Journal Home > Volume 13 , Issue 11

The surface-assisted hierarchical self-assembly of DNA origami lattices represents a versatile and straightforward method for the organization of functional nanoscale objects such as proteins and nanoparticles. Here, we demonstrate that controlling the binding and exchange of different monovalent and divalent cation species at the DNA-mica interface enables the self-assembly of highly ordered DNA origami lattices on mica surfaces. The development of lattice quality and order is quantified by a detailed topological analysis of high-speed atomic force microscopy (HS-AFM) images. We find that lattice formation and quality strongly depend on the monovalent cation species. Na+ is more effective than Li+ and K+ in facilitating the assembly of high-quality DNA origami lattices, because it is replacing the divalent cations at their binding sites in the DNA backbone more efficiently. With regard to divalent cations, Ca2+ can be displaced more easily from the backbone phosphates than Mg2+ and is thus superior in guiding lattice assembly. By independently adjusting incubation time, DNA origami concentration, and cation species, we thus obtain a highly ordered DNA origami lattice with an unprecedented normalized correlation length of 8.2. Beyond the correlation length, we use computer vision algorithms to compute the time course of different topological observables that, overall, demonstrate that replacing MgCl2 by CaCl2 enables the synthesis of DNA origami lattices with drastically increased lattice order.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Self-assembly of highly ordered DNA origami lattices at solid- liquid interfaces by controlling cation binding and exchange

Show Author's information Yang Xin1Salvador Martinez Rivadeneira1Guido Grundmeier1Mario Castro2Adrian Keller1( )
Technical and Macromolecular Chemistry, Paderborn University, Paderborn 33098, Germany
Grupo Interdisciplinar de Sistemas Complejos and Instituto de Investigación Tecnológica, Universidad Pontificia Comillas de Madrid, Madrid 28015, Spain

Abstract

The surface-assisted hierarchical self-assembly of DNA origami lattices represents a versatile and straightforward method for the organization of functional nanoscale objects such as proteins and nanoparticles. Here, we demonstrate that controlling the binding and exchange of different monovalent and divalent cation species at the DNA-mica interface enables the self-assembly of highly ordered DNA origami lattices on mica surfaces. The development of lattice quality and order is quantified by a detailed topological analysis of high-speed atomic force microscopy (HS-AFM) images. We find that lattice formation and quality strongly depend on the monovalent cation species. Na+ is more effective than Li+ and K+ in facilitating the assembly of high-quality DNA origami lattices, because it is replacing the divalent cations at their binding sites in the DNA backbone more efficiently. With regard to divalent cations, Ca2+ can be displaced more easily from the backbone phosphates than Mg2+ and is thus superior in guiding lattice assembly. By independently adjusting incubation time, DNA origami concentration, and cation species, we thus obtain a highly ordered DNA origami lattice with an unprecedented normalized correlation length of 8.2. Beyond the correlation length, we use computer vision algorithms to compute the time course of different topological observables that, overall, demonstrate that replacing MgCl2 by CaCl2 enables the synthesis of DNA origami lattices with drastically increased lattice order.

Keywords: self-assembly, DNA origami, lattice formation, high-speed atomic force microscopy, topological analysis

References(64)

[1]
Cheng, W.; Rechberger, F.; Niederberger, M. From 1D to 3D— macroscopic nanowire aerogel monoliths. Nanoscale 2016, 8, 14074-14077.
[2]
Sundrani, D.; Darling, S. B.; Sibener, S. J. Guiding polymers to perfection: Macroscopic alignment of Nanoscale domains. Nano Lett. 2004, 4, 273-276.
[3]
Aizenberg, J.; Weaver, J. C.; Thanawala, M. S.; Sundar, V. C.; Morse, D. E.; Fratzl, P. Skeleton of Euplectella sp.: Structural hierarchy from the Nanoscale to the Macroscale. Science 2005, 309, 275-278.
[4]
Liu, L. Q.; Ma, W. J.; Zhang, Z. Macroscopic carbon nanotube assemblies: Preparation, properties, and potential applications. Small 2011, 7, 1504-1520.
[5]
Hui, L. W.; Zhang, Q. M.; Deng, W.; Liu, H. T. DNA-based nanofabrication: Pathway to applications in surface engineering. Small 2019, 15, 1805428.
[6]
Seeman, N. C. DNA in a material world. Nature 2003, 421, 427-431.
[7]
Aryal, B. R.; Ranasinghe, D. R.; Westover, T. R.; Calvopiña, D. G.; Davis, R. C.; Harb, J. N.; Woolley, A. T. DNA origami mediated electrically connected metal-semiconductor junctions. Nano Res. 2020, 13, 1419-1426.
[8]
Teschome, B.; Facsko, S.; Schönherr, T.; Kerbusch, J.; Keller, A.; Erbe, A. Temperature-dependent charge transport through individually contacted DNA origami-based Au nanowires. Langmuir 2016, 32, 10159-10165.
[9]
Masciotti, V.; Piantanida, L.; Naumenko, D.; Amenitsch, H.; Fanetti, M.; Valant, M.; Lei, D. S.; Ren, G.; Lazzarino, M. A DNA origami plasmonic sensor with environment-independent read-out. Nano Res. 2019, 12, 2900-2907.
[10]
Tapio, K.; Leppiniemi, J.; Shen, B. X.; Hytönen, V. P.; Fritzsche, W.; Toppari, J. J. Toward single electron nanoelectronics using self- assembled DNA structure. Nano Lett. 2016, 16, 6780-6786.
[11]
Choi, Y.; Kotthoff, L.; Olejko, L.; Resch-Genger, U.; Bald, I. DNA origami-based Förster resonance energy-transfer nanoarrays and their application as ratiometric sensors. ACS Appl. Mater. Interfaces 2018, 10, 23295-23302.
[12]
Koo, K. M.; Carrascosa, L. G.; Trau, M. DNA-directed assembly of copper nanoblocks with inbuilt fluorescent and electrochemical properties: Application in simultaneous amplification-free analysis of multiple RNA species. Nano Res. 2018, 11, 940-952.
[13]
Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297-302.
[14]
Douglas, S. M.; Dietz, H.; Liedl, T.; Högberg, B.; Graf, F.; Shih, W. M. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 2009, 459, 414-418.
[15]
Dietz, H.; Douglas, S. M.; Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 2009, 325, 725-730.
[16]
Andersen, E. S.; Dong, M. D.; Nielsen, M. M.; Jahn, K.; Subramani, R.; Mamdouh, W.; Golas, M. M.; Sander, B.; Stark, H.; Oliveira, C. L. P. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 2009, 459, 73-76.
[17]
Suzuki, Y.; Sugiyama, H.; Endo, M. Complexing DNA origami frameworks through sequential self-assembly based on directed docking. Angew. Chem., Int. Ed. 2018, 57, 7061-7065.
[18]
Ramakrishnan, S.; Subramaniam, S.; Stewart, A. F.; Grundmeier, G.; Keller, A. Regular Nanoscale protein patterns via directed adsorption through self-assembled DNA origami masks. ACS Appl. Mater. Interfaces 2016, 8, 31239-31247.
[19]
Kocabey, S.; Kempter, S.; List, J.; Xing, Y. Z.; Bae, W.; Schiffels, D.; Shih, W. M.; Simmel, F. C.; Liedl, T. Membrane-assisted growth of DNA origami nanostructure arrays. ACS Nano 2015, 9, 3530-3539.
[20]
Woo, S.; Rothemund, P. W. K. Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion. Nat. Commun. 2014, 5, 4889.
[21]
Rafat, A. A.; Pirzer, T.; Scheible, M. B.; Kostina, A.; Simmel, F. C. Surface-assisted large-scale ordering of DNA origami tiles. Angew. Chem., Int. Ed. 2014, 53, 7665-7668.
[22]
Suzuki, Y.; Endo, M.; Sugiyama, H. Lipid-bilayer-assisted two- dimensional self-assembly of DNA origami nanostructures. Nat. Commun. 2015, 6, 8052.
[23]
Kielar, C.; Ramakrishnan, S.; Fricke, S.; Grundmeier, G.; Keller, A. Dynamics of DNA origami lattice formation at solid-liquid interfaces. ACS Appl. Mater. Interfaces 2018, 10, 44844-44853.
[24]
Xin, Y.; Ji, X. Y.; Grundmeier, G.; Keller, A. Dynamics of lattice defects in mixed DNA origami monolayers. Nanoscale 2020, 12, 9733-9743.
[25]
Pastré, D.; Piétrement, O.; Fusil, S.; Landousy, F.; Jeusset, J.; David, M. O.; Hamon, L.; Le Cam, E.; Zozime, A. Adsorption of DNA to mica mediated by divalent Counterions: A theoretical and experimental study. Biophys. J. 2003, 85, 2507-2518.
[26]
Sønderskov, S. M.; Klausen, L. H.; Skaanvik, S. A.; Han, X. J.; Dong, M. D. In situ surface charge density visualization of self- assembled DNA nanostructures after ion exchange. ChemPhysChem 2020, 21, 1474-1482.
[27]
Kielar, C.; Xin, Y.; Shen, B. X.; Kostiainen, M. A.; Grundmeier, G.; Linko, V.; Keller, A. On the stability of DNA origami nanostructures in low-magnesium buffers. Angew. Chem., Int. Ed. 2018, 57, 9470-9474.
[28]
Ellis, J. S.; Abdelhady, H. G.; Allen, S.; Davies, M. C.; Roberts, C. J.; Tendler, S. J. B.; Williams, P. M. Direct atomic force microscopy observations of monovalent ion induced binding of DNA to mica. J. Microsc. 2004, 215, 297-301.
[29]
Bezanilla, M.; Manne, S.; Laney, D. E.; Lyubchenko, Y. L.; Hansma, H. G. Adsorption of DNA to mica, silylated mica, and minerals: Characterization by atomic force microscopy. Langmuir 1995, 11, 655-659.
[30]
Kan, Y. J.; Tan, Q. Y.; Wu, G. S.; Si, W.; Chen, Y. F. Study of DNA adsorption on mica surfaces using a surface force apparatus. Sci. Rep. 2015, 5, 8442.
[31]
Romanowski, G.; Lorenz, M. G.; Wackernagel, W. Adsorption of plasmid DNA to mineral surfaces and protection against DNase I. Appl. Environ. Microbiol. 1991, 57, 1057-1061.
[32]
Vandeventer, P. E.; Lin, J. S.; Zwang, T. J.; Nadim, A.; Johal, M. S.; Niemz, A. Multiphasic DNA adsorption to silica surfaces under varying buffer, pH, and ionic strength conditions. J. Phys. Chem. B 2012, 116, 5661-5670.
[33]
Pastré, D.; Hamon, L.; Landousy, F.; Sorel, I.; David, M. O.; Zozime, A.; Le Cam, E.; Piétrement, O. Anionic polyelectrolyte adsorption on mica mediated by multivalent cations: A solution to DNA imaging by atomic force microscopy under high ionic strengths. Langmuir 2006, 22, 6651-6660.
[34]
Song, Y. H.; Li, Z.; Liu, Z. G.; Wei, G.; Wang, L.; Sun, L. L.; Guo, C. L.; Sun, Y. J.; Yang, T. A novel strategy to construct a flat-lying DNA monolayer on a mica surface. J. Phys. Chem. B 2006, 110, 10792-10798.
[35]
Hansma, H. G.; Laney, D. E. DNA binding to mica correlates with cationic radius: Assay by atomic force microscopy. Biophys. J. 1996, 70, 1933-1939.
[36]
Jiang, Z. X.; Zhang, S.; Yang, C. X.; Kjems, J.; Huang, Y. D.; Besenbacher, F.; Dong, M. D. Serum-induced degradation of 3D DNA box origami observed with high-speed atomic force microscopy. Nano Res. 2015, 8, 2170-2178.
[37]
Lee, A. J.; Szymonik, M.; Hobbs, J. K.; Wälti, C. Tuning the translational freedom of DNA for high speed AFM. Nano Res. 2015, 8, 1811-1821.
[38]
Shiomi, T.; Tan, M. M.; Takahashi, N.; Endo, M.; Emura, T.; Hidaka, K.; Sugiyama, H.; Takahashi, Y.; Takakura, Y.; Nishikawa, M. Atomic force microscopy analysis of orientation and bending of oligodeoxynucleotides in polypod-like structured DNA. Nano Res. 2015, 8, 3764-3771.
[39]
Kielar, C.; Zhu, S. Q.; Grundmeier, G.; Keller, A. Quantitative assessment of tip effects in single-molecule high-speed atomic force microscopy using DNA origami substrates. Angew. Chem., Int. Ed. 2020, in press, .
[40]
Ramakrishnan, S.; Shen, B. X.; Kostiainen, M. A.; Grundmeier, G.; Keller, A.; Linko, V. Real-time observation of superstructure-dependent DNA origami digestion by DNase I using high-speed atomic force microscopy. ChemBioChem 2019, 20, 2818-2823.
[41]
Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Open Phys. 2012, 10, 181-188.
[42]
Bradski, G. R.; Kaehler, A. Learning OpenCV: Computer Vision in C++ with the OpenCV Library; O'Reilly Media, Inc.: Sebastopol, USA, 2013.
[43]
Castro, M.; Cuerno, R.; García-Hernández, M. M.; Vázquez, L. Pattern-wavelength coarsening from topological dynamics in silicon nanofoams. Phys. Rev. Lett. 2014, 112, 094103.
[44]
Le Caer, G. Topological models of 2D cellular structure. J. Phys. A: Math. Gen. 1991, 24, 4655-4675.
[45]
Shen, X.; Gu, B.; Che, S. A.; Zhang, F. S. Solvent effects on the conformation of DNA dodecamer segment: A simulation study. J. Chem. Phys. 2011, 135, 034509.
[46]
Auffinger, P.; D’Ascenzo, L.; Ennifar, E. Sodium and potassium interactions with nucleic acids. In The Alkali Metal Ions: Their Role for Life. Sigel, A.; Sigel, H.; Sigel, R. K. O., Eds.; Springer: Cham, 2016; pp 167-201.
DOI
[47]
Jákli, G. The H2O-D2O solvent isotope effects on the molar volumes of alkali-chloride solutions at T = (288.15, 298.15, and 308.15)K. J. Chem. Thermodyn. 2007, 39, 1589-1600.
[48]
Cieplak, P.; Kollman, P. Monte Carlo simulation of aqueous solutions of Li+ and Na+ using many-body potentials. Coordination numbers, ion solvation enthalpies, and the relative free energy of solvation. J. Chem. Phys. 1990, 92, 6761-6767.
[49]
Hermansson, K.; Wojcik, M. Water Exchange around Li+ and Na+ in LiCl(aq) and NaCl(aq) from MD simulations. J. Phys. Chem. B 1998, 102, 6089-6097.
[50]
Mähler, J.; Persson, I. A study of the hydration of the alkali metal ions in aqueous solution. Inorg. Chem. 2012, 51, 425-438.
[51]
Kiyohara, K.; Minami, R. Hydration and dehydration of monovalent cations near an electrode surface. J. Chem. Phys. 2018, 149, 014705.
[52]
Cheng, Y. H.; Korolev, N.; Nordenskiöld, L. Similarities and differences in interaction of K+ and Na+ with condensed ordered DNA. A molecular dynamics computer simulation study. Nucleic Acids Res. 2006, 34, 686-696.
[53]
Pasi, M.; Maddocks, J. H.; Lavery, R. Analyzing ion distributions around DNA: Sequence-dependence of potassium ion distributions from microsecond molecular dynamics. Nucleic Acids Res. 2015, 43, 2412-2423.
[54]
Cruz-León, S.; Schwierz, N. Hofmeister series for metal-cation- RNA interactions: The interplay of binding affinity and exchange kinetics. Langmuir 2020, 36, 5979-5989.
[55]
Besteman, K.; Van Eijk, K.; Lemay, S. G. Charge inversion accompanies DNA condensation by multivalent ions. Nat. Phys. 2007, 3, 641-644.
[56]
Bloomfield, V. A. DNA condensation by multivalent cations. Biopolymers 1997, 44, 269-282.
DOI
[57]
Opherden, L.; Oertel, J.; Barkleit, A.; Fahmy, K.; Keller, A. Paramagnetic decoration of DNA origami nanostructures by Eu3+ coordination. Langmuir 2014, 30, 8152-8159.
[58]
Thomson, N. H.; Kasas, S.; Smith; Hansma, H. G.; Hansma, P. K. Reversible binding of DNA to mica for AFM imaging. Langmuir 1996, 12, 5905-5908.
[59]
Piétrement, O.; Pastré, D.; Fusil, S.; Jeusset, J.; David, M. O.; Landousy, F.; Hamon, L.; Zozime, A.; Le Cam, E. Reversible binding of DNA on NiCl2-treated mica by varying the ionic strength. Langmuir 2003, 19, 2536-2539.
[60]
Duguid, J.; Bloomfield, V. A.; Benevides, J.; Thomas, G. J. Jr. Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd. Biophys. J. 1993, 65, 1916-1928.
[61]
Kolev, S. K.; Petkov, P. S.; Rangelov, M. A.; Trifonov, D. V.; Milenov, T. I.; Vayssilov, G. N. Interaction of Na+, K+, Mg2+ and Ca2+ counter cations with RNA. Metallomics 2018, 10, 659-678.
[62]
Petrov, A. S.; Bowman, J. C.; Harvey, S. C.; Williams, L. D. Bidentate RNA-magnesium clamps: On the origin of the special role of magnesium in RNA folding. RNA 2011, 17, 291-297.
[63]
Wang, R. R.; Zhang, G. M.; Liu, H. T. DNA-templated nanofabrication. Curr. Opin. Colloid Interface Sci. 2018, 38, 88-99.
[64]
Gao, L. B.; Ren, W. C.; Xu, H. L.; Jin, L.; Wang, Z. X.; Ma, T.; Ma, L. P.; Zhang, Z. Y.; Fu, Q.; Peng, L. M. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 2012, 3, 699.
Video
12274_2020_2985_MOESM2_ESM.avi
12274_2020_2985_MOESM3_ESM.avi
12274_2020_2985_MOESM4_ESM.avi
12274_2020_2985_MOESM5_ESM.avi
File
12274_2020_2985_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 09 June 2020
Revised: 11 July 2020
Accepted: 12 July 2020
Published: 22 August 2020
Issue date: November 2020

Copyright

© The Author(s) 2020

Acknowledgements

We thank David Contreras for his helpful discussions and comments. This research has been partially funded by the Spanish Ministerio de Ciencia, Innovacion y Universidades- FEDER funds of the European Union support, under projects FIS2016-78883-C2-2-P and PID2019-106339GB-I00 (M.C.).

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return