Journal Home > Volume 13 , Issue 12

Platinum diselenide (PtSe2) is a promising transition metal dichalcogenide (TMDC) material with unique properties. It is necessary to find a controllable fabrication method to bridge PtSe2 with other two-dimensional (2D) materials for practical applications, which has rarely been reported so far. Here, we report that the selenization of Pt(111) can be suppressed to form a Se intercalated layer, instead of a PtSe2 monolayer, by inducing confined conditions with a precoating of graphene. Experiments with graphene-island samples demonstrate that the monolayer PtSe2 can be controllably fabricated only on the bare Pt surface, while the Se intercalated layer is formed underneath graphene, as verified by atomic-resolution observations with scanning transmission electron microscopy (STEM) and scanning tunneling microscopy (STM). In addition, the orientation of the graphene island shows a negligible influence on the Se intercalated layer induced by the graphene coating. By extending the application of 2D confined reactions, this work provides a new method to control the fabrication and pattern 2D materials during the fabrication process.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Using graphene to suppress the selenization of Pt for controllable fabrication of monolayer PtSe2

Show Author's information Zhong-Liu Liu1,§Zhi-Li Zhu1,§Xu Wu2,§Jin-An Shi1Wu Zhou1Li-Wei Liu2Ye-Liang Wang2,1,3( )Hong-Jun Gao1,3( )
Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
School of Information and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
CAS Center for Excellence in Topological Quantum Computation, Beijing 100049, China

§ Zhong-Liu Liu, Zhi-Li Zhu, and Xu Wu contributed equally to this work.

Abstract

Platinum diselenide (PtSe2) is a promising transition metal dichalcogenide (TMDC) material with unique properties. It is necessary to find a controllable fabrication method to bridge PtSe2 with other two-dimensional (2D) materials for practical applications, which has rarely been reported so far. Here, we report that the selenization of Pt(111) can be suppressed to form a Se intercalated layer, instead of a PtSe2 monolayer, by inducing confined conditions with a precoating of graphene. Experiments with graphene-island samples demonstrate that the monolayer PtSe2 can be controllably fabricated only on the bare Pt surface, while the Se intercalated layer is formed underneath graphene, as verified by atomic-resolution observations with scanning transmission electron microscopy (STEM) and scanning tunneling microscopy (STM). In addition, the orientation of the graphene island shows a negligible influence on the Se intercalated layer induced by the graphene coating. By extending the application of 2D confined reactions, this work provides a new method to control the fabrication and pattern 2D materials during the fabrication process.

Keywords: graphene, intercalation, PtSe2, selenization, confined reaction

References(43)

