Journal Home > Volume 13 , Issue 11

Single-atom site (SA) catalysts on N-doped carbon (CN) materials exhibit prominent performance for their active sites being M-Nx. Due to the commonly random doping behaviors of N species in these CN, it is a tough issue to finely regulate their doping types and clarify their effect on the catalytic property of such catalysts. Herein, we report that the N-doping type in CN can be dominated as pyrrolic-N and pyridinic-N respectively through compounding with different metal oxides. It is found that the proportion of distinct doped N species in CN depends on the acidity and basicity of compounded metal oxide host. Owing to the coordination by pyrrolic-N, the SA Cu catalyst displays an enhanced activity (two-fold) for transfer hydrogenation of quinoline to access the valuable molecule tetrahydroquinoline with a good selectivity (99%) under mild conditions. The higher electron density of SA Cu species induced by the predominate pyrrolic-N coordination benefits the hydrogen transfer process and reduces the energy barrier of the hydrogenation pathway, which accounts for the improved catalytic effeciency.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline

Show Author's information Jian Zhang1,§Caiyan Zheng2,§Maolin Zhang3Yajun Qiu1Qi Xu1Weng-Chon Cheong4Wenxing Chen5Lirong Zheng6Lin Gu7Zhengpeng Hu2Dingsheng Wang1( )Yadong Li1( )
Department of Chemistry, Tsinghua University, Beijing 100084, China
School of Physics, Nankai University, Tianjin 300071, China
KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

§ Jian Zhang and Caiyan Zheng contributed equally to this work.

Abstract

Single-atom site (SA) catalysts on N-doped carbon (CN) materials exhibit prominent performance for their active sites being M-Nx. Due to the commonly random doping behaviors of N species in these CN, it is a tough issue to finely regulate their doping types and clarify their effect on the catalytic property of such catalysts. Herein, we report that the N-doping type in CN can be dominated as pyrrolic-N and pyridinic-N respectively through compounding with different metal oxides. It is found that the proportion of distinct doped N species in CN depends on the acidity and basicity of compounded metal oxide host. Owing to the coordination by pyrrolic-N, the SA Cu catalyst displays an enhanced activity (two-fold) for transfer hydrogenation of quinoline to access the valuable molecule tetrahydroquinoline with a good selectivity (99%) under mild conditions. The higher electron density of SA Cu species induced by the predominate pyrrolic-N coordination benefits the hydrogen transfer process and reduces the energy barrier of the hydrogenation pathway, which accounts for the improved catalytic effeciency.

Keywords: nitrogen-doped carbon, metal oxide, nitrogen-doping type, single-atom site catalyst, transfer hydrogenation

References(42)

