Journal Home > Volume 13 , Issue 12

Herein, we prepared two novel pairs of enantiomeric gold cluster complexes, Au4PL4/Au4PD4 and (Au4L4)n/(Au4D4)n with atomic precision. In Au4PL4/Au4PD4, the discrete chiral Au4-based aggregation-induced emission (AIE) luminogens are separated by bulky substitutes. The corresponding aggregates are cyan-emitting with a photoluminescence quantum yield (PLQY) of 14.4%. Upon decreasing the size of the substituents, these chiral Au4 clusters are strung together by inter-cluster Au-Au interactions, which cause a low-energy green emission from the aggregated (Au4L4)n/(Au4D4)n with a much higher PLQY of 41.4% and more intense circularly polarised photoluminescence (CPL) with a dissymmetry factor |gPL| of 7.0 × 10-3. Using (Au4L4)n/(Au4D4)n, circularly polarised organic light-emitting diodes (CP-OLEDs) were for the first time fabricated with |gEL| = |gPL|. These findings signify that inter-cluster metallophilic interactions are a new and important type of driving force for AIE and crystallization-induced emission (CIE), suggesting great potential of CPL-active metal clusters in CP-OLEDs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Intercluster aurophilicity-driven aggregation lighting circularly polarized luminescence of chiral gold clusters

Show Author's information Zhen Han§Xueli Zhao§Peng PengSi LiChong ZhangMan CaoKai LiZhao-Yang Wang( )Shuang-Quan Zang( )
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China

§Zhen Han and Xueli Zhao contributed equally to this work.

Abstract

Herein, we prepared two novel pairs of enantiomeric gold cluster complexes, Au4PL4/Au4PD4 and (Au4L4)n/(Au4D4)n with atomic precision. In Au4PL4/Au4PD4, the discrete chiral Au4-based aggregation-induced emission (AIE) luminogens are separated by bulky substitutes. The corresponding aggregates are cyan-emitting with a photoluminescence quantum yield (PLQY) of 14.4%. Upon decreasing the size of the substituents, these chiral Au4 clusters are strung together by inter-cluster Au-Au interactions, which cause a low-energy green emission from the aggregated (Au4L4)n/(Au4D4)n with a much higher PLQY of 41.4% and more intense circularly polarised photoluminescence (CPL) with a dissymmetry factor |gPL| of 7.0 × 10-3. Using (Au4L4)n/(Au4D4)n, circularly polarised organic light-emitting diodes (CP-OLEDs) were for the first time fabricated with |gEL| = |gPL|. These findings signify that inter-cluster metallophilic interactions are a new and important type of driving force for AIE and crystallization-induced emission (CIE), suggesting great potential of CPL-active metal clusters in CP-OLEDs.

Keywords: aggregation-induced emission, atomic precision, gold cluster, intercluster aurophilicity, circularly polarized luminescence

References(46)

