Journal Home > Volume 13 , Issue 11

Large scale synthesis of high-efficiency bifunctional electrocatalyst based on cost-effective and earth-abundant transition metal for overall water splitting in the alkaline environment is indispensable for renewable energy conversion. In this regard, meticulous design of active sites and probing their catalytic mechanism on both cathode and anode with different reaction environment at molecular- scale are vitally necessary. Herein, a coordination environment inheriting strategy is presented for designing low-coordination Ni2+ octahedra (L-Ni-8) atomic interface at a high concentration (4.6 at.%). Advanced spectroscopic techniques and theoretical calculations reveal that the self-matching electron delocalization and localization state at L-Ni-8 atomic interface enable an ideal reaction environment at both cathode and anode. To improve the efficiency of using the self-modification reaction environment at L-Ni-8, all of the structural features, including high atom economy, mass transfer, and electron transfer, are integrated together from atomic-scale to macro-scale. At high current density of 500 mA/cm2, the samples synthesized at gram-scale can deliver low hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) overpotentials of 262 and 348 mV, respectively.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Reaction environment self-modification on low-coordination Ni2+ octahedra atomic interface for superior electrocatalytic overall water splitting

Show Author's information Kaian Sun1,2Lei Zhao1Lingyou Zeng1Shoujie Liu2Houyu Zhu3Yanpeng Li1Zheng Chen2Zewen Zhuang2Zhaoling Li4Zhi Liu1Dongwei Cao3Jinchong Zhao1Yunqi Liu1( )Yuan Pan1( )Chen Chen2( )
State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
College of Science, China University of Petroleum (East China), Qingdao 266580, China
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China

Abstract

Large scale synthesis of high-efficiency bifunctional electrocatalyst based on cost-effective and earth-abundant transition metal for overall water splitting in the alkaline environment is indispensable for renewable energy conversion. In this regard, meticulous design of active sites and probing their catalytic mechanism on both cathode and anode with different reaction environment at molecular- scale are vitally necessary. Herein, a coordination environment inheriting strategy is presented for designing low-coordination Ni2+ octahedra (L-Ni-8) atomic interface at a high concentration (4.6 at.%). Advanced spectroscopic techniques and theoretical calculations reveal that the self-matching electron delocalization and localization state at L-Ni-8 atomic interface enable an ideal reaction environment at both cathode and anode. To improve the efficiency of using the self-modification reaction environment at L-Ni-8, all of the structural features, including high atom economy, mass transfer, and electron transfer, are integrated together from atomic-scale to macro-scale. At high current density of 500 mA/cm2, the samples synthesized at gram-scale can deliver low hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) overpotentials of 262 and 348 mV, respectively.

Keywords: density functional theory, overall water splitting, high current density, atomic interface effect, reaction environment self-modification

References(30)

