Journal Home > Volume 14 , Issue 6

The optoelectronic performances of the layered materials are strongly dependent on the thickness of the samples due to the surface effect. As the size of the samples decreases to few nanometers, the surface depletion field and surface defect density are prominent arising from the large surface to volume ratio. For instance, thin two-dimensional (2D) organic-inorganic hybrid perovskite microplates usually exhibit a rather low photoluminescence quantum yield (PLQY), owning to the strong surface effect. Here, we report that the PLQY can be enhanced as large as 28 times in (iso-BA)2PbI4 (BA = C4H9NH3) 2D perovskite thin microplates encapsulated by graphene, resulting in that the PLQY is more than 18% for the microplate with a thickness of 6.7 nm at 78 K. As the thickness of the 2D perovskite microplate increases, the enhancement is gradually reduced and finally vanishes. This observation is in striking contrast to that in monolayer transition metal dichalcogenides (TMDs), when the PLQY is quenched by covering a layer of graphene due to the efficient charge transfer. The enhancement of PLQY in 2D perovskites can be mainly ascribed to the reduced quantum confined Stark effect (QCSE) due to the reduced surface depletion field after covering graphene flake, resulting in the enhanced radiative recombination efficiency. Our findings provide a cost-effective approach to enhance the luminescence, which may pave the way toward high performance light emitting devices based on 2D perovskites.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Giant enhancement of photoluminescence quantum yield in 2D perovskite thin microplates by graphene encapsulation

Show Author's information Wancai Li1Jiaqi Ma1Xue Cheng2Dehui Li1,2 ( )
School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

The optoelectronic performances of the layered materials are strongly dependent on the thickness of the samples due to the surface effect. As the size of the samples decreases to few nanometers, the surface depletion field and surface defect density are prominent arising from the large surface to volume ratio. For instance, thin two-dimensional (2D) organic-inorganic hybrid perovskite microplates usually exhibit a rather low photoluminescence quantum yield (PLQY), owning to the strong surface effect. Here, we report that the PLQY can be enhanced as large as 28 times in (iso-BA)2PbI4 (BA = C4H9NH3) 2D perovskite thin microplates encapsulated by graphene, resulting in that the PLQY is more than 18% for the microplate with a thickness of 6.7 nm at 78 K. As the thickness of the 2D perovskite microplate increases, the enhancement is gradually reduced and finally vanishes. This observation is in striking contrast to that in monolayer transition metal dichalcogenides (TMDs), when the PLQY is quenched by covering a layer of graphene due to the efficient charge transfer. The enhancement of PLQY in 2D perovskites can be mainly ascribed to the reduced quantum confined Stark effect (QCSE) due to the reduced surface depletion field after covering graphene flake, resulting in the enhanced radiative recombination efficiency. Our findings provide a cost-effective approach to enhance the luminescence, which may pave the way toward high performance light emitting devices based on 2D perovskites.

Keywords: photoluminescence, quantum yield, two-dimensional perovskite, quantum confinement, surface depletion field

References(33)