[1]
Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067-2080.
[2]
Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856-1866.
[3]
Mao, J. J.; He, C. T.; Pei, J. J.; Liu, Y.; Li, J.; Chen, W. X.; He, D. S.; Wang, D. S.; Li, Y. D. Isolated Ni atoms dispersed on Ru nanosheets: High-performance electrocatalysts toward hydrogen oxidation reaction. Nano Lett. 2020, 20, 3442-3448.
[4]
Xu, Q.; Guo, C. X.; Tian, S. B.; Zhang, J.; Chen, W. X.; Cheong, W. C.; Gu, L.; Zheng, L. R.; Xiao, J. P.; Liu, Q. et al. Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Sci. China Mater. 2020, 63, 972-981.
[5]
Tian, S. B.; Hu, M.; Xu, Q.; Gong, W. B.; Chen, W. X.; Yang, J. R.; Zhu, Y. Q.; Chen, C.; He, J.; Liu, Q. et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater. 2020, .
[6]
Zhang, J.; Wang, Z. Y.; Chen, W. X.; Xiong, Y.; Cheong, W. C.; Zheng, L. R.; Yan, W. S.; Gu, L.; Chen, C.; Peng, Q. et al. Tuning polarity of Cu-O bond in heterogeneous Cu catalyst to promote additive-free hydroboration of alkynes. Chem 2020, 6, 725-737.
[7]
Zhou, S. Q.; Shang, L.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Huang, Y. C.; Zheng, L. R.; Zhang, T. R. Pd single-atom catalysts on nitrogen-doped graphene for the highly selective photothermal hydrogenation of acetylene to ethylene. Adv. Mater. 2019, 31, 1900509.
[8]
Podyacheva, O. Y.; Bulushev, D. A.; Suboch, A. N.; Svintsitskiy, D. A.; Lisitsyn, A. S.; Modin, E.; Chuvilin, A.; Gerasimov, E. Y.; Sobolev, V. I.; Parmon, V. N. Highly stable single-atom catalyst with ionic Pd active sites supported on N-doped carbon nanotubes for formic acid decomposition. ChemSusChem 2018, 11, 3724-3727.
[9]
Vilé, G.; Albani, D.; Nachtegaal, M.; Chen, Z. P.; Dontsova, D.; Antonietti, M.; López, N.; Pérez-Ramírez, J. A stable single-site palladium catalyst for hydrogenations. Angew. Chem., Int. Ed. 2015, 54, 11265-11269.
[10]
Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single- atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63-72.
[11]
Ji, S. F.; Qu, Y.; Wang, T.; Chen, Y. J.; Wang, G. F.; Li, X.; Dong, J. C.; Chen, Q. Y.; Zhang, W. Y.; Zhang, Z. D. et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 10651-10657.
[12]
Shang, H. S.; Sun, W. M.; Sui, R.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Jiang, Z. L.; Zhou, D. N.; Zhuang, Z. B.; Chen, W. X. et al. Engineering isolated Mn-N2C2 atomic interface sites for efficient bifunctional oxygen reduction and evolution reaction. Nano Lett. 2020, 20, 5443-5450.
[13]
Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842-1855.
[14]
Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 9664-9672.
[15]
Wu, G.; Santandreu, A.; Kellogg, W.; Gupta, S.; Ogoke, O.; Zhang, H. G.; Wang, H. L.; Dai, L. M. Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition. Nano Energy 2016, 29, 83-110.
[16]
Zhu, C. Z.; Fu, S. F.; Song, J. H.; Shi, Q. R.; Su, D.; Engelhard, M. H.; Li, X. L.; Xiao, D. D.; Li, D. S.; Estevez, L. et al. Self-assembled Fe-N-doped carbon nanotube aerogels with single-atom catalyst feature as high-efficiency oxygen reduction electrocatalysts. Small 2017, 13, 1603407.
[17]
Wang, X. R.; Liu, J. Y.; Liu, Z. W.; Wang, W. C.; Luo, J.; Han, X. P.; Du, X. W.; Qiao, S. Z.; Yang, J. Identifying the key role of pyridinic- N-Co bonding in synergistic electrocatalysis for reversible ORR/OER. Adv. Mater. 2018, 30, 1800005.
[18]
Yang, L.; Cheng, D. J.; Xu, H. X.; Zeng, X. F.; Wan, X.; Shui, J. L.; Xiang, Z. H.; Cao, D. P. Unveiling the high-activity origin of single- atom iron catalysts for oxygen reduction reaction. Proc. Natl. Acad. Sci. USA 2018, 115, 6626-6631.
[19]
Büchele, S.; Chen, Z. P.; Mitchell, S.; Hauert, R.; Krumeich, F.; P;ume-Ramírez, J. Tailoring nitrogen-doped carbons as hosts for single-atom catalysts. ChemCatChem 2019, 11, 2812-2820.
[20]
Jin, J. Y.; Wang, Z. W.; Wang, R.; Wang, J. J.; Huang, Z. D.; Ma, Y. W.; Li, H.; Wei, S. H.; Huang, X.; Yan, J. X. et al. Achieving high volumetric lithium storage capacity in compact carbon materials with controllable nitrogen doping. Adv. Funct. Mater. 2019, 29, 1807441.
[21]
Zhao, R.; Peng, H.; Wang, H. L.; Liang, J.; Lv, Y. Y.; Ma, G. F.; Lei, Z. Q. Tuning nitrogen doping types and pore structures in carbon nanosheets as electrodes for supercapacitor by controlling existence form of iron species. J. Energy Storage 2020, 28, 101174.
[22]
Scott, J. D.; Williams, R. M. Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chem. Rev. 2002, 102, 1669-1730.
[23]
Sridharan, V.; Suryavanshi, P. A.; Menendez, J. C. Advances in the chemistry of tetrahydroquinolines. Chem Rev. 2011, 111, 7157-7259.
[24]
Katritzky, A. R.; Rachwal, S.; Rachwal, B. Recent progress in the synthesis of 1,2,3,4,-tetrahydroquinolines. Tetrahedron 1996, 52, 15031-15070.
