+ scintillators and their applications for radiosensitization. Adv. Mater. 2018, 30, 1804046.
[55]
Y. Jiang,; P. K. Upputuri,; C. Xie,; Z. L. Zeng,; A. Sharma,; X. Zhen,; J. C. Li,; J. G. Huang,; M. Pramanik,; K. Y. Pu, Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging. Adv. Mater. 2019, 31, 1808166.
[56]
L. B. Zhou,; Y. Jing,; Y. B. Liu,; Z. H. Liu,; D. Y. Gao,; H. B. Chen,; W. Y. Song,; T. Wang,; X. F. Fang,; W. P. Qin, et al. Mesoporous carbon nanospheres as a multifunctional carrier for cancer theranostics. Theranostics 2018, 8, 663-675.
[57]
Z. Yang,; J. B. Song,; Y. L. Dai,; J. Y. Chen,; F. Wang,; L. S. Lin,; Y. J. Liu,; F. W. Zhang,; G. C. Yu,; Z. J. Zhou, et al. Self-assembly of semiconducting-plasmonic gold nanoparticles with enhanced optical property for photoacoustic imaging and photothermal therapy. Theranostics 2017, 7, 2177-2185.
[58]
W. J. Sun,; T. H. Shi,; L. Luo,; X. M. Chen,; P. Lv,; Y. Lv,; Y. X. Zhuang,; J. J. Zhu,; G. Liu,; X. Y. Chen, et al. Monodisperse and uniform mesoporous silicate nanosensitizers achieve low-dose X-ray-induced deep-penetrating photodynamic therapy. Adv. Mater. 2019, 31, 1808024.
[59]
X. G. Ge,; Q. R. Fu,; L. C. Su,; Z. Li,; W. M. Zhang,; T. Chen,; H. H. Yang,; J. B. Song, Light-activated gold nanorod vesicles with NIR-II fluorescence and photoacoustic imaging performances for cancer theranostics. Theranostics 2020, 10, 4809-4821.
File
12274_2020_3000_MOESM1_ESM.pdf (3.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 June 2020
Revised: 19 July 2020
Accepted: 20 July 2020
Published: 14 August 2020
Issue date: December 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21635002 and 21874024), and the joint research projects of Health and Education Commission of Fujian Province (No. 2019-WJ-20).

Return