Journal Home > Volume 14 , Issue 6

As a promising graphene analogue, two-dimensional (2D) polymer nanosheets with unique 2D features, diversified topological structures and as well as tunable electronic properties, have received extensive attention in recent years. Here in this review, we summarized the recent research progress in the preparation methods of 2D polymer nanosheets, mainly including interfacial polymerization and solution polymerization. We also discussed the recent research advancements of 2D polymer nanosheets in the fields of energy storage and conversion applications, such as batteries, supercapacitors, electrocatalysis and photocatalysis. Finally, on the basis of their current development, we put forward the existing challenges and some personal perspectives.


menu
Abstract
Full text
Outline
About this article

Two-dimensional polymer nanosheets for efficient energy storage and conversion

Show Author's information Yumei Ren1,2,3Chengbing Yu1( )Zhonghui Chen3,4( )Yuxi Xu3( )
School of Materials Science and Engineering, Shanghai University, Shanghai 201800, China
School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
School of Engineering, Westlake University, Hangzhou 310024, China
Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China

Abstract

As a promising graphene analogue, two-dimensional (2D) polymer nanosheets with unique 2D features, diversified topological structures and as well as tunable electronic properties, have received extensive attention in recent years. Here in this review, we summarized the recent research progress in the preparation methods of 2D polymer nanosheets, mainly including interfacial polymerization and solution polymerization. We also discussed the recent research advancements of 2D polymer nanosheets in the fields of energy storage and conversion applications, such as batteries, supercapacitors, electrocatalysis and photocatalysis. Finally, on the basis of their current development, we put forward the existing challenges and some personal perspectives.

Keywords: supercapacitors, two-dimensional (2D) polymer nanosheets, 2D polymerization, batteries, photo(electro)catalysis

References(97)

[1]
H. Zhang, Introduction: 2D materials chemistry. Chem. Rev. 2018, 118, 6089-6090.
[2]
A. Zavabeti,; A. Jannat,; L. Zhong,; A. A. Haidry,; Z. J. Yao,; J. Z. Ou, Two-dimensional materials in large-areas: Synthesis, properties and applications. Nano-Micro Lett. 2020, 12, 66.
[3]
C. L. Tan,; X. H. Cao,; X. J. Wu,; Q. Y. He,; J. Yang,; X. Zhang,; J. Z. Chen,; W. Zhao,; S. K. Han,; G. H. Nam, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225-6331.
[4]
Q. P. Lu,; Y, F. Yu,; Q. L. Ma,; B. Chen,; H. Zhang, 2D transition- metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 2016, 28, 1917-1933.
[5]
S. Bai,; Y. J. Xiong, Recent advances in two-dimensional nanostructures for catalysis applications. Sci. Adv. Mater. 2015, 7, 2168-2181.
[6]
H. C. Tao,; Q. Fan,; T. Ma,; S. Z. Liu,; H. Gysling,; J. Texter,; F. Guo,; Z. Y. Sun, Two-dimensional materials for energy conversion and storage. Prog. Mater. Sci. 2020, 111, 100637.
[7]
H. C. Tao,; Y. N. Gao,; N. Talreja,; F. Guo,; J. Texter,; C. Yan,; Z. Y. Sun, Two-dimensional nanosheets for electrocatalysis in energy generation and conversion. J. Mater. Chem. A 2017, 5, 7257-7284.
[8]
A. K. Mandal,; J. Mahmood,; J. B. Baek, Two-dimensional covalent organic frameworks for optoelectronics and energy storage. ChemNanoMat 2017, 3, 373-391.
[9]
G. Galeotti,; F. De Marchi,; E. Hamzehpoor,; O. MacLean,; M. R. Rao,; Y. Chen,; L. V. Besteiro,; D. Dettmann,; L. Ferrari,; F. Frezza, et al. Synthesis of mesoscale ordered two-dimensional π-conjugated polymers with semiconducting properties. Nat. Mater., in press, .
