Journal Home > Volume 13 , Issue 12

Li1.5Al0.5Ge1.5(PO4)3 (LAGP) is a solid-state electrolyte with high ionic conductivity and air stability but poor chemical stability and high interfacial impedance when directly contacted with Li metal. In this work, we develop an inorganic/polymer hybrid interlayer composed of Li bis(trifluoromethylsulfonyl)imide/poly(vinylene carbonate) polymer electrolyte and SiO2 submicrospheres to stabilize the Li/LAGP interface. The polymeric component renders high ionic conductance and low interfacial resistance, whereas the inorganic component imparts flame retardancy and a physical barrier to the known Li-LAGP side reaction, together enabling stable Li stripping/plating for more than 1,500 h at room temperature. With this interlayer at both electrodes, all-solid-state Li||LiFePO4 full cells with stable cycling performance are also demonstrated.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Inorganic/polymer hybrid layer stabilizing anode/electrolyte interfaces in solid-state Li metal batteries

Show Author's information Yiran Hu1,2Yiren Zhong2Limin Qi1( )Hailiang Wang2( )
Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Department of Chemistry and Energy Sciences Institute, Yale University, West Haven, CT 06516, USA

Abstract

Li1.5Al0.5Ge1.5(PO4)3 (LAGP) is a solid-state electrolyte with high ionic conductivity and air stability but poor chemical stability and high interfacial impedance when directly contacted with Li metal. In this work, we develop an inorganic/polymer hybrid interlayer composed of Li bis(trifluoromethylsulfonyl)imide/poly(vinylene carbonate) polymer electrolyte and SiO2 submicrospheres to stabilize the Li/LAGP interface. The polymeric component renders high ionic conductance and low interfacial resistance, whereas the inorganic component imparts flame retardancy and a physical barrier to the known Li-LAGP side reaction, together enabling stable Li stripping/plating for more than 1,500 h at room temperature. With this interlayer at both electrodes, all-solid-state Li||LiFePO4 full cells with stable cycling performance are also demonstrated.

Keywords: interface, solid-state electrolyte, Li1.5Al0.5Ge1.5(PO4)3 (LAGP), hybrid interlayer, Li metal battery

References(52)