[1]
S. Manzeli,; D. Ovchinnikov,; D. Pasquier,; O. V. Yazyev,; A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.
[2]
Y. P. Liu,; Y. J. Gao,; S. Y. Zhang,; J. He,; J. Yu,; Z. W. Liu, Valleytronics in transition metal dichalcogenides materials. Nano Res. 2019, 12, 2695-2711.
[3]
T. Low,; A. Chaves,; J. D. Caldwell,; A. Kumar,; N. X. Fang,; P. Avouris,; T. F. Heinz,; F. Guinea,; L. Martin-Moreno,; F. Koppens, Polaritons in layered two-dimensional materials. Nat. Mater. 2017, 16, 182-194.
[4]
X. D. Xu,; W. Yao,; D. Xiao,; T. F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343-350.
[5]
Q. H. Wang,; K. Kalantar-Zadeh,; A. Kis,; J. N. Coleman,; M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.
[6]
G. Fiori,; F. Bonaccorso,; G. Iannaccone,; T. Palacios,; D. Neumaier,; A. Seabaugh,; S. K. Banerjee,; L. Colombo, Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768-779.
[7]
D. Jariwala,; V. K. Sangwan,; L. J. Lauhon,; T. J. Marks,; M. C. Hersam, Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 2014, 8, 1102-1120.
[8]
M. Chhowalla,; D. Jena,; H. Zhang, Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.
[9]
H. Tian,; M. L. Chin,; S. Najmaei,; Q. S. Guo,; F. N. Xia,; H. Wang,; M. Dubey, Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 2016, 9, 1543-1560.
[10]
Y. D. Zhao,; J. S. Qiao,; Z. H. Yu,; P. Yu,; K. Xu,; S. P. Lau,; W. Zhou,; Z. Liu,; X. R. Wang,; W. Ji, et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 2017, 29, 1604230.
[11]
J. D. Zhou,; X. H. Kong,; M. C. Sekhar,; J. H. Lin,; F. Le Goualher,; R. Xu,; X. W. Wang,; Y. Chen,; Y. Zhou,; C. Zhu, et al. Epitaxial synthesis of monolayer PtSe2 single crystal on MoSe2 with strong interlayer coupling. ACS Nano 2019, 13, 10929-10938.
[12]
C. Yim,; K. Lee,; N. McEvoy,; M. O'Brien,; S. Riazimehr,; N. C. Berner,; C. P. Cullen,; J. Kotakoski,; J. C. Meyer,; M. C. Lemme, et al. High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature. ACS Nano 2016, 10, 9550-9558.
[13]
W. Yao,; E. Y. Wang,; H. Q. Huang,; K. Deng,; M. Z. Yan,; K. N. Zhang,; K. Miyamoto,; T. Okuda,; L. F. Li,; Y. L. Wang, et al. Direct observation of spin-layer locking by local Rashba effect in monolayer semiconducting PtSe2 film. Nat. Commun. 2017, 8, 14216.
[14]
X. Y. Chia,; A. Adriano,; P. Lazar,; Z. Sofer,; J. Luxa,; M. Pumera, Layered platinum dichalcogenides (PtS2, PtSe2, and PtTe2) electrocatalysis: Monotonic dependence on the chalcogen size. Adv. Funct. Mater. 2016, 26, 4306-4318.
[15]
M. Sajjad,; E. Montes,; N. Singh,; U. Schwingenschlögl, Superior gas sensing properties of monolayer PtSe2. Adv. Mater. Interfaces 2017, 4, 1600911.
[16]
Y. L. Wang,; L. F. Li,; W. Yao,; S. R. Song,; J. T. Sun,; J. B. Pan,; X. Ren,; C. Li,; E. Okunishi,; Y. Q. Wang, et al. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett. 2015, 15, 4013-4018.
[17]
X. Lin,; J. C. Lu,; Y. Shao,; Y. Y. Zhang,; X. Wu,; J. B. Pan,; L. Gao,; S. Y. Zhu,; K. Qian,; Y. F. Zhang, et al. Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters. Nat. Mater. 2017, 16, 717-721.
[18]
C. S. Boland,; C. Ó. Coileáin,; S. Wagner,; J. B. McManus,; C. P. Cullen,; M. C. Lemme,; G. S. Duesberg,; N. McEvoy, PtSe2 grown directly on polymer foil for use as a robust piezoresistive sensor. 2D Mater. 2019, 6, 045029.
[19]
C. Yim,; V. Passi,; M. C. Lemme,; G. S. Duesberg,; C. Ó. Coileáin,; E. Pallecchi,; D. Fadil,; N. McEvoy, Electrical devices from top-down structured platinum diselenide films. npj 2D Mater. Appl. 2018, 2, 5.
[20]
R. R. Zhuo,; L. H. Zeng,; H. Y. Yuan,; D. Wu,; Y. G. Wang,; Z. F. Shi,; T. T. Xu,; Y. T. Tian,; X. J. Li,; Y. H. Tsang, In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res. 2019, 12, 183-189.
[21]
S. Sattar,; U. Schwingenschlögl, Electronic properties of graphene-PtSe2 contacts. ACS Appl. Mater. Interfaces 2017, 9, 15809-15813.
[22]
W. J. Wang,; K. L. Li,; Y. Wang,; W. X. Jiang,; X. Y. Liu,; H. Qi, Investigation of the band alignment at MoS2/PtSe2 heterojunctions. Appl. Phys. Lett. 2019, 114, 201601.
[23]
L. H. Zeng,; S. H. Lin,; Z. H. Lou,; H. Y. Yuan,; H. Long,; Y. Y. Li,; W. Lu,; S. P. Lau,; D. Wu,; Y. H. Tsang, Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm. NPG Asia Mater. 2018, 10, 352-362.
[24]
C. X. Guo,; J. P. Xiao, Towards unifying the concepts of catalysis in confined space. Comput. Mater. Sci. 2019, 161, 58-63.