[10]
H. L. Qin,; D. Wang,; X. Xiong,; J. Jin, Free-standing, single-bilayer- thick polymeric nanosheets via spatially confined polymerization. Macromol. Rapid Commun. 2014, 35, 1055-1060.
[11]
S. L. Cai,; W. G. Zhang,; R. N. Zuckermann,; Z. T. Li,; X. Zhao,; Y. Liu, The organic flatland—Recent advances in synthetic 2D organic layers. Adv. Mater. 2015, 27, 5762-5770.
[12]
Z. H. Xiang,; D. P. Cao,; L. M. Dai, Well-defined two dimensional covalent organic polymers: Rational design, controlled syntheses, and potential applications. Polym. Chem. 2015, 6, 1896-1911.
[13]
J. Wang,; N. Li,; Y. X. Xu,; H. Pang, Frontispiece: Two-dimensional MOF and COF nanosheets: Synthesis and applications in electrochemistry. Chem.Eur. J. 2020, 26, 6402-6422.
[14]
H. Staudinger, Über polymerisation. Ber. Dtsch. Chem. Ges. 1920, 53, 1073-1085.
[15]
W. Wang,; A. D. Schlüter, Synthetic 2D polymers: A critical perspective and a look into the future. Macromol. Rapid Commun. 2019, 40, 1800719.
[16]
P. Payamyar,; B. T. King,; H. C. Öttinger,; A. D. Schlüter, Two- dimensional polymers: Concepts and perspectives. Chem. Commun. 2016, 52, 18-34.
[17]
M. Servalli,; A. D. Schlüter, Synthetic two-dimensional polymers. Annu. Rev. Mater. Res. 2017, 47, 361-389.
[18]
A. D. Schlüter, Mastering polymer chemistry in two dimensions. Commun. Chem. 2020, 3, 12.
[19]
D. Barpuzary,; K. Kim,; M. J. Park, Two-dimensional conducting polymers: Synthesis and charge transport. J. Polym. Sci. Pol. Phys. 2019, 57, 1169-1176.
[20]
T. Govindaraju,; M. B. Avinash, Two-dimensional nanoarchitectonics: Organic and hybrid materials. Nanoscale 2012, 4, 6102-6117.
[21]
P. Kissel,; R. Erni,; W. B. Schweizer,; M. D. Rossell,; B. T. King,; T. Bauer,; S. Götzinger,; A. D. Schlüter,; J. Sakamoto, A two- dimensional polymer prepared by organic synthesis. Nat. Chem. 2012, 4, 287-291.
[22]
P. T. Xiao,; Y. X. Xu, Recent progress in two-dimensional polymers for energy storage and conversion: Design, synthesis, and applications. J. Mater. Chem. A 2018, 6, 21676-21695.
[23]
S. Bi,; C. B. Lu,; W. B. Zhang,; F. Qiu,; F. Zhang, Two-dimensional polymer-based nanosheets for electrochemical energy storage and conversion. J. Energy Chem. 2018, 27, 99-116.
[24]
J. Sakamoto,; J. V. Van Heijst,; O. Lukin,; A. D. Schlüter, Two- dimensional polymers: Just a dream of synthetic chemists? Angew. Chem., Int. Ed. 2009, 48, 1030-1069.
[25]
X. D. Zhuang,; Y. Y. Mai,; F. Q. Wu,; F. Zhang,; X. L. Feng, Two- dimensional soft nanomaterials: A fascinating world of materials. Adv. Mater. 2015, 27, 403-427.
[26]
C. N. Zheng,; J. H. Zhu,; C. Q. Yang,; C. B. Lu,; Z. Y. Chen,; X. D. Zhuang, The art of two-dimensional soft nanomaterials. Sci. China Chem. 2019, 62, 1145-1193.
[27]
J. W. Colson,; W. R. Dichtel, Rationally synthesized two-dimensional polymers. Nat. Chem. 2013, 5, 453-465.
[28]
C. G. Li,; Y. S. Wang,; H. L. Dong,; X. T. Zhang,; W. P. Hu, Two- dimensional conjugated polymers synthesized via on-surface chemistry. Sci China Mater. 2020, 63, 172-176.
