AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Probing surface structure on two-dimensional metal-organic layers to understand suppressed interlayer packing

Peican Chen1Yi Liu1Xuefu Hu1Xiaolin Liu1En-Ming You1Xudong Qian1Jiawei Chen1Liangping Xiao1Lingyun Cao1Xinxing Peng1Zhongming Zeng1Yibing Jiang1Song-Yuan Ding1Honggang Liao1Zhaohui Wang1Da Zhou2Cheng Wang1( )
IChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computation, Xiamen University, Xiamen 361005, China
Show Author Information

Graphical Abstract

Abstract

Two-dimensional metal-organic layers (MOLs) from alternatively connected benzene-tribenzoate ligands and Zr63-O)43-OH)4 or Hf63-O)43-OH)4 secondary building units can be prepared in gram scale via solvothermal synthesis. However, the reason why the monolayers did not pack to form thick crystals is unknown. Here we investigated the surface structure of the MOLs by a combination of sum-frequency generation spectroscopy, nanoscale infrared microscopy, atomic force microscopy, aberration- corrected transmission electron microscopy, and compositional analysis. We found a partial coverage of the monolayer surface by dangling tricarboxylate ligands, which prevent packing of the monolayers. This finding illustrates low-density surface modification as a strategy to prepare new two-dimensional materials with a high percentage of exposed surface.

Electronic Supplementary Material

Download File(s)
12274_2020_2986_MOESM1_ESM.pdf (7.4 MB)