[25]
Wang, D. S.; Chen, Q. A.; Lu, S. M.; Zhou, Y. G. Asymmetric hydrogenation of heteroarenes and arenes. Chem Rev 2012, 112, 2557-2590.
[26]
Wang, C.; Li, C. Q.; Wu, X. F.; Pettman, A.; Xiao, J. L. pH-regulated asymmetric transfer hydrogenation of quinolines in water. Angew. Chem., Int. Ed. 2009, 48, 6524-6528.
[27]
Chen, F.; Sahoo, B.; Kreyenschulte, C.; Lund, H.; Zeng, M.; He, L.; Junge, K.; Beller, M. Selective cobalt nanoparticles for catalytic transfer hydrogenation of N-heteroarenes. Chem. Sci. 2017, 8, 6239-6246.
[28]
Wei, Z. Z.; Chen, Y. Q.; Wang, J.; Su, D. F.; Tang, M. H.; Mao, S. J.; Wang, Y. Cobalt encapsulated in N-doped graphene layers: An efficient and stable catalyst for hydrogenation of quinoline compounds. ACS Catal. 2016, 6, 5816-5822.
[29]
Wang, L.; Chen, M. X.; Yan, Q. Q.; Xu, S. L.; Chu, S. Q.; Chen, P.; Lin, Y.; Liang, H. W. A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts. Sci Adv 2019, 5, eaax6322.
[30]
Ren, D.; He, L.; Yu, L.; Ding, R. S.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. An unusual chemoselective hydrogenation of quinoline compounds using supported gold catalysts. J. Am. Chem. Soc. 2012, 134, 17592-17598.
[31]
Li, J. L.; Liu, G. L.; Long, X. D.; Gao, G.; Wu, J.; Li, F. W. Different active sites in a bifunctional Co@N-doped graphene shells based catalyst for the oxidative dehydrogenation and hydrogenation reactions. J. Catal. 2017, 355, 53-62.
[32]
Beckers, N. A.; Huynh, S.; Zhang, X. J.; Luber, E. J.; Buriak, J. M. Screening of heterogeneous multimetallic nanoparticle catalysts supported on metal oxides for mono-, poly-, and heteroaromatic hydrogenation activity. ACS Catal. 2012, 2, 1524-1534.
[33]
Bai, L. C.; Wang, X.; Chen, Q.; Ye, Y. F.; Zheng, H. Q.; Guo, J. H.; Yin, Y. D.; Gao, C. B. Explaining the size dependence in platinum- nanoparticle-catalyzed hydrogenation reactions. Angew. Chem., Int. Ed. 2016, 55, 15656-15661.
[34]
Sorribes, I.; Liu, L. C.; Doménech-Carbó, A.; Corma, A. Nanolayered cobalt-molybdenum sulfides as highly chemo- and regioselective catalysts for the hydrogenation of quinoline derivatives. ACS Catal. 2018, 8, 4545-4557.
[35]
Mou, S. Y.; Lu, Y.; Jiang, Y. A facile and cheap coating method to prepare SiO2/melamine-formaldehyde and SiO2/urea-formaldehyde composite microspheres. Appl. Surf. Sci. 2016, 384, 258-262.
[36]
Zhang, T.; Zhang, D.; Han, X. H.; Dong, T.; Guo, X. W.; Song, C. S.; Si, R.; Liu, W.; Liu, Y. F.; Zhao, Z. K. Preassembly strategy to fabricate porous hollow carbonitride spheres inlaid with single Cu-N3 sites for selective oxidation of benzene to phenol. J. Am. Chem. Soc. 2018, 140, 16936-16940.
[37]
Jeon, Y.; Lu, F.; Jhans, H.; Shaheen, S. A.; Liang, G.; Croft, M.; Ansari, P. H.; Ramanujachary, K. V.; Hayri, E. A.; Fine, S. M. et al. X-ray absorption measurements on high-Tc superconductors: Cu-valence and cation-bond-length effects. Phys. Rev. B 1987, 36, 3891-3894.
[38]
Yu, M. Z.; Zhou, S.; Liu, Y.; Wang, Z. Y.; Zhou, T.; Zhao, J. J.; Zhao, Z. B.; Qiu, J. S. Long life rechargeable Li-O2 batteries enabled by enhanced charge transfer in nanocable-like Fe@N-doped carbon nanotube catalyst. Sci. China Mater. 2017, 60, 415-426.
[39]
Zhong, H. X.; Zhang, H. M.; Liu, S. S.; Deng, C. W.; Wang, M. R. Nitrogen-enriched carbon from melamine resins with superior oxygen reduction reaction activity. ChemSusChem 2013, 6, 807-812.
[40]
Korytiaková, E.; Thiel, N. O.; Pape, F.; Teichert, J. F. Copper(I)- catalysed transfer hydrogenations with ammonia borane. Chem. Commun. 2017, 53, 732-735.
[41]
Zhao, T. J.; Zhang, Y. N.; Wang, K. X.; Su, J.; Wei, X.; Li, X. H. General transfer hydrogenation by activating ammonia-borane over cobalt nanoparticles. RSC Adv. 2015, 5, 102736-102740.
[42]
Vasilikogiannaki, E.; Titilas, I.; Vassilikogiannakis, G.; Stratakis, M. Cis-semihydrogenation of alkynes with amine borane complexes catalyzed by gold nanoparticles under mild conditions. Chem. Commun. 2015, 51, 2384-2387.
File
12274_2020_2977_MOESM1_ESM.pdf (3.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 July 2020
Revised: 06 July 2020
Accepted: 08 July 2020
Published: 20 July 2020
Issue date: November 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2018YFA0702003 and 2016YFA0202801), the National Natural Science Foundation of China (Nos. 21890383, 21671117, 21871159, and 21901135), the National Postdoctoral Program for Innovative Talents, the Shuimu Tsinghua Scholar, Science and Technology Key Project of Guangdong Province of China (No. 2020B010188002), and Beijing Municipal Science & Technology Commission (No. Z191100007219003). We thank the BL14W1 station in Shanghai Synchrotron Radiation Facility (SSRF) and 1W1B station for XAFS measurement in Beijing Synchrotron Radiation Facility (BSRF).

Return