[29]
Y. Zhong,; B. R. Cheng,; C. Park,; A. Ray,; S Brown,; F. Mujid,; J. U. Lee,; H. Zhou,; J. Suh,; K. H. Lee, et al. Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices. Science 2019, 366, 1379-1384.
[30]
T. Q. Ma,; E. A. Kapustin,; S. X. Yin,; L. Liang,; Z. Y. Zhou,; J. Niu,; L. H. Li,; Y. Y. Wang,; J. Su,; J. Li, et al. Single-crystal X-ray diffraction structures of covalent organic frameworks. Science 2018, 361, 48-52.
[31]
J. Y. Yue,; Y. P. Mo,; S. Y. Li,; W. L. Dong,; T. Chen,; D. Wang, Simultaneous construction of two linkages for the on-surface synthesis of imine-boroxine hybrid covalent organic frameworks. Chem. Sci. 2017, 8, 2169-2174.
[32]
D. Zhou,; X. Y. Tan,; H. M. Wu,; L. H. Tian,; M. Li, Synthesis of C-C bonded two-dimensional conjugated covalent organic framework films by Suzuki polymerization on a liquid-liquid interface. Angew. Chem., Int. Ed. 2019, 58, 1376-1381.
[33]
A. Braslau,; M. Deutsch,; P. S. Pershan,; A. H. Weiss,; J. Als-Nielsen,; J. Bohr, Surface roughness of water measured by X-ray reflectivity. Phys. Rev. Lett. 1985, 54, 114-117.
[34]
K. J. Liu,; H; Y. Qi,; R. H. Dong,; R. Shivhare,; M. Addicoat,; Z. Zhang,; H. Sahabudeen,; T. Heine,; S. Mannsfeld,; U. Kaiser, et al. On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat. Chem. 2019, 11, 994-1000
[35]
H. Sahabudeen,; H; Y. Qi,; M. Ballabio,; M. Položij,; S. Olthof,; R. Shivhare,; Y. Jing,; S. W. Park,; K. J. Liu,; T. Zhang, et al. Highly crystalline and semiconducting imine-based two-dimensional polymers enabled by interfacial synthesis. Angew. Chem., Int. Ed. 2020, 132, 6084-6092.
[36]
J. Liu,; F. X. Yang,; L. L. Cao,; B. L. Li,; K. Yuan,; S. B. Lei,; W. P. Hu, A robust nonvolatile resistive memory device based on a freestanding ultrathin 2D imine polymer film. Adv. Mater. 2019, 31, 1902264.
[37]
P. Payamyar,; K. Kaja,; C. Ruiz-Vargas,; A. Stemmer,; D. J. Murray,; C. J. Johnson,; B. T. King,; F. Schiffmann,; J. VandeVondele,; A. Renn, et al. Synthesis of a covalent monolayer sheet by photochemical anthracene dimerization at the air/water interface and its mechanical characterization by AFM indentation. Adv. Mater. 2014, 26, 2052-2058.
[38]
Y. G. Chen,; M. Li,; P. Payamyar,; Z. K. Zheng,; J. Sakamoto,; A. D. Schlüter, Room temperature synthesis of a covalent monolayer sheet at air/water interface using a shape-persistent photoreactive amphiphilic monomer. ACS Macro Lett. 2014, 3, 153-158.
[39]
D. J. Murray,; D. D Patterson,; P. Payamyar,; R. Bhola,; W. T. Song,; M. Lackinger,; A. D. Schlüter,; B. T. King, Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface. J. Am. Chem. Soc. 2015, 137, 3450-3453.
[40]
V. Müller,; A. Hinaut,; M. Moradi,; M. Baljozovic,; T. A. Jung,; P. Shahgaldian,; H. Möhwald,; G. Hofer,; M. Kröger,; B. T. King, et al. A two-dimensional polymer synthesized at the air/water interface. Angew. Chem., Int. Ed. 2018, 57, 10584-10588.
[41]
L. Grill,; M. Dyer,; L. Lafferentz,; M. Persson,; M. V. Peters,; S. Hecht, Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2007, 2, 687-691.