[1]
M. D. Tikekar,; S. Choudhury,; Z. Y. Tu,; L. A. Archer, Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 2016, 1, 16114.
[2]
A. Manthiram,; X. W. Yu,; S. F. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.
[3]
X. X. Xu,; Z. Y. Wen,; X. W. Wu,; X. L. Yang,; Z. H. Gu, Lithium ion-conducting glass-ceramics of Li1.5Al0.5Ge1.5(PO4)3-x Li2O (x = 0.0-0.20) with good electrical and electrochemical properties. J. Am. Chem. Soc. 2007, 90, 2802-2806.
[4]
E. Q. Zhao,; F. R. Ma,; Y. D. Guo,; Y. C. Jin, Stable LATP/LAGP double-layer solid electrolyte prepared via a simple dry-pressing method for solid state lithium ion batteries. RSC Adv. 2016, 6, 92579-92585.
[5]
J. F. Bu,; P. Leung,; C. Huang,; S. H. Lee,; P. S. Grant, Co-spray printing of LiFePO4 and PEO-Li1.5Al0.5Ge1.5(PO4)3 hybrid electrodes for all-solid-state Li-ion battery applications. J. Mater. Chem. A 2019, 7, 19094-19103.
[6]
J. Peng,; L. N. Wu,; J. X. Lin,; C. G. Shi,; J. J. Fan,; L. B. Chen,; P. Dai,; L. Huang,; J. T. Li,; S. G. Sun, A solid-state dendrite-free lithium-metal battery with improved electrode interphase and ion conductivity enhanced by a bifunctional solid plasticizer. J. Mater. Chem. A 2019, 7, 19565-19572.
[7]
X. Wang,; H. W. Zhai,; B. Y. Qie,; Q. Cheng,; A. J. Li,; J. Borovilas,; B. Q. Xu,; C. M. Shi,; T. W. Jin,; X. B. Liao, et al. Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/ polymer composite electrolyte. Nano Energy 2019, 60, 205-212.
[8]
N. Kamaya,; K. Homma,; Y. Yamakawa,; M. Hirayama,; R. Kanno,; M. Yonemura,; T. Kamiyama,; Y. Kato,; S. Hama,; K. Kawamoto, et al. A lithium superionic conductor. Nat. Mater. 2011, 10, 682-686.
[9]
F. D. Han,; Y. Z. Zhu,; X. F. He,; Y. F. Mo,; C. S. Wang, Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 2016, 6, 1501590.
[10]
F. Mizuno,; A. Hayashi,; K. Tadanaga,; M. Tatsumisago, New, Highly ion-conductive crystals precipitated from Li2S-P2S5 glasses. Adv. Mater. 2005, 17, 918-921.
[11]
Z. H. Gao,; H. B. Sun,; L. Fu,; F. L. Ye,; Y. Zhang,; W. Luo,; Y. H. Huang, Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 2018, 30, 1705702.
[12]
Y. Inaguma,; L. Q. Chen,; M. Itoh,; T. Nakamura, Candidate compounds with perovskite structure for high lithium ionic conductivity. Solid State Ionics 1994, 70-71, 196-202.
[13]
Y. T. Li,; W. D. Zhou,; S. Xin,; S. Li,; J. L. Zhu,; X. J. Lü,; Z. M. Cui,; Q. X. Jia,; J. S. Zhou,; Y. S. Zhao, et al. Fluorine-doped antiperovskite electrolyte for all-solid-state lithium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 9965-9968.
[14]
K. Fu,; Y. H. Gong,; B. Y. Liu,; Y. Z. Zhu,; S. M. Xu,; Y. G. Yao,; W. Luo,; C. W. Wang,; S. D. Lacey,; J. Q. Dai, et al. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv. 2017, 3, e1601659.
[15]
X. G. Han,; Y. H. Gong,; K. Fu,; X. F. He,; G. T. Hitz,; J. Q. Dai,; A. Pearse,; B. Y. Liu,; H. Wang,; G. Rubloff, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 2017, 16, 572-579.
[16]
L. Chen,; Y. T. Li,; S. P. Li,; L. Z. Fan,; C. W. Nan,; J. B. Goodenough, PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018, 46, 176-184.
[17]
Y. R. Zhong,; Y. J. Xie,; S. Hwang,; Q. Wang,; J. J. Cha,; D. Su,; H. L. Wang, Highly efficient all-solid-state lithium/electrolyte interface induced by an energetic reaction. Angew. Chem., Int. Ed., in press, .
[18]
L. Porz,; T. Swamy,; B. W. Sheldon,; D. Rettenwander,; T. Frömling,; H. L. Thaman,; S. Berendts,; R. Uecker,; W. C. Carter,; Y. M. Chiang, Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 2017, 7, 1701003.
[19]
F. D. Han,; A. S. Westover,; J. Yue,; X. L. Fan,; F. Wang,; M. F. Chi,; D. N. Leonard,; N. J. Dudney,; H. Wang,; C. S. Wang, High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 2019, 4, 187-196.
[20]
W. D. Richards,; L. J. Miara,; Y. Wang,; J. C. Kim,; G. Ceder, Interface stability in solid-state batteries. Chem. Mater. 2016, 28, 266-273.
[21]
C. H. Wang,; Q. Sun,; Y. L. Liu,; Y. Zhao,; X. Li,; X. T. Lin,; M. N. Banis,; M. S. Li,; W. H. Li,; K. R. Adair, et al. Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: Interfacial properties and effects of liquid electrolytes. Nano Energy 2018, 48, 35-43.
[22]
B. Key,; D. J. Schroeder,; B. J. Ingram,; J. T. Vaughey, Solution-based synthesis and characterization of lithium-ion conducting phosphate ceramics for lithium metal batteries. Chem. Mater. 2012, 24, 287-293.
[23]
J. Y. Liang,; X. X. Zeng,; X. D. Zhang,; T. T. Zuo,; M. Yan,; Y. X. Yin,; J. L. Shi,; X. W. Wu,; Y. G. Guo,; L. J. Wan, Engineering janus interfaces of ceramic electrolyte via distinct functional polymers for stable high-voltage Li-metal batteries. J. Am. Chem. Soc. 2019, 141, 9165-9169.
[24]
M. Zhang,; Z. Huang,; J. F. Cheng,; O. Yamamoto,; N. Imanishi,; B. Chi,; J. Pu,; J. Li, Solid state lithium ionic conducting thin film Li1.4Al0.4Ge1.6(PO4)3 prepared by tape casting. J. Alloy Compd. 2014, 590, 147-152.
[25]
L. Y. Wang,; S. M. Hu,; J. M. Su,; T. Huang,; A. S. Yu, Self-sacrificed interface-based on the flexible composite electrolyte for high-performance all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 2019, 11, 42715-42721.
[26]
Y. C. Jung,; M. S. Park,; C. H. Doh,; D. W. Kim, Organic-inorganic hybrid solid electrolytes for solid-state lithium cells operating at room temperature. Electrochim. Acta 2016, 218, 271-277.
[27]
Q. Q. Zhang,; F. Ding,; W. B. Sun,; L. Sang, Preparation of LAGP/ P(VDF-HFP) polymer electrolytes for Li-ion batteries. RSC Adv. 2015, 5, 65395-65401.
[28]
C. H. Wang,; G. L. Bai,; Y. F. Yang,; X. J. Liu,; H. X. Shao, Dendrite-free all-solid-state lithium batteries with lithium phosphorous oxynitride-modified lithium metal anode and composite solid electrolytes. Nano Res. 2019, 12, 217-223.
[29]
C. H. Wang,; Y. F. Yang,; X. J. Liu,; H. Zhong,; H. Xu,; Z. B. Xu,; H. X. Shao,; F. Ding, Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries. ACS. Appl. Mater. Interfaces 2017, 9, 13694-13702.
[30]
S. Wang,; J. Wang,; J. J. Liu,; H. C. Song,; Y. J. Liu,; P. F. Wang,; P. He,; J. Xu,; H. S. Zhou, Ultra-fine surface solid-state electrolytes for long cycle life all-solid-state lithium-air batteries. J. Mater. Chem. A 2018, 6, 21248-21254.
[31]
J. A. Lewis,; F. J. Q. Cortes,; M. G. Boebinger,; J. Tippens,; T. S. Marchese,; N. Kondekar,; X. M. Liu,; M. F. Chi,; M. T. McDowell, Interphase morphology between a solid-state electrolyte and lithium controls cell failure. ACS Energy Lett. 2019, 4, 591-599.
[32]
L. C. He,; Q. M. Sun,; C. Chen,; J. A. S. Oh,; J. G. Sun,; M. C. Li,; W. Q. Tu,; H. H. Zhou,; K. Y. Zeng,; L. Lu, Failure mechanism and interface engineering for NASICON-structured all-solid-state lithium metal batteries. ACS. Appl. Mater. Interfaces 2019, 11, 20895-20904.
[33]
W. Lee,; C. K. Lyon,; J. H. Seo,; R. Lopez-Hallman,; Y. J. Leng,; C. Y. Wang,; M. A. Hickner,; C. A. Randall,; E. D. Gomez, Ceramic-salt composite electrolytes from cold sintering. Adv. Funct. Mater. 2019, 29, 1807872.
[34]
H. Chung,; B. Kang, Mechanical and thermal failure induced by contact between a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte and Li metal in an all solid-state Li cell. Chem. Mater. 2017, 29, 8611-8619.
[35]
Y. Meesala,; C. Y. Chen,; A. Jena,; Y. K. Liao,; S. F. Hu,; H. Chang,; R. S. Liu, All-solid-state Li-ion battery using Li1.5Al0.5Ge1.5(PO4)3 as electrolyte without polymer interfacial adhesion. J. Phys. Chem. C 2018, 122, 14383-14389.
[36]
D. R. Dong,; B. Zhou,; Y. F. Sun,; H. Zhang,; G. M. Zhong,; Q. Y. Dong,; F. Fu,; H. Qian,; Z. Y. Lin,; D. R. Lu, et al. Polymer electrolyte glue: A universal interfacial modification strategy for all-solid-state Li batteries. Nano Lett. 2019, 19, 2343-2349.
[37]
Y. C. Zhou,; Z. J. Li,; Y. C. Lu, A stable lithium-selenium interface via solid/liquid hybrid electrolytes: Blocking polyselenides and suppressing lithium dendrite. Nano Energy 2017, 39, 554-561.
[38]
Y. J. Liu,; C. Li,; B. J. Li,; H. C. Song,; Z. Cheng,; M. R. Chen,; P. He,; H. S. Zhou, Germanium thin film protected lithium aluminum germanium phosphate for solid-state Li batteries. Adv. Energy Mater. 2018, 8, 1702374.
[39]
Y. L. Liu,; Q. Sun,; Y. Zhao,; B. Q. Wang,; P. Kaghazchi,; K. R. Adair,; R. Y. Li,; C. Zhang,; J. R. Liu,; L. Y. Kuo, et al. Stabilizing the interface of NASICON solid electrolyte against Li metal with atomic layer deposition. ACS Appl. Mater. Interfaces 2018, 10, 31240-31248.
[40]
F. J. Q. Cortes,; J. A. Lewis,; J. Tippens,; T. S. Marchese,; M. T. McDowell, How metallic protection layers extend the lifetime of NASICON-based solid-state lithium batteries. J. Electrochem. Soc. 2019, 167, 050502.
[41]
J. Y. Liu,; T. Liu,; Y. J. Pu,; M. M. Guan,; Z. Y. Tang,; F. Ding,; Z. B. Xu,; Y. Li, Facile synthesis of NASICON-type Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte and its application for enhanced cyclic performance in lithium ion batteries through the introduction of an artificial Li3PO4 SEI layer. RSC Adv. 2017, 7, 46545-46552.
[42]
L. D. Y. Wang,; D. Liu,; T. Huang,; Z. Geng,; A. S. Yu, Reducing interfacial resistance of a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte/electrode interface by polymer interlayer protection. RSC Adv. 2020, 10, 10038-10045.
[43]
Q. P. Yu,; D. Han,; Q. W. Lu,; Y. B. He,; S. Li,; Q. Liu,; C. P. Han,; F. Y. Kang,; B. H. Li, Constructing effective interfaces for Li1.5Al0.5Ge1.5(PO4)3 pellets to achieve room-temperature hybrid solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 2019, 11, 9911-9918.
[44]
W. D. Zhou,; S. F. Wang,; Y. T. Li,; S. Xin,; A. Manthiram,; J. B. Goodenough, Plating a dendrite-free lithium anode with a polymer/ ceramic/polymer sandwich electrolyte. J. Am. Chem. Soc. 2016, 138, 9385-9388.
[45]
W. W. Li,; Q. Wang,; J. Jin,; Y. P. Li,; M. F. Wu,; Z. Y. Wen, Constructing dual interfacial modification by synergetic electronic and ionic conductors: Toward high-performance LAGP-based Li-S batteries. Energy Storage Mater. 2019, 23, 299-305.
[46]
Z. H. Zhang,; Y. R. Zhao,; S. J. Chen,; D. J. Xie,; X. Y. Yao,; P. Cui,; X. X. Xu, An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life. J. Mater. Chem. A 2017, 5, 16984-16993.
[47]
J. C. Chai,; Z. H. Liu,; J. Ma,; J. Wang,; X. C. Liu,; H. S. Liu,; J. J. Zhang,; G. L. Cui,; L. Q. Chen, In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries. Adv. Sci. 2017, 4, 1600377.
[48]
W. Stöber,; A. Fink,; E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62-69.
[49]
D. Zhou,; R. L. Liu,; Y. B. He,; F. Y. Li,; M. Liu,; B. H. Li,; Q. H. Yang,; Q. Cai,; F. Y. Kang, SiO2 hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life. Adv. Energy Mater. 2016, 6, 1502214.
[50]
Q. W. Pan,; D. M. Smith,; H. Qi,; S. J. Wang,; C. Y. Li, Hybrid electrolytes with controlled network structures for lithium metal batteries. Adv. Mater. 2015, 27, 5995-6001.
[51]
Q. Liu,; Q. P. Yu,; S. Li,; S. W. Wang,; L. H. Zhang,; B. Y. Cai,; D. Zhou,; B. H. Li, Safe LAGP-based all solid-state Li metal batteries with plastic super-conductive interlayer enabled by in-situ solidification. Energy Storage Mater. 2020, 25, 613-620.
[52]
T. Kashiwagi,; J. W. Gilman,; K. M. Butler,; R. H. Harris,; J. R. Shields,; A. Asano, Flame retardant mechanism of silica gel/silica. Fire Mater. 2000, 24, 277-289.
Video
12274_2020_2993_MOESM1_ESM.mp4
File
12274_2020_2993_MOESM2_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 June 2020
Revised: 17 July 2020
Accepted: 19 July 2020
Published: 25 August 2020
Issue date: December 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the US National Science Foundation (No. CBET-1903342). Y. R. H. acknowledges the exchange graduate student scholarship from the China Scholarship Council. Y. R. Z. acknowledges the Link Foundation Energy Fellowship. L. M. Q. acknowledges support from the Ministry of Science and Technology of China (No. 2018YFA0703502). H. L. W. acknowledges the Sloan Research Fellowship.

Return