[1]
C. N. Loynachan,; A. P. Soleimany,; J. S. Dudani,; Y. Y. Lin,; A. Najer,; A. Bekdemir,; Q. Chen,; S. N. Bhatia,; M. M. Stevens, Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat. Nanotechnol. 2019, 14, 883-890.
[2]
T. T. Jia,; G. Yang,; S. J. Mo,; Z. Y. Wang,; B. J. Li,; W. Ma,; Y. X. Guo,; X. Y. Chen,; X. L. Zhao,; J. Q. Liu, et al. Atomically precise gold-levonorgestrel nanocluster as a radiosensitizer for enhanced cancer therapy. ACS Nano 2019, 13, 8320-8328.
[3]
L. Y. Yao,; V. W. W. Yam, Photoinduced isomerization-driven structural transformation between decanuclear and octadecanuclear gold(I) sulfido clusters. J. Am. Chem. Soc. 2015, 137, 3506-3509.
[4]
S. S. Zhang,; L. Feng,; R. D. Senanayake,; C. M. Aikens,; X. P. Wang,; Q. Q. Zhao,; C. H. Tung,; D. Sun, Diphosphine-protected ultrasmall gold nanoclusters: Opened icosahedral Au13 and heart-shaped Au8 clusters. Chem. Sci. 2018, 9, 1251-1258.
[5]
L. X. Li,; S. S. Huang,; J. J. Song,; N. T. Yang,; J. W. Liu,; Y. Y. Chen,; Y. H. Sun,; R. C. Jin,; Y. Zhu, Ultrasmall Au10 clusters anchored on pyramid-capped rectangular TiO2 for olefin oxidation. Nano Res. 2016, 9, 1182-1192.
[6]
H. Shen,; S. J. Xiang,; Z. Xu,; C. Liu,; X. H. Li,; C. F. Sun,; S. C. Lin,; B. K. Teo,; N. F. Zheng, Superatomic Au13 clusters ligated by different N-heterocyclic carbenes and their ligand-dependent catalysis, photoluminescence, and proton sensitivity. Nano Res. 2020, 13, 1908-1911.
[7]
S. S. Zhang,; R. D. Senanayake,; Q. Q. Zhao,; H. F. Su,; C. M. Aikens,; X. P. Wang,; C. H. Tung,; D. Sun,; L. S. Zheng, [Au18(dppm)6Cl4]4+: A phosphine-protected gold nanocluster with rich charge states. Dalton Trans. 2019, 48, 3635-3640.
[8]
Z. L. Wu,; D. R. Mullins,; L. F. Allard,; Q. F. Zhang,; L. S. Wang, CO oxidation over ceria supported Au22 nanoclusters: Shape effect of the support. Chin. Chem. Lett. 2018, 29, 795-799.
[9]
K. Zheng,; J. W. Zhang,; D. Zhao,; Y. Yang,; Z. M. Li,; G. Li, Motif-mediated Au25(SPh)5(PPh3)10X2 nanorods with conjugated electron delocalization. Nano Res. 2019, 12, 501-507.
[10]
J. Mei,; N. L. C. Leung,; R. T. K. Kwok,; J. W. Y. Lam,; B. Z. Tang, Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718-11940.
[11]
T. Chen,; S. Yang,; J. S. Chai,; Y. B. Song,; J. Q. Fan,; B. Rao,; H. T. Sheng,; H. Z. Yu,; M. Z. Zhu, Crystallization-induced emission enhancement: A novel fluorescent Au-Ag bimetallic nanocluster with precise atomic structure. Sci. Adv. 2017, 3, e1700956.
[12]
H. K. Zhang,; Z. Zhao,; P. R. McGoniga,; R. Q. Ye,; S. J. Liu,; J. W. Y. Lam,; R. T. K. Kwok,; W. Z. Yuan,; J. P. Xie,; A. L. Rogach, et al. Clusterization-triggered emission: Uncommon luminescence from common materials. Mater. Today 2020, 32, 275-292.
[13]
M. M. Zhang,; K. Li,; S. Q. Zang, Progress in atomically precise coinage metal clusters with aggregation-induced emission and circularly polarized luminescence. Adv. Opt. Mater. 2020, 8, 1902152.
[14]
X. Kang,; S. X. Wang,; Y. B. Song,; S. Jin,; G. D. Sun,; H. Z. Yu,; M. Z. Zhu, Bimetallic Au2Cu6 nanoclusters: Strong luminescence induced by the aggregation of copper(I) complexes with gold(0) species. Angew. Chem., Int. Ed. 2016, 55, 3611-3614.
[15]
W. X. Ni,; Y. M. Qiu,; M. Li,; J. Zheng,; R. W. Y. Sun,; S. Z. Zhan,; S. W. Ng,; D. Li, Metallophilicity-driven dynamic aggregation of a phosphorescent gold(I)-silver(I) cluster prepared by solution-based and mechanochemical approaches. J. Am. Chem. Soc. 2014, 136, 9532-9535.
[16]
X. Y. Dou,; X. Yuan,; Y. Yu,; Z. T. Luo,; Q. F. Yao,; D. T. Leong,; J. P. Xie, Lighting up thiolated Au@Ag nanoclusters via aggregation-induced emission. Nanoscale 2014, 6, 157-161.
[17]
Z. T. Luo,; X. Yuan,; Y. Yu,; Q. B. Zhang,; D. T. Leong,; J. Y. Lee,; J. P. Xie, From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662-16670.