[42]
X. H. Liu,; C. Z. Guan,; S. Y. Ding,; W. Wang,; H. J. Yan,; D. Wang,; L. J. Wan, On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid-vapor interface reactions. J. Am. Chem. Soc. 2013, 135, 10470-10474.
[43]
D. Rodríguez-San-Miguel,; P. Amo-Ochoa,; F. Zamora, MasterChem: Cooking 2D-polymers. Chem. Commun. 2016, 52, 4113-4127.
[44]
K. Baek,; G. Yun,; Y. Kim,; D. Kim,; R. Hota,; I. Hwang,; D. Xu,; Y. H. Ko,; G. H. Gu,; J. H. Suh, et al. Free-standing, single-monomer- thick two-dimensional polymers through covalent self-assembly in solution. J. Am. Chem. Soc. 2013, 135, 6523-6528.
[45]
T. Y. Zhou,; F. Lin,; Z. T. Li,; X. Zhao, Single-step solution-phase synthesis of free-standing two-dimensional polymers and their evolution into hollow spheres. Macromolecules 2013, 46, 7745-7752.
[46]
W. B. Liu,; X. K. Li,; C. M. Wang,; H. H. Pan,; W. P. Liu,; K. Wang,; Q. D. Zeng,; R. M. Wang,; J. Z. Jiang, A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 17431-17440.
[47]
J. J. Liu,; W. Zan,; K. Li,; Y. Yang,; F. X. Bu,; Y. X. Xu, Solution synthesis of semiconducting two-dimensional polymer via trimerization of carbonitrile. J. Am. Chem. Soc. 2017, 139, 11666-11669.
[48]
Y. Yang,; F. X. Bu,; J. J. Liu,; I. Shakir,; Y. X. Xu, Mechanochemical synthesis of two-dimensional aromatic polyamides. Chem. Commun. 2017, 53, 7481-7484.
[49]
D. N. Bunck,; W. R. Dichtel, Bulk synthesis of exfoliated two- dimensional polymers using hydrazone-linked covalent organic frameworks. J. Am. Chem. Soc. 2013, 135, 14952-14955.
[50]
P. J. Waller,; F. Gándara,; O. M. Yaghi, Chemistry of covalent organic frameworks. Acc. Chem. Res. 2015, 48, 3053-3063.
[51]
J. J. Liu,; P. B. Lyu,; Y. Zhang,; P. Nachtigall,; Y. X. Xu, New layered triazine framework/exfoliated 2D polymer with superior sodium-storage properties. Adv. Mater. 2018, 30, 1705401.
[52]
P. Kissel,; D. J. Murray,; W. J. Wulftange,; V. J. Catalano,; B. T. King, A nanoporous two-dimensional polymer by single-crystal-to-single- crystal photopolymerization. Nat. Chem. 2014, 6, 774-778.
[53]
Z. H. Chen,; J. D. Chen,; F. X. Bu,; P. O. Agboola,; I. Shakir,; Y. X. Xu, Double-holey-heterostructure frameworks enable fast, stable, and simultaneous ultrahigh gravimetric, areal, and volumetric lithium storage. ACS Nano 2018, 12, 12879-12887.
[54]
X. Chen,; X. Q. Zhang,; H. R. Li,; Q. Zhang, Cation-solvent, cation- anion, and solvent-solvent interactions with electrolyte solvation in lithium batteries. Batter. Supercaps 2019, 2, 128-131.
[55]
Y. Cui,; X. W. Zhou,; W. Guo,; Y. Z. Liu,; T. Y. Li,; Y. Z. Fu,; L. K. Zhu, Selenium nanocomposite cathode with long cycle life for rechargeable lithium-selenium batteries. Batter. Supercaps 2019, 2, 784-791.
[56]
W. J. Zhao,; X. W. Mu,; P. He,; H. S. Zhou, Advances and challenges for aprotic lithium-oxygen batteries using redox mediators. Batter. Supercaps 2019, 2, 803-819.
[57]
Y. S. Hong,; C. Z. Zhao,; Y. Xiao,; R. Xu,; J. J. Xu,; J. Q. Huang,; Q. Zhang,; X. Q. Yu,; H. Li, Safe lithium-metal anodes for Li-O2 batteries: From fundamental chemistry to advanced characterization and effective protection. Batter. Supercaps 2019, 2, 638-658.
[58]
X. Zhang,; A. Chen,; M. G. Jiao,; Z. J. Xie,; Z. Zhou, Understanding rechargeable Li-O2 batteries via first-principles computations. Batter. Supercaps 2019, 2, 498-508.
[59]
D. D. Yin,; H. Y. Zhao,; N. Li,; R. Si,; X. L. Sun,; X. H. Li,; Y. P. Du, Enhancing the rate capability of niobium oxide electrode through rare-earth doping engineering. Batter. Supercaps 2019, 2, 924-928.
[60]
Z. H. Chen,; X. H. An,; L. M. Dai,; Y. X. Xu, Holey graphene-based nanocomposites for efficient electrochemical energy storage. Nano Energy 2020, 73, 104762.
[61]
B. Yan,; Z. H. Chen,; Y. X. Xu, Amorphous and crystalline 2D polymeric carbon nitride nanosheets for photocatalytic hydrogen/oxygen evolution and hydrogen peroxide production. Chem.—Asian J., in press, .
[62]
L. Y. Bai,; Q. Gao,; Y. L. Zhao, Two fully conjugated covalent organic frameworks as anode materials for lithium ion batteries. J. Mater. Chem. A 2016, 4, 14106-14110.
[63]
H. Yang,; S. L. Zhang,; L. H. Han,; Z. Zhang,; Z. Xue,; J. Gao,; Y. J. Li,; C. S. Huang,; Y. P. Yi,; H. B. Liu, et al. High conductive two- dimensional covalent organic framework for lithium storage with large capacity. ACS Appl. Mater. Interfaces 2016, 8, 5366-5375.
[64]
L. Huang,; G. Y. Cao, 2D squaraine-linked polymers with high lithium storage capacity using the first principle methods. ChemistrySelect 2017, 2, 1728-1733.
[65]
S. Wang,; Q. Y. Wang,; P. P. Shao,; Y. Z. Han,; X. Gao,; L. Ma,; S. Yuan,; X. J. Ma,; J. W. Zhou,; X. Feng. et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J. Am. Chem. Soc. 2017, 139, 4258-4261.
[66]
F. Xu,; S. B. Jin,; H. Zhong,; D. C. Wu,; X. Q. Yang,; X. Chen,; H. Wei,; R. W. Fu,; D. L. Jiang, Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage. Sci. Rep. 2015, 5, 8225.
[67]
Z. H. Chen,; S. Li,; Y. Zhao,; M. F. A. Aboud,; I. Shakir,; Y. X. Xu, Ultrafine FeS2 nanocrystals/porous nitrogen-doped carbon hybrid nanospheres encapsulated in three-dimensional graphene for simultaneous efficient lithium and sodium ion storage. J. Mater. Chem. A 2019, 7, 26342-26350.
[68]
J. H. Lang,; J. R. Li,; F. Zhang,; X. Ding,; J. A. Zapien,; Y. B. Tang, Sodium-ion hybrid battery combining an anion-intercalation cathode with an adsorption-type anode for enhanced rate and cycling performance. Batter. Supercaps 2019, 2, 440-447.
[69]
S. Zhao,; B. Qin,; K. Y. Chan,; C. Y. V. Li,; F. J. Li, Recent development of aprotic Na-O2 batteries. Batter. Supercaps 2019, 2, 725-742.
[70]
W. Liu,; X. Luo,; Y. Bao,; Y. P. Liu,; G. H. Ning,; I. Abdelwahab,; L. J. Li,; C. T. Nai,; Z. G. Hu,; D. Zhao, et al. A two-dimensional conjugated aromatic polymer via C-C coupling reaction. Nat. Chem. 2017, 9, 563-570.