References

[1]
Zhao, M. T.; Wang, Y. X.; Ma, Q. L.; Huang, Y.; Zhang, X.; Ping, J. F.; Zhang, Z. C.; Lu, Q. P.; Yu, Y. F.; Xu, H. et al. Ultrathin 2D metal-organic framework nanosheets. Adv. Mater. 2015, 27, 7372-7378.
[2]
Ma, X. J.; Chai, Y. T.; Li, P.; Wang, B. Metal-organic framework films and their potential applications in environmental pollution control. Acc. Chem. Res. 2019, 52, 1461-1470.
[3]
Xu, J. H.; Wang, Z.; Yu, W. G.; Sun, D.; Zhang, Q.; Tung, C. H.; Wang, W. G. Kagóme cobalt(II)-organic layers as robust scaffolds for highly efficient photocatalytic oxygen evolution. ChemSusChem 2016, 9, 1146-1152.
[4]
Jian, M. P.; Liu, H. Y.; Williams, T.; Ma, J. S.; Wang, H. T.; Zhang, X. W. Temperature-induced oriented growth of large area, few-layer 2D metal-organic framework nanosheets. Chem. Commun. 2017, 53, 13161-13164.
[5]
Cheng, H. J.; Liu, Y. F.; Hu, Y. H.; Ding, Y. B.; Lin, S. C.; Cao, W.; Wang, Q.; Wu, J. J. X.; Muhammad, F.; Zhao, X. Z. et al. Monitoring of heparin activity in live rats using metal-organic framework nanosheets as peroxidase mimics. Anal. Chem. 2017, 89, 11552-11559.
[6]
Ang, H. X.; Hong, L. Polycationic polymer-regulated assembling of 2D MOF nanosheets for high-performance nanofiltration. ACS Appl. Mater. Interfaces 2017, 9, 28079-28088.
[7]
Mukhopadhyay, A.; Maka, V. K.; Savitha, G.; Moorthy, J. N. Photochromic 2D metal-organic framework nanosheets (MONs): Design, synthesis, and functional MON-ormosil composite. Chem 2018, 4, 1059-1079.
[8]
Huang, L.; Zhang, X. P.; Han, Y. J.; Wang, Q. Q.; Fang, Y. X.; Dong, S. J. In situ synthesis of ultrathin metal-organic framework nanosheets: A new method for 2D metal-based nanoporous carbon electrocatalysts. J. Mater. Chem. A 2017, 5, 18610-18617.
[9]
Duan, J. J.; Chen, S.; Zhao, C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 2017, 8, 15341.
[10]
Yue, L.; Wang, S.; Zhou, D.; Zhang, H.; Li, B.; Wu, L. X. Flexible single-layer ionic organic-inorganic frameworks towards precise nano-size separation. Nat. Commun. 2016, 7, 10742.
[11]
Zhao, M. T.; Huang, Y.; Peng, Y. W.; Huang, Z. Q.; Ma, Q. L.; Zhang, H. Two-dimensional metal-organic framework nanosheets: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 6267-6295.
[12]
Junggeburth, S. C.; Diehl, L.; Werner, S.; Duppel, V.; Sigle, W.; Lotsch, B. V. Ultrathin 2D coordination polymer nanosheets by surfactant-mediated synthesis. J. Am. Chem. Soc. 2013, 135, 6157-6164.
[13]
Li, Y. J.; Lin, L.; Tu, M.; Nian, P.; Howarth, A. J.; Farha, O. K.; Qiu, J. S.; Zhang, X. F. Growth of ZnO self-converted 2D nanosheet zeolitic imidazolate framework membranes by an ammonia-assisted strategy. Nano Res. 2018, 11, 1850-1860.
[14]
He, L. H.; Duan, F. H.; Song, Y. P.; Guo, C. P.; Zhao, H.; Tian, J. Y.; Zhang, Z. H.; Liu, C. S.; Zhang, X. J.; Wang, P. Y. et al. 2D zirconium- based metal-organic framework nanosheets for highly sensitive detection of mucin 1: Consistency between electrochemical and surface plasmon resonance methods. 2D Mater. 2017, 4, 025098.
[15]
Cao, L. Y.; Wang, T. T.; Wang, C. Synthetic strategies for constructing two-dimensional metal-organic layers (MOLs): A tutorial review. Chin. J. Chem. 2018, 36, 754-764.
[16]
Shi, W. J.; Cao, L. Y.; Zhang, H.; Zhou, X.; An, B.; Lin, Z. K.; Dai, R. H.; Li, J. F.; Wang, C.; Lin, W. B. Surface modification of two-dimensional metal-organic layers creates biomimetic catalytic microenvironments for selective oxidation. Angew. Chem., Int. Ed. 2017, 56, 9704-9709.
[17]
Xu, G.; Otsubo, K.; Yamada, T.; Sakaida, S.; Kitagawa, H. Superprotonic conductivity in a highly oriented crystalline metal-organic framework nanofilm. J. Am. Chem. Soc. 2013, 135, 7438-7441.
[18]
Nguyen, H. G. T.; Weston, M. H.; Farha, O. K.; Hupp, J. T.; Nguyen, S. B. T. A catalytically active vanadyl(catecholate)-decorated metal organic framework via post-synthesis modifications. CrystEngComm 2012, 14, 4115-4118.