[18]
N. Goswami,; Q. F. Yao,; Z. T. Luo,; J. G. Li,; T. K. Chen,; J. P. Xie, Luminescent metal nanoclusters with aggregation-induced emission. J. Phys. Chem. Lett. 2016, 7, 962-975.
[19]
Z. N. Wu,; Y. H. Du,; J. L. Liu,; Q. F. Yao,; T. K. Chen,; Y. T. Cao,; H. Zhang,; J. P. Xie, Aurophilic interactions in the self-assembly of gold nanoclusters into nanoribbons with enhanced luminescence. Angew. Chem., Int. Ed. 2019, 58, 8139-8144.
[20]
T. M. Dau,; Y. A. Chen,; A. J. Karttunen,; E. V. Grachova,; S. P. Tunik,; K. T. Lin,; W. Y. Hung,; P. T. Chou,; T. A. Pakkanen,; I. O. Koshevoy, Tetragold(I) complexes: Solution isomerization and tunable solid-state luminescence. Inorg. Chem. 2014, 53, 12720-12731.
[21]
H. Schmidbaur,; A. Schier, Aurophilic interactions as a subject of current research: An up-date. Chem. Soc. Rev. 2012, 41, 370-412.
[22]
Q. Liu,; M. Xie,; X. Y. Chang,; S. Cao,; C. Zou,; W. F. Fu,; C. M. Che,; Y. Chen,; W. Lu, Tunable multicolor phosphorescence of crystalline polymeric complex salts with metallophilic backbones. Angew. Chem., Int. Ed. 2018, 57, 6279-6283.
[23]
F. K. W. Hau,; T. K. M. Lee,; E. C. C. Cheng,; V. K. M. Au,; V. W. W. Yam, Luminescence color switching of supramolecular assemblies of discrete molecular decanuclear gold(I) sulfido complexes. Proc. Natl. Acad. Soc. USA 2014, 111, 15900-15905.
[24]
M. Sugiuchi,; J. Maeba,; N. Okubo,; M. Iwamura,; K. Nozaki,; K. Konishi, Aggregation-induced fluorescence-to-phosphorescence switching of molecular gold clusters. J. Am. Chem. Soc. 2017, 139, 17731-17734.
[25]
J. Zhang,; Q. M. Liu,; W. J. Wu,; J. H. Peng,; H. K. Zhang,; F. Y. Song,; B. Z. He,; X. Y. Wang,; H. H. Y. Sung,; M. Chen, et al. Real-time monitoring of hierarchical self-assembly and induction of circularly polarized luminescence from achiral luminogens. ACS Nano 2019, 13, 3618-3628.
[26]
U. Tohgha,; K. K. Deol,; A. G. Porter,; S. G. Bartko,; J. K. Choi,; B. M. Leonard,; K. Varga,; J. Kubelka,; G. Muller,; M. Balaz, Ligand induced circular dichroism and circularly polarized luminescence in CdSe quantum dots. ACS Nano 2013, 7, 11094-11102.
[27]
M. M. Zhang,; X. Y. Dong,; Z. Y. Wang,; H. Y. Li,; S. J. Li,; X. L. Zhao,; S. Q. Zang, AIE triggers the circularly polarized luminescence of atomically precise enantiomeric copper(I) alkynyl clusters. Angew. Chem., Int. Ed. 2020, 59, 10052-10058.
[28]
Q. Li,; M. Zhou,; W. Y. So,; J. C. Huang,; M. X. Li,; D. R. Kauffman,; M. Cotlet,; T. Higaki,; L. A. Peteanu,; Z. Z. Shao, et al. A mono-cuboctahedral series of gold nanoclusters: Photoluminescence origin, large enhancement, wide tunability, and structure-property correlation. J. Am. Chem. Soc. 2019, 141, 5314-5325.
[29]
Z. Han,; X. Y. Dong,; P. Luo,; S. Li,; Z. Y. Wang,; S. Q. Zang; T. C. W. Mak, Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency. Sci. Adv. 2020, 6, eaay0107.
[30]
L. Shi,; L. Y. Zhu,; J. Guo,; L. J. Zhang,; Y. N. Shi,; Y. Zhang,; K. Hou,; Y. L. Zheng,; Y. F. Zhu,; J. W. Lv, et al. Self-assembly of chiral gold clusters into crystalline nanocubes of exceptional optical activity. Angew. Chem., Int. Ed. 2017, 56, 15397-15401.
[31]
Y. T. Sang,; J. L. Han,; T. H. Zhao,; P. F. Duan,; M. H. Liu, Circularly polarized luminescence in nanoassemblies: Generation, amplification, and application. Adv. Mater., in press, .
[32]
Y. F. Zhu,; H. Wang,; K. W. Wan,; J. Guo,; C. T. He,; Y. Yu,; L. Y. Zhao,; Y. Zhang,; J. W. Lv,; L. Shi, et al. Enantioseparation of Au20(PP3)4Cl4 clusters with intrinsically chiral cores. Angew. Chem., Int. Ed. 2018, 57, 9059-9063.
[33]
C. J. Zeng,; T. Li,; A. Das,; N. L. Rosi,; R. C. Jin, Chiral structure of thiolate-protected 28-gold-atom nanocluster determined by X-ray crystallography. J. Am. Chem. Soc. 2013, 135, 10011-10013.
[34]