[71]
H. Y. Duan,; P. B. Lyu,; J. J. Liu,; Y. L. Zhao,; Y. X. Xu, Semiconducting crystalline two-dimensional polyimide nanosheets with superior sodium storage properties. ACS Nano 2019, 13, 2473-2480.
[72]
C. Z. Yuan,; H. B. Wu,; Y. Xie,; X. W. Lou, Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed. 2014, 53, 1488-1504.
[73]
Y. G. Wang,; Y. F. Song,; Y. Y. Xia, Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925-5950.
[74]
J. F. Sun,; L. Z. Guo,; X. Sun,; J. Y. Zhang,; L. R. Hou,; L. Li,; S. H. Yang,; C. Z. Yuan, One-dimensional nanostructured pseudocapacitive materials: Design, synthesis and applications in supercapacitors. Batter. Supercaps 2019, 2, 820-841.
[75]
F. Xu,; H. Xu,; X. Chen,; D. C. Wu,; Y. Wu,; H. Liu,; C. Gu,; R. W. Fu,; D. L. Jiang, Radical covalent organic frameworks: A general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage. Angew. Chem., Int. Ed. 2015, 54, 6814-6818.
[76]
W. Raza,; F. Ali,; N. Raza,; Y. W. Luo,; K. H. Kim,; J. H. Yang,; S. Kumar,; A. Mehmood,; E. E. Kwon, Recent advancements in supercapacitor technology. Nano Energy 2018, 52, 441-473.
[77]
C. R. DeBlase,; K. E. Silberstein,; T. T. Truong,; H. D. Abruña,; W. R. Dichtel, β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 2013, 135, 16821-16824.
[78]
A. M. Khattak,; Z. A. Ghazi,; B. Liang,; N. A. Khan,; A. Iqbal,; L. S. Li,; Z. Y. Tang, A redox-active 2D covalent organic framework with pyridine moieties capable of faradaic energy storage. J. Mater. Chem. A 2016, 4, 16312-16317.
[79]
S. Chandra,; D. R. Chowdhury,; M. Addicoat,; T. Heine,; A. Paul,; R. Banerjee, Molecular level control of the capacitance of two- dimensional covalent organic frameworks: Role of hydrogen bonding in energy storage materials. Chem. Mater. 2017, 29, 2074-2080.
[80]
C. R. DeBlase,; K. Hernández-Burgos,; K. E. Silberstein,; G. G. Rodríguez- Calero,; R. P. Bisbey,; H. D. Abruña,; W. R. Dichtel, Rapid and efficient redox processes within 2D covalent organic framework thin films. ACS Nano 2015, 9, 3178-3183.
[81]
Y. Yusran,; H. Li,; X. Y. Guan,; D. H. Li,; L. X. Tang,; M. Xue,; Z. B. Zhuang,; Y. S. Yan,; V. Valtchev,; S. L. Qiu, et al. Exfoliated mesoporous 2D covalent organic frameworks for high-rate electrochemical double-layer capacitors. Adv. Mater. 2020, 32, 1907289.
[82]
S. Y. Jing,; L. S. Zhang,; L. Luo,; J. J. Lu,; S. B. Yin,; P. K. Shen,; P. Tsiakaras, N-Doped porous molybdenum carbide nanobelts as efficient catalysts for hydrogen evolution reaction. Appl. Catal. B Environ. 2018, 224, 533-540.
[83]
S. Bhunia,; S. K. Das,; R. Jana,; S. C. Peter,; S. Bhattacharya,; M. Addicoat,; A. Bhaumik,; A. Pradhan, Electrochemical stimuli-driven facile metal-free hydrogen evolution from pyrene-porphyrin-based crystalline covalent organic framework. ACS Appl. Mater. Interfaces 2017, 9, 23843-23851.
[84]
B. C. Patra,; S. Khilari,; R. N. Manna,; S. Mondal,; D. Pradhan,; A. Pradhan,; A. Bhaumik, A metal-free covalent organic polymer for electrocatalytic hydrogen evolution. ACS Catal. 2017, 7, 6120-6127.