[25]
T. A. Shifa,; A. Vomiero, Confined catalysis: Progress and prospects in energy conversion. Adv. Energ. Mater. 2019, 9, 1902307.
[26]
D. H. Deng,; K. S. Novoselov,; Q. Fu,; N. F. Zheng,; Z. Q. Tian,; X. H. Bao, Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218-230.
[27]
H. B. Li,; J. P. Xiao,; Q. Fu,; X. H. Bao, Confined catalysis under two-dimensional materials. Proc. Natl. Acad. Sci. USA 2017, 114, 5930-5934.
[28]
J. H. Mao,; L. Huang,; Y. Pan,; M. Gao,; J. F. He,; H. T. Zhou,; H. M. Guo,; Y. Tian,; Q. Zou,; L. Z. Zhang, et al. Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru(0001). Appl. Phys. Lett. 2012, 100, 093101.
[29]
Y. Cui,; J. F. Gao,; L. Jin,; J. J. Zhao,; D. L. Tan,; Q. Fu,; X. H. Bao, An exchange intercalation mechanism for the formation of a two-dimensional si structure underneath graphene. Nano Res. 2012, 5, 352-360.
[30]
S. Yazdani,; M. Yarali,; J. J. Cha, Recent progress on in situ characterizations of electrochemically intercalated transition metal dichalcogenides. Nano Res. 2019, 12, 2126-2139.
[31]
L. L. Cao,; Y. X. Yu,; X. Zhou,; S. B. Lei, Surface confined synthesis of hydroxy functionalized two-dimensional polymer: The effect of the position of hydroxy groups. ChemPhysChem 2019, 20, 2322-2326.
[32]
X. Chen,; Z. Z. Lin, Single-layer graphdiyne-covered Pt(111) surface: Improved catalysis confined under two-dimensional overlayer. J. Nanopart. Res. 2018, 20, 136.
[33]
Q. Fu,; X. H. Bao, Surface chemistry and catalysis confined under two-dimensional materials. Chem. Soc. Rev. 2017, 46, 1842-1874.
[34]
Z. Z. Lin,; X. Chen,; C. Yin,; L. Yue,; F. X. Meng, Electrochemical CO2 reduction in confined space: Enhanced activity of metal catalysts by graphene overlayer. Int. J. Energy Res. 2020, 44, 784-794.
[35]
M. M. Sun,; Q. Fu,; L. J. Gao,; Y. P. Zheng,; Y. Y. Li,; M. S. Chen,; X. H. Bao, Catalysis under shell: Improved CO oxidation reaction confined in Pt@h-BN core-shell nanoreactors. Nano Res. 2017, 10, 1403-1412.
[36]
S. J. Lu,; W. J. Wang,; S. S. Yang,; W. Chen,; Z. B. Zhuang,; W. J. Tang,; C. H. He,; J. J. Qian,; D. K. Ma,; Y. Yang, et al. Amorphous MoS2 confined in nitrogen-doped porous carbon for improved electrocatalytic stability toward hydrogen evolution reaction. Nano Res. 2019, 12, 3116-3122.
[37]
S. S. Zhou,; L. Gan,; D. L. Wang,; H. Q. Li,; T. Y. Zhai, Space-confined vapor deposition synthesis of two dimensional materials. Nano Res. 2018, 11, 2909-2931.
[38]
Z. Y. Al Balushi,; K. Wang,; R. K. Ghosh,; R. A. Vilá,; S. M. Eichfeld,; J. D. Caldwell,; X. Y. Qin,; Y. C. Lin,; P. A. DeSario,; G. Stone, et al. Two-dimensional gallium nitride realized via graphene encapsulation. Nat. Mater. 2016, 15, 1166-1171.
[39]
C. Y. Xie,; S. L. Jiang,; X. L. Zou,; Y. W. Sun,; L. Y. Zhao,; M. Hong,; S. L. Chen,; Y. H. Huan,; J. P. Shi,; X. B. Zhou, et al. Space-confined growth of monolayer ReSe2 under a graphene layer on Au foils. Nano Res. 2019, 12, 149-157.
[40]
G. Li,; L. Z. Zhang,; W. Y. Xu,; J. B. Pan,; S. R. Song,; Y. Zhang,; H. T. Zhou,; Y. L. Wang,; L. H. Bao,; Y. Y. Zhang, et al. Stable silicene in graphene/silicene Van der Waals heterostructures. Adv. Mater. 2018, 30, 1804650.
[41]
T. He,; Z. Wang,; F. Zhong,; H. L. Fang,; P. Wang,; W. D. Hu, Etching techniques in 2D materials. Adv. Mater. Technol. 2019, 4, 1900064.
[42]
M. Gao,; Y. Pan,; L. Huang,; H. Hu,; L. Z. Zhang,; H. M. Guo,; S. X. Du,; H. J. Gao, Epitaxial growth and structural property of graphene on Pt(111). Appl. Phys. Lett. 2011, 98, 033101.
[43]
P. Sutter,; J. T. Sadowski,; E. Sutter, Graphene on Pt(111): Growth and substrate interaction. Phys. Rev. B 2009, 80, 245411.
File
12274_2020_2989_MOESM1_ESM.pdf (3.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 June 2020
Revised: 10 July 2020
Accepted: 16 July 2020
Published: 31 July 2020
Issue date: December 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

We acknowledge financial support from the National Key Research and Development Program of China (Nos. 2016YFA0202300 and 2018YFA0305800), the National Natural Science Foundation of China (Nos. 61725107 and 61971035), Beijing Natural Science Foundation (Nos. 4192054 and Z190006), and Strategic Priority Research Program of the Chinese Academy of Sciences (Nos. XDB30000000 and XDB28000000).

Return