[19]
Gassensmith, J. J.; Furukawa, H.; Smaldone, R. A.; Forgan, R. S.; Botros, Y. Y.; Yaghi, O. M.; Stoddart, J. F. Strong and reversible binding of carbon dioxide in a green metal-organic framework. J. Am. Chem. Soc. 2011, 133, 15312-15315.
[20]
Li, J. R.; Sculley, J.; Zhou, H. C. Metal-organic frameworks for separations. Chem. Rev. 2012, 112, 869-932.
[21]
Wu, M. X.; Yang, Y. W. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 2017, 29, 1606134.
[22]
Rieter, W. J.; Taylor, K. M. L.; Lin, W. B. Surface modification and functionalization of nanoscale metal-organic frameworks for controlled release and luminescence sensing. J. Am. Chem. Soc. 2007, 129, 9852-9853.
[23]
McGuire, C. V.; Forgan, R. S. The surface chemistry of metal-organic frameworks. Chem. Commun. 2015, 51, 5199-5217.
[24]
Kondo, M.; Furukawa, S.; Hirai, K.; Kitagawa, S. Coordinatively immobilized monolayers on porous coordination polymer crystals. Angew. Chem., Int. Ed. 2010, 49, 5327-5330.
[25]
Hermes, S.; Witte, T.; Hikov, T.; Zacher, D.; Bahnmüller, S.; Langstein, G.; Huber, K.; Fischer, R. A. Trapping metal-organic framework nanocrystals: An in-situ time-resolved light scattering study on the crystal growth of MOF-5 in solution. J. Am. Chem. Soc. 2007, 129, 5324-5325.
[26]
Vermoortele, F.; Bueken, B.; Le Bars, G.; Van de Voorde, B.; Vandichel, M.; Houthoofd, K.; Vimont, A.; Daturi, M.; Waroquier, M.; Van Speybroeck, V. et al. Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: The unique case of UiO-66(Zr). J. Am. Chem. Soc. 2013, 135, 11465-11468.
[27]
Cao, L. Y.; Lin, Z. K.; Peng, F.; Wang, W. W.; Huang, R. Y.; Wang, C.; Yan, J. W.; Liang, J.; Zhang, Z. M.; Zhang, T. et al. Self-supporting metal-organic layers as single-site solid catalysts. Angew. Chem., Int. Ed. 2016, 55, 4962-4966.
[28]
He, Y. H.; Chen, G. Q.; Xu, M.; Liu, Y. Q.; Wang, Z. H. Vibrational dephasing of self-assembling monolayer on gold surface. J. Lumin. 2014, 152, 244-246.
[29]
Wang, R. M.; Wang, Z. Y.; Xu, Y. W.; Dai, F. N.; Zhang, L. L.; Sun, D. F. Porous zirconium metal-organic framework constructed from 2D → 3D interpenetration based on a 3,6-connected kgd net. Inorg. Chem. 2014, 53, 7086-7088.
[30]
Liang, W. B.; Babarao, R.; Murphy, M. J.; D'Alessandro, D. M. The first example of a zirconium-oxide based metal-organic framework constructed from monocarboxylate ligands. Dalton Trans. 2015, 44, 1516-1519.
[31]
Tao, Z. R.; Wu, J. X.; Zhao, Y. J.; Xu, M.; Tang, W. Q.; Zhang, Q. H.; Gu, L.; Liu, D. H.; Gu, Z. Y. Untwisted restacking of two-dimensional metal-organic framework nanosheets for highly selective isomer separations. Nat. Commun. 2019, 10, 2911.
[32]
Sundaraganesan, N.; Ilakiamani, S.; Saleem, H.; Wojciechowski, P. M.; Michalska, D. FT-Raman and FT-IR spectra, vibrational assignments and density functional studies of 5-bromo-2-nitropyridine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 2995-3001.
[33]
Wang, L.; Wang, H. M.; Wagner, M.; Yan, Y.; Jakob, D. S.; Xu, X. G. Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy. Sci. Adv. 2017, 3, e1700255.
[34]
Carter, J. A.; Wang, Z. H.; Dlott, D. D. Ultrafast nonlinear coherent vibrational sum-frequency spectroscopy methods to study thermal conductance of molecules at interfaces. Acc. Chem. Res. 2009, 42, 1343-1351.
Nano Research
Pages 3151-3156
Cite this article:
Chen P, Liu Y, Hu X, et al. Probing surface structure on two-dimensional metal-organic layers to understand suppressed interlayer packing. Nano Research, 2020, 13(11): 3151-3156. https://doi.org/10.1007/s12274-020-2986-3
Topics:

832

Views

15

Crossref

N/A

Web of Science

15

Scopus

0

CSCD

Altmetrics

Received: 30 April 2020
Revised: 30 June 2020
Accepted: 13 July 2020
Published: 25 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return