[85]
R. H. Dong,; M. Pfeffermann,; H. W. Liang,; Z. K. Zheng,; X. Zhu,; J. Zhang,; X. L. Feng, Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 12058-12063.
[86]
H. Sahabudeen,; H. Y. Qi,; B. A. Glatz,; D. Tranca,; R. H. Dong,; Y. Hou,; T. Zhang,; C. Kuttner,; T. Lehnert,; G. Seifert, et al. Wafer- sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness. Nat. Commun. 2016, 7, 13461.
[87]
L. Wang,; Y. Zhang,; L. Chen,; H. X. Xu,; Y. J. Xiong, 2D polymers as emerging materials for photocatalytic overall water splitting. Adv. Mater. 2018, 30, 1801955
[88]
V. S. Vyas,; V. W. H. Lau,; B. V. Lotsch, Soft photocatalysis: Organic polymers for solar fuel production. Chem. Mater. 2016, 28, 5191-5204.
[89]
X. L. Zhang,; L. Wang,; L. Chen,; X. Y. Ma,; H. X. Xu, Ultrathin 2D conjugated polymer nanosheets for solar fuel generation. Chin. J. Polym. Sci. 2019, 37, 101-114.
[90]
R. Eisenberg,; H. B. Gray, Preface on making oxygen. Inorg. Chem. 2008, 47, 1697-1699.
[91]
L, Wang,; Y. Y. Wan,; Y. J. Ding,; Y. C. Niu,; Y. J. Xiong,; X. J. Wu,; H. X. Xu, Photocatalytic oxygen evolution from low-bandgap conjugated microporous polymer nanosheets: A combined first-principles calculation and experimental study. Nanoscale 2017, 9, 4090-4096.
[92]
L. Wang,; Y. Y. Wan,; Y. J. Ding,; S. K. Wu,; Y. Zhang,; X. L. Zhang,; G. Q. Zhang,; Y. J. Xiong,; X. J. Wu,; J. L. Yang, et al. X. Conjugated microporous polymer nanosheets for overall water splitting using visible light. Adv. Mater. 2017, 29, 1702428.
[93]
L. Wang,; X. S. Zheng,; L. Chen,; Y. J. Xiong,; H. X. Xu, van der Waals heterostructures comprised of ultrathin polymer nanosheets for efficient Z-scheme overall water splitting. Angew. Chem., Int. Ed. 2018, 57, 3454-3458.
[94]
Y. Chen,; G. Jia,; Y. F. Hu,; G. Z. Fan,; Y. H. Tsang,; Z. S. Li,; Z. G. Zou, Two-dimensional nanomaterials for photocatalytic CO2 reduction to solar fuels. Sustainable Energy Fuels 2017, 1, 1875-1898.
[95]
A. Hasani,; M. Tekalgne,; Q. Van Le,; H. W. Jang,; S. Y. Kim, Two- dimensional materials as catalysts for solar fuels: Hydrogen evolution reaction and CO2 reduction. J. Mater. Chem. A 2019, 7, 430-454
[96]
J. N. Qin,; S. B. Wang,; H. Ren,; Y. D. Hou,; X. C. Wang, Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid. Appl. Catal. B Environ. 2015, 179, 1-8.
[97]
M. Zhou,; S. B. Wang,; P. J. Yang,; Z. S. Luo,; R. S. Yuan,; A. M. Asiri,; M. Wakeel,; X. C. Wang, Layered heterostructures of ultrathin polymeric carbon nitride and ZnIn2S4 nanosheets for photocatalytic CO2 reduction. Chem.—Eur. J. 2018, 24, 18529-18534.
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 June 2020
Revised: 07 July 2020
Accepted: 08 July 2020
Published: 25 July 2020
Issue date: June 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

We acknowledge the support by the National Natural Science Foundation of China (Nos. 51873039 and 51673042), the Young Elite Scientist Sponsorship Program by CAST (No. 2017QNRC001), and the fund for post-doctoral program of Henan University to Z. H. C. (No. FJ3050A0670001).

Return