[1]
Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446-6473.
[2]
Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148-5180.
[3]
Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 2014, 4, 3957-3971.
[4]
Li, H. Y.; Chen, S. M.; Zhang, Y.; Zhang, Q. H.; Jia, X. F.; Zhang, Q.; Gu, L.; Sun, X. M.; Song, L.; Wang, X. Systematic design of superaerophobic nanotube-array electrode comprised of transition- metal sulfides for overall water splitting. Nat. Commun. 2018, 9, 2452.
[5]
Yu, L.; Yang, J. F.; Guan, B. Y.; Lu, Y.; Lou, X. W. Hierarchical hollow nanoprisms based on ultrathin Ni-Fe layered double hydroxide nanosheets with enhanced electrocatalytic activity towards oxygen evolution. Angew. Chem., Int. Ed. 2018, 57, 172-176.
[6]
Kuang, P. Y.; Tong, T.; Fan, K.; Yu, J. G. In situ fabrication of Ni-Mo bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen evolution over a wide pH range. ACS Catal. 2017, 7, 6179-6187.
[7]
Hu, J.; Zhang, C. X.; Jiang, L.; Lin, H.; An, Y. M.; Zhou, D.; Leung, M. K. H.; Yang, S. H. Nanohybridization of MoS2 with layered double hydroxides efficiently synergizes the hydrogen evolution in alkaline media. Joule 2017, 1, 383-393.
[8]
Wang, T. Y.; Nam, G.; Jin, Y.; Wang, X. Y.; Ren, P. J.; Kim, M. G.; Liang, J. S.; Wen, X. D.; Jang, H.; Han, J. T. et al. NiFe (Oxy) hydroxides derived from NiFe disulfides as an efficient oxygen evolution catalyst for rechargeable Zn-air batteries: The effect of surface S residues. Adv. Mater. 2018, 30, 1800757.
[9]
Chen, Z. X.; Leng, K.; Zhao, X. X.; Malkhandi, S.; Tang, W.; Tian, B. B.; Dong, L.; Zheng, L. R.; Lin, M.; Yeo, B. S. et al. Interface confined hydrogen evolution reaction in zero valent metal nanoparticles- intercalated molybdenum disulfide. Nat. Commun. 2017, 8, 14548.
[10]
Liu, Y.; Ying, Y. R.; Fei, L. F.; Liu, Y.; Hu, Q. Z.; Zhang, G. G.; Pang, S. Y.; Lu, W.; Mak, C. L.; Luo, X. et al. Valence engineering via selective atomic substitution on tetrahedral sites in spinel oxide for highly enhanced oxygen evolution catalysis. J. Am. Chem. Soc. 2019, 141, 8136-8145.
[11]
Deng, J.; Li, H. B.; Wang, S. H.; Ding, D.; Chen, M. S.; Liu, C.; Tian, Z. Q.; Novoselov, K. S.; Ma, C.; Deng, D. H. et al. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nat. Commun. 2017, 8, 14430.
[12]
Sun, K. A.; Liu, Y. Q.; Pan, Y.; Zhu, H. Y.; Zhao, J. C.; Zeng, L. Y.; Liu, Z.; Liu, C. G. Targeted bottom-up synthesis of 1T-phase MoS2 arrays with high electrocatalytic hydrogen evolution activity by simultaneous structure and morphology engineering. Nano Res. 2018, 11, 4368-4379.
[13]
Attanayake, N. H.; Thenuwara, A. C.; Patra, A.; Aulin, Y. V.; Tran, T. M.; Chakraborty, H.; Borguet, E.; Klein, M. L.; Perdew, J. P.; Strongin, D. R. Effect of intercalated metals on the electrocatalytic activity of 1T-MoS2 for the hydrogen evolution reaction. ACS Energy Lett. 2018, 3, 7-13.
[14]
Fang, Y. Q.; Pan, J.; He, J. Q.; Luo, R. C.; Wang, D.; Che, X. L.; Bu, K. J.; Zhao, W.; Liu, P.; Mu, G. et al. Structure Re-determination and superconductivity observation of bulk 1T MoS2. Angew. Chem. 2018, 130, 1246-1249.
[15]
Fominykh, K.; Feckl, J. M.; Sicklinger, J.; Döblinger, M.; Böcklein, S.; Ziegler, J.; Peter, L.; Rathousky, J.; Scheidt, E. W.; Bein, T. et al. Ultrasmall dispersible crystalline nickel oxide nanoparticles as high-performance catalysts for electrochemical water splitting. Adv. Funct. Mater. 2014, 24, 3123-3129.
[16]
Zhuang, L. Z.; Ge, L.; Yang, Y. S.; Li, M. R.; Jia, Y.; Yao, X. D.; Zhu, Z. H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 2017, 29, 1606793.
[17]
Cho, K.; Min, M.; Kim, T. Y.; Jeong, H.; Pak, J.; Kim, J. K.; Jang, J.; Yun, S. J.; Lee, Y. H.; Hong, W. K. et al. Electrical and optical characterization of MoS2 with sulfur vacancy passivation by treatment with alkanethiol molecules. ACS Nano 2015, 9, 8044-8053.
[18]
Feng, J. X.; Wu, J. Q.; Tong, Y. X.; Li, G. R.; Efficient hydrogen evolution on Cu nanodots-decorated Ni3S2 nanotubes by optimizing atomic hydrogen adsorption and desorption. J. Am. Chem. Soc. 2018, 140, 610-617.
[19]
Pan, Y.; Sun, K. A.; Liu, S. J.; Cao, X.; Wu, K. L.; Cheong, W. C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y. Q. et al. Core-shell ZIF-8@ZIF-67- derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610-2618.
[20]
Zhao, Y. F.; Jia, X. D.; Chen, G. B.; Shang, L.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; O’Hare, D.; Zhang, T. R. Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: An active water oxidation electrocatalyst. J. Am. Chem. Soc. 2016, 138, 6517-6524.
[21]
Niemann, W.; Clausen, B. S.; Topsøe, H. X-Ray absorption studies of the Ni environment in Ni-Mo-S. Catal. Lett. 1990, 4, 355-363.
[22]
Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383-1385.
[23]
Sun, K. A.; Zeng, L. Y.; Liu, S. H.; Zhao, L.; Zhu, H. Y.; Zhao, J. C.; Liu, Z.; Cao, D. W.; Hou, Y. C.; Liu, Y. Q. et al. Design of basal plane active MoS2 through one-step nitrogen and phosphorus co-doping as an efficient pH-universal electrocatalyst for hydrogen evolution. Nano Energy 2019, 58, 862-869.
[24]
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.
[25]
Blöchl P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.
[26]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396.
[27]
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
[28]
Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901-9904.
[29]
Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 2007, 607, 83-89.
[30]
Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23-J26.
File
12274_2020_2974_MOESM1_ESM.pdf (4.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 March 2020
Revised: 01 June 2020
Accepted: 06 July 2020
Published: 04 August 2020
Issue date: November 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21676300), the Shandong Provincial Natural Science Foundation (No. ZR2018MB035), the Fundamental Research Funds for the Central Universities (Nos. 19CX02008A and 16CX06007A), PetroChina Innovation Foundation (No. 2019D-5007-0401), Taishan Scholars Program of Shandong Province (No. tsqn201909065) and Tsinghua University Initiative Scientific Research Program.

Return