D. Crasto,; S. Malola,; G. Brosofsky,; A. Dass,; H. Häkkinen, Single crystal XRD structure and theoretical analysis of the chiral Au30S(S-t-Bu)18 cluster. J. Am. Chem. Soc. 2014, 136, 5000-5005.
[35]
S. Knoppe,; R. Azoulay,; A. Dass,; T. Bürgi, In situ reaction monitoring reveals a diastereoselective ligand exchange reaction between the intrinsically chiral Au38(SR)24 and chiral thiols. J. Am. Chem. Soc. 2012, 134, 20302-20305.
[36]
C. J. Zeng,; Y. X. Chen,; K. Kirschbaum,; K. Appavoo,; M. Y. Sfeir,; R. C. Jin, Structural patterns at all scales in a nonmetallic chiral Au133(SR)52 nanoparticle. Sci. Adv. 2015, 1, e1500045.
[37]
D. Delaunay,; L. Toupet,; M. Le Corre, Reactivity of .beta. -amino alcohols with carbon disulfide study on the synthesis of 2-oxazolidinethiones and 2-thiazolidinethiones. J. Org. Chem. 1995, 60, 6604-6607.
[38]
A. Vogler,; H. Kunkely, Absorption and emission spectra of tetrameric gold(I) complexes. Chem. Phys. Lett. 1988, 150, 135-137.
[39]
O. Piovesana,; P. F. Zanazzi, Gold(I)-gold(I) interactions. Tetrameric gold(I) dithioacetate. Angew. Chem., Int. Ed. 1980, 19, 561-562.
[40]
M. Olaru,; E. Rychagova,; S. Ketkov,; Y. Shynkarenko,; S. Yakunin,; M. V. Kovalenko,; A. Yablonskiy,; B. Andreev,; F. Kleemiss,; J. Beckmann, et al. A small cationic organo-copper cluster as thermally robust highly photo- and electroluminescent material. J. Am. Chem. Soc. 2020, 142, 373-381.
[41]
F. Y. Song,; Z. Xu,; Q. S. Zhang,; Z. Zhao,; H. K. Zhang,; W. J. Zhao,; Z. Qiu,; C. X. Qi,; H. Zhang,; H. H. Y. Sung, et al. Highly efficient circularly polarized electroluminescence from aggregation-induced emission luminogens with amplified chirality and delayed fluorescence. Adv. Funct. Mater. 2018, 28, 1800051.
[42]
Z. G. Wu,; H. B. Han,; Z. P. Yan,; X. F. Luo,; Y. Wang,; Y. X. Zheng,; J. L. Zuo,; Y. Pan, Chiral octahydro-binaphthol compound-based thermally activated delayed fluorescence materials for circularly polarized electroluminescence with superior EQE of 32.6% and extremely low efficiency roll-off. Adv. Mater. 2019, 31, 1900524.
[43]
F. Zinna,; U. Giovanella,; L. di Bari, Highly circularly polarized electroluminescence from a chiral europium complex. Adv. Mater. 2015, 27, 1791-1795.
[44]
J. Zhang,; C. B. Duan,; C. M. Han,; H. Yang,; Y. Wei,; H. Xu, Balanced dual emissions from tridentate phosphine-coordinate copper(I) complexes toward highly efficient yellow OLEDs. Adv. Mater. 2016, 28, 5975-5979.
[45]
L. Yang,; Y. Zhang,; X. Y. Zhang,; N. Q. Li,; Y. W. Quan,; Y. X. Cheng, Doping-free circularly polarized electroluminescence of AIE-active chiral binaphthyl-based polymers. Chem. Commun. 2018, 54, 9663-9666.
[46]
D. W. Zhang,; M. Li,; C. F. Chen, Recent advances in circularly polarized electroluminescence based on organic light-emitting diodes. Chem. Soc. Rev. 2020, 49, 1331-1343.
File
12274_2020_2997_MOESM1_ESM.pdf (6.6 MB)
12274_2020_2997_MOESM2_ESM.pdf (250.8 KB)
12274_2020_2997_MOESM3_ESM.pdf (253 KB)
12274_2020_2997_MOESM4_ESM.pdf (192.8 KB)
12274_2020_2997_MOESM5_ESM.pdf (159.4 KB)
12274_2020_2997_MOESM6_ESM.cif (2 MB)
12274_2020_2997_MOESM7_ESM.cif (1.9 MB)
12274_2020_2997_MOESM8_ESM.cif (1.4 MB)
12274_2020_2997_MOESM9_ESM.cif (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 June 2020
Revised: 18 July 2020
Accepted: 20 July 2020
Published: 25 August 2020
Issue date: December 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the National Science Fund for Distinguished Young Scholars (No. 21825106), the National Natural Science Foundation of China (No. 21671175), the Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 164100510005), the Program for Innovative Research Team (in Science and Technology) in Universities of Henan Province (No. 19IRTSTHN022) and Zhengzhou University.

Return