AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation

Wei Li1Xiaofeng Li1( )Wei Chang1Jing Wu1Pengfei Liu1Jianjun Wang2Xi Yao3Zhong-Zhen Yu1,4( )
State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China
Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
Show Author Information

Graphical Abstract

Abstract

Effective utilization of abundant solar energy for desalination of seawater and purification of wastewater is one of sustainable techniques for production of clean water, helping relieve global water resource shortage. Herein, we fabricate a vertically aligned reduced graphene oxide/Ti3C2Tx MXene (A-RGO/MX) hybrid hydrogel with aligned channels as an independent solar steam generation device for highly efficient solar steam generation. The vertically aligned channels, generated by a liquid nitrogen- assisted directional-freezing process, not only rapidly transport water upward to the evaporation surface for efficient solar steam generation, but also facilitate multiple reflections of solar light inside the channels for efficient solar light absorption. The deliberate slight reduction endows the RGO with plenty of polar groups, decreasing the water vaporization enthalpy effectively and hence accelerating water evaporation efficiently. The MXene sheets, infiltrated inside the A-RGO hydrogel on the basis of Marangoni effect, enhance light absorption capacity and photothermal conversion performance. As a result, the A-RGO/MX hybrid hydrogel achieves a water evaporation rate of 2.09 kg·m-2·h-1 with a high conversion efficiency of 93.5% under 1-sun irradiation. Additionally, this photothermal conversion hydrogel rapidly desalinates seawater and purifies wastewater to generate clean water with outstanding ion rejection rates of above 99% for most ions.

Electronic Supplementary Material

Download File(s)
12274_2020_2970_MOESM1_ESM.pdf (3.2 MB)