[1]
J. C. Blancon,; A. V. Stier,; H. Tsai,; W. Nie,; C. C. Stoumpos,; B. Traoré,; L. Pedesseau,; M. Kepenekian,; F. Katsutani,; G. T. Noe, et al. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun. 2018, 9, 2254.
[2]
J. Di,; J. Xiong,; H. M. Li,; Z. Liu, Ultrathin 2D photocatalysts: Electronic-structure tailoring, hybridization, and applications. Adv. Mater. 2018, 30, 1704548.
[3]
O. Yaffe,; A. Chernikov,; Z. M. Norman,; Y. Zhong,; A. Velauthapillai,; A. Van Der Zande,; J. S. Owen,; T. F. Heinz, Excitons in ultrathin organic-inorganic perovskite crystals. Phys. Rev. B 2015, 92, 045414.
[4]
Q. Zhang,; L. Q. Chu,; F. Zhou,; W. Ji,; G. Eda, Excitonic properties of chemically synthesized 2D organic-inorganic hybrid perovskite nanosheets. Adv. Mater. 2018, 30, 1704055.
[5]
J. Wang,; R. Su,; J. Xing,; D. Bao,; C. Diederichs,; S. Liu,; T. C. H. Liew,; Z. H. Chen,; Q. H. Xiong, Room temperature coherently coupled exciton-polaritons in two-dimensional organic-inorganic perovskite. ACS Nano 2018, 12, 8382-8389.
[6]
S. Makarov,; A. Furasova,; E. Tiguntseva,; A. Hemmetter,; A. Berestennikov,; A. Pushkarev,; A. Zakhidov,; Y. Kivshar, Halide- perovskite resonant nanophotonics. Adv. Opt. Mater. 2019, 7, 1800784.
[7]
K. Leng,; I. Abdelwahab,; I. Verzhbitskiy,; M. Telychko,; L. Q. Chu,; W. Fu,; X. Chi,; N. Guo,; Z. H. Chen,; Z. X. Chen, et al. Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nat. Mater. 2018, 17, 908-914.
[8]
C. Wang,; Q. Y. He,; U. Halim,; Y. Y. Liu,; E. B. Zhu,; Z. Y. Lin,; H. Xiao,; X. D. Duan,; Z. Y. Feng,; R. Cheng, et al. Monolayer atomic crystal molecular superlattices. Nature 2018, 555, 231-236.
[9]
X. Qi,; Y. P. Zhang,; Q. D. Ou,; S. T. Ha,; C. W. Qiu,; H. Zhang,; Y. B. Cheng,; Q. H. Xiong,; Q. L. Bao, Photonics and optoelectronics of 2D metal-halide perovskites. Small 2018, 14, 1800682.
[10]
Q. Tu,; I. Spanopoulos,; S. Q. Hao,; C. Wolverton,; M. G. Kanatzidis,; G. S. Shekhawat,; V. P. Dravid, Probing strain-induced band gap modulation in 2D hybrid organic-inorganic perovskites. ACS Energy Lett. 2019, 4, 796-802.
[11]
A. Krishna,; S. Gottis,; M. K. Nazeeruddin,; F. Sauvage, Mixed dimensional 2D/3D hybrid perovskite absorbers: The future of perovskite solar cells? Adv. Funct. Mater. 2019, 29, 1806482.
[12]
W. C. Li,; C. Fang,; H. Z. Wang,; S. Wang,; J. Z. Li,; J. Q. Ma,; J. Wang,; H. M. Luo,; D. H. Li, Surface depletion field in 2D perovskite microplates: Structural phase transition, quantum confinement and Stark effect. Nano Res. 2019, 12, 2858-2865.
[13]
W. Chen,; T. G. Andersson, Quantum-confined Stark shift for differently shaped quantum wells. Semicond. Sci. Technol. 1992, 7, 828-836.
[14]
Y. Kim,; D. Choi,; W. J. Woo,; J. B. Lee,; G. H. Ryu,; J. H. Lim,; S. Lee,; Z. Lee,; S. Im,; J. H. Ahn, et al. Synthesis of two-dimensional MoS2/graphene heterostructure by atomic layer deposition using MoF6 precursor. Appl. Surf. Sci. 2019, 494, 591-599.
[15]
B. H. Zhu,; F. F. Wang,; Y. W. Cao,; C. Wang,; J. Wang,; Y. Z. Gu, Nonlinear optical enhancement induced by synergistic effect of graphene nanosheets and CdS nanocrystals. Appl. Phys. Lett. 2016, 108, 252106.
[16]
D. S. Koda,; F. Bechstedt,; M. Marques,; L. K. Teles, Trends on band alignments: Validity of Anderson’s rule in SnS2- and SnSe2-based van der Waals heterostructures. Phys. Rev. B 2018, 97, 165402.
[17]
C. C. Stoumpos,; D. H. Cao,; D. J. Clark,; J. Young,; J. M. Rondinelli,; J. I. Jang,; J. T. Hupp,; M. G. Kanatzidis, Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 2016, 28, 2852-2867.
[18]
S. Wang,; J. Q. Ma,; W. C. Li,; J. Wang,; H. Z. Wang,; H. Z. Shen,; J. Z. Li,; J. Q. Wang,; H. M. Luo,; D. H. Li, Temperature-dependent band gap in two-dimensional perovskites: Thermal expansion interaction and electron-phonon interaction. J. Phys. Chem. Lett. 2019, 10, 2546-2553.
[19]
M. Amani,; D. H. Lien,; D. Kiriya,; J. Xiao,; A. Azcatl,; J. Noh,; S. R. Madhvapathy,; R. Addou,; K. C. Santosh,; M. Dubey, et al. Near-unity photoluminescence quantum yield in MoS2. Science 2015, 350, 1065-1068.
[20]
Y. Narukawa,; S. Saijou,; Y. Kawakami,; S. Fujita,; T. Mukai,; S. Nakamura, Radiative and nonradiative recombination processes in ultraviolet light-emitting diode composed of an In0.02Ga0.98N active layer. Appl. Phys. Lett. 1999, 74, 558-560.
[21]
D. H. Li,; J. Zhang,; Q. H. Xiong, Surface depletion induced quantum confinement in CdS nanobelts. ACS Nano 2012, 6, 5283-5290.
[22]
A. C. E. Chia,; R. R. LaPierre, Analytical model of surface depletion in GaAs nanowires. J. Appl. Phys. 2012, 112, 063705.
[23]
D. H. Lien,; S. Z. Uddin,; M. Yeh,; M. Amani,; H. Kim,; J. W. Ager III,; E. Yablonovitch,; A. Javey, Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science 2019, 364, 468-471.
[24]
D. H. Li,; J. Zhang,; Q. Zhang,; Q. H. Xiong, Electric-field-dependent photoconductivity in CdS nanowires and nanobelts: Exciton ionization, Franz-Keldysh, and Stark effects. Nano Lett. 2012, 12, 2993-2999.
[25]
E. Rothenberg,; M. Kazes,; E. Shaviv,; U. Banin, Electric field induced switching of the fluorescence of single semiconductor quantum rods. Nano Lett. 2005, 5, 1581-1586.
[26]
M. Gerosa,; F. Gygi,; M. Govoni,; G. Galli, The role of defects and excess surface charges at finite temperature for optimizing oxide photoabsorbers. Nat. Mater. 2018, 17, 1122-1127.
[27]
D. Y. Luo,; R. Su,; W. Zhang,; Q. H. Gong,; R. Zhu, Minimizing non- radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 2020, 5, 44-60.
[28]
W. C. Li,; J. Q. Ma,; H. Z. Wang,; C. Fang,; H. M. Luo,; D. H. Li, Biexcitons in 2D (iso-BA)2PbI4 perovskite crystals. Nanophotonics 2020, 9, 2001-2006.
[29]
A. Yang,; J. C. Blancon,; W. Jiang,; H. Zhang,; J. Wong,; E. Yan,; Y. R. Lin,; J. Crochet,; M. G. Kanatzidis,; D. Jariwala, et al. Giant enhancement of photoluminescence emission in WS2-two-dimensional perovskite heterostructures. Nano Lett. 2019, 19, 4852-4860.
[30]
V. A. Hintermayr,; L. Polavarapu,; A. S. Urban,; J. Feldmann, Accelerated carrier relaxation through reduced coulomb screening in two- dimensional halide perovskite nanoplatelets. ACS Nano 2018, 12, 10151-10158.
[31]
Y. Gao,; E. Z. Shi,; S. B. Deng,; S. B. Shiring,; J. M. Snaider,; C. Liang,; B. Yuan,; R. Y. Song,; S. M. Janke,; A. Liebman-Peláez, et al. Molecular engineering of organic-inorganic hybrid perovskites quantum wells. Nat. Chem. 2019, 11, 1151-1157.
[32]
F. Zhou,; I. Abdelwahab,; K. Leng,; K. P. Loh,; W. Ji, 2D perovskites with giant excitonic optical nonlinearities for high-performance sub-bandgap photodetection. Adv. Mater. 2019, 31, 1904155.
[33]
X. F. Song,; J. L. Hu,; H. B. Zeng, Two-dimensional semiconductors: Recent progress and future perspectives. J. Mater. Chem. C 2013, 1, 2952-2969.
File
12274_2020_2971_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 May 2020
Revised: 02 July 2020
Accepted: 04 July 2020
Published: 30 July 2020
Issue date: June 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

The authors acknowledge the support from the National Basic Research Program of China (No. 2018YFA0704403), the National Natural Science Foundation of China (No. 61674060) and Innovation Fund of WNLO. We thank Testing Center of Huazhong University of Science and Technology for the support in thickness measurement.

Return