References

[1]
Okumus, I.; Dinler, A. Current status of wind energy forecasting and a hybrid method for hourly predictions. Energy Convers. Manag. 2016, 123, 362-371.
[2]
Liu, K. K.; Jiang, Q. S.; Tadepalli, S.; Raliya, R.; Biswas, P.; Naik, R. R.; Singamaneni, S. Wood-graphene oxide composite for highly efficient solar steam generation and desalination. ACS Appl. Mater. Interfaces 2017, 9, 7675-7681.
[3]
Li, Y. J.; Gao, T. T.; Yang, Z.; Chen, C. J.; Kuang, Y. D.; Song, J. W.; Jia, C.; Hitz, E. M.; Yang, B.; Hu, L. B. Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination. Nano Energy 2017, 41, 201-209.
[4]
Ghafurian, M. M.; Niazmand, H.; Ebrahimnia-Bajestan, E.; Taylor, R. A. Wood surface treatment techniques for enhanced solar steam generation. Renew. Energy 2020, 146, 2308-2315.
[5]
Gong, F.; Li, H.; Wang, W. B.; Huang, J. G.; Xia, D. W.; Liao, J. X.; Wu, M. Q.; Papavassiliou, D. V. Scalable, eco-friendly and ultrafast solar steam generators based on one-step melamine-derived carbon sponges toward water purification. Nano Energy 2019, 58, 322-330.
[6]
Hashemi, M. R.; Neill, S. P.; Robins, P. E.; Davies, A. G.; Lewis, M. J. Effect of waves on the tidal energy resource at a planned tidal stream array. Renew. Energy 2015, 75, 626-639.
[7]
Liu, Y. M.; Yu, S. T.; Feng, R.; Bernard, A.; Liu, Y.; Zhang, Y.; Duan, H. Z.; Shang, W.; Tao, P.; Song, C. Y. et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 2015, 27, 2768-2774.
[8]
Xu, W. C.; Hu, X. Z.; Zhuang, S. D.; Wang, Y. X.; Li, X. Q.; Zhou, L.; Zhu, S. N.; Zhu, J. Flexible and salt resistant janus absorbers by electrospinning for stable and efficient solar desalination. Adv. Energy Mater. 2018, 8, 1702884.
[9]
Lou, J. W.; Liu, Y.; Wang, Z. Y.; Zhao, D. W.; Song, C. Y.; Wu, J. B.; Dasgupta, N.; Zhang, W.; Zhang, D.; Tao, P. et al. Bioinspired multifunctional paper-based RGO composites for solar-driven clean water generation. ACS Appl. Mater. Interfaces 2016, 8, 14628-14636.
[10]
He, J. X.; Zhao, G. H.; Mu, P.; Wei, H. J.; Su, Y. N.; Sun, H. X.; Zhu, Z. Q.; Liang, W. D.; Li, A. Scalable fabrication of monolithic porous foam based on cross-linked aromatic polymers for efficient solar steam generation. Sol. Energy Mater. Sol. Cells 2019, 201, 110111.
[11]
Sun, Y.; Gao, J. P.; Liu, Y.; Kang, H. Y.; Xie, M. H.; Wu, F. M.; Qiu, H. X. Copper sulfide-macroporous polyacrylamide hydrogel for solar steam generation. Chem. Eng. Sci. 2019, 207, 516-526.
[12]
Tian, L. M.; Luan, J. Y.; Liu, K. K.; Jiang, Q. S.; Tadepalli, S.; Gupta, M. K.; Naik, R. R. Singamaneni, S. Plasmonic biofoam: A versatile optically active material. Nano Lett. 2016, 16, 609-616.
[13]
Zhou, L.; Tan, Y. L.; Wang, J. Y.; Xu, W. C.; Yuan, Y.; Cai, W. S.; Zhu, S. N.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 2016, 10, 393-398.
[14]
Aydin, K.; Ferry, V. E.; Briggs, R. M.; Atwater, H. A. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2011, 2, 517.
[15]
Ito, Y.; Tanabe, Y.; Han, J. H.; Fujita, T.; Tanigaki, K.; Chen, M. W. Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv. Mater. 2015, 27, 4302-4307.
[16]
Liu, J.; Liu, Q. L.; Ma, D. L.; Yuan, Y.; Yao, J. H.; Zhang, W.; Su, H. L.; Su, Y. S.; Gu, J. J.; Zhang, D. Simultaneously achieving thermal insulation and rapid water transport in sugarcane stems for efficient solar steam generation. J. Mater. Chem. A 2019, 7, 9034-9039.
[17]
Jung, H. S.; Han, J. Y.; Lee, J. H.; Lee, J. H.; Choi, J. M.; Kweon, H. S.; Han, J. H.; Kim, J. H.; Byun, K. M.; Jung, J. H. et al. Enhanced NIR radiation-triggered hyperthermia by mitochondrial targeting. J. Am. Chem. Soc. 2015, 137, 3017-3023.
[18]
Wang, W. L.; Niu, J. F.; Guo, J. Y.; Yin, L. F.; Huang, H. M. In situ synthesis of PPy-FexOy-CTS nanostructured gel membrane for highly efficient solar steam generation. Sol. Energy Mater. Sol. Cells 2019, 201, 110046.
[19]
Yin, X. Y.; Zhang, Y.; Guo, Q. Q.; Cai, X. B.; Xiao, J. F.; Ding, Z. F.; Yang, J. Macroporous double-network hydrogel for high-efficiency solar steam generation under 1 sun illumination. ACS Appl. Mater. Interfaces 2018, 10, 10998-11007.
[20]
Li, X. Q.; Xu, W. C.; Tang, M. Y.; Zhou, L.; Zhu, B.; Zhu, S. N.; Zhu, J. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. USA 2016, 113, 13953-13958.
[21]
Zhu, M. W.; Li, Y. J.; Chen, F. J.; Zhu, X. Y.; Dai, J. Q.; Li, Y. F.; Yang, Z.; Yan, X. J.; Song, J. W.; Wang, Y. B. et al. Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 2018, 8, 1701028.
[22]
Xu, Z.; Liu, Y. J.; Zhao, X. L.; Peng, L.; Sun, H. Y.; Xu, Y.; Ren, X. B.; Jin, C. H.; Xu, P.; Wang, M. et al. Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv. Mater. 2016, 28, 6449-6456.
[23]
Huang, R. L.; Huang, M. L.; Li, X. F.; An, F.; Koratkar, N.; Yu, Z. Z. Porous graphene films with unprecedented elastomeric scaffold-like folding behavior for foldable energy storage devices. Adv. Mater. 2018, 30, 1707025.
[24]
Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248-4253.
[25]
Yue, Y.; Liu, N. S.; Ma, Y. N.; Wang, S. L.; Liu, W. J.; Luo, C.; Zhang, H.; Cheng, F.; Rao, J. Y.; Hu, X. K. et al. Highly self- healable 3D microsupercapacitor with MXene-graphene composite aerogel. ACS Nano 2018, 12, 4224-4232.
[26]
Liu, J.; Zhang, H. B.; Sun, R. H.; Liu, Y. F.; Liu, Z. S.; Zhou, A. G.; Yu, Z. Z. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1702367.
[27]
Zhou, Z. H.; Liu, J. Z.; Zhang, X. X.; Tian, D.; Zhan, Z. Y.; Lu, C. H. Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding. Adv. Mater. Interfaces 2019, 6, 1802040.
[28]
Zhao, J. Q.; Yang, Y. W.; Yang, C. H.; Tian, Y. P.; Han, Y.; Liu, J.; Yin, X. T.; Que, W. Q. A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination. J. Mater. Chem. A 2018, 6, 16196-16204.
[29]
Zhao, X.; Zha, X. J.; Pu, J. H.; Bai, L.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Macroporous three-dimensional MXene architectures for highly efficient solar steam generation. J. Mater. Chem. A 2019, 7, 10446-10455.
[30]
Zha, X. J.; Zhao, X.; Pu, J. H.; Tang, L. S.; Ke, K.; Bao, R. Y.; Bai, L.; Liu, Z. Y.; Yang, M. B.; Yang, W. Flexible anti-biofouling MXene/cellulose fibrous membrane for sustainable solar-driven water purification. ACS Appl. Mater. Interfaces 2019, 11, 36589-36597.
[31]
Zhao, X.; Zha, X. J.; Tang, L. S.; Pu, J. H.; Ke, K.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Self-assembled core-shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation. Nano Res. 2020, 13, 255-264.
[32]
Zhang, P. P.; Liao, Q. H.; Yao, H. Z.; Cheng, H. H.; Huang, Y. X.; Yang, C.; Jiang, L.; Qu, L. T. Three-dimensional water evaporation on a macroporous vertically aligned graphene pillar array under one sun. J. Mater. Chem. A 2018, 6, 15303-15309.
[33]
Zhao, X.; Peng, L. M.; Tang, C. Y.; Pu, J. H.; Zha, X. J.; Ke, K.; Bao, R. Y.; Yang, M. B.; Yang, W. All-weather-available, continuous steam generation based on the synergistic photo-thermal and electro- thermal conversion by MXene-based aerogels. Mater. Horiz. 2020, 7, 855-865.
[34]
Ju, M. M.; Yang, Y. W.; Zhao, J. Q.; Yin, X. T.; Wu, Y. T.; Que, W. X. Macroporous 3D MXene architecture for solar-driven interfacial water evaporation. J. Adv. Dielect. 2019, 9, 1950047.
[35]
Zhang, P. P.; Li, J.; Lv, L. X.; Zhao, Y.; Qu, L. T. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 2017, 11, 5087-5093.
[36]
Zhang, Q.; Yi, G.; Fu, Z.; Yu, H. T.; Chen, S.; Quan, X. Vertically aligned janus MXene-based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano 2019, 13, 13196-13207.
[37]
Zhou, X. Y.; Zhao, F.; Guo, Y. H.; Zhang, Y.; Yu, G. H. A hydrogel- based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 2018, 11, 1985-1992.
[38]
Li, R. Y.; Zhang, L. B.; Shi, L.; Wang, P. MXene Ti3C2: An effective 2D light-to-heat conversion material. ACS Nano 2017, 11, 3752-3759.
[39]
Zhao, D.; Huang, J. C.; Zhong, Y.; Li, K.; Zhang, L. N.; Cai, J. High-strength and high-toughness double-cross-linked cellulose hydrogels: A new strategy using sequential chemical and physical cross-linking. Adv. Funct. Mater. 2016, 26, 6279-6287.
[40]
Yang, J.; Li, X. F.; Han, S.; Zhang, Y. T.; Min, P.; Koratkar, N.; Yu, Z. Z. Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability. J. Mater. Chem. A 2016, 4, 18067-18074.
[41]
Chen, Y.; Xie, X. Q.; Xin, X.; Tang, Z. R.; Xu, Y. J. Ti3C2Tx-based three-dimensional hydrogel by a graphene oxide-assisted self- convergence process for enhanced photoredox catalysis. ACS Nano 2019, 13, 295-304.
[42]
Yan, J.; Ren, C. E.; Maleski, K.; Hatter, C. B.; Anasori, B.; Urbankowski, P.; Sarycheva, A.; Gogotsi, Y. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 2017, 27, 1701264.
[43]
Yang, J.; Li, X. F.; Han, S.; Yang, R. Z.; Min, P.; Yu, Z. Z. High- quality graphene aerogels for thermally conductive phase change composites with excellent shape stability. J. Mater. Chem. A 2018, 6, 5880-5886.
[44]
VahidMohammadi, A.; Moncada, J.; Chen, H. Z.; Kayali, E.; Orangi, J.; Carrero, C. A.; Beidaghi, M. Thick and freestanding MXene/PANI pseudocapacitive electrodes with ultrahigh specific capacitance. J. Mater. Chem. A 2018, 6, 22123-22133.
[45]
Shao, Y. L.; El-Kady, M. F.; Lin, C. W.; Zhu, G. Z.; Marsh, K. L.; Hwang, J. Y.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z.; Kaner, R. B. 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors. Adv. Mater. 2016, 28, 6719-6726.
[46]
Qiu, L.; Liu, J. Z.; Chang, S. L. Y.; Wu, Y. Z.; Li, D. Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 2012, 3, 1241.
[47]
Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324-4330.
[48]
Tang, G. Q.; Jiang, Z. G.; Li, X. F.; Zhang, H. B.; Hong, S.; Yu, Z. Z. Electrically conductive rubbery epoxy/diamine-functionalized graphene nanocomposites with improved mechanical properties. Compos. Part B: Eng. 2014, 67, 564-570.
[49]
Tang, G. Q.; Jiang, Z. G.; Li, X. F.; Zhang, H. B.; Dasari, A.; Yu, Z. Z. Three dimensional graphene aerogels and their electrically conductive composites. Carbon 2014, 77, 592-599.
[50]
Zhou, T. Z.; Wu, C.; Wang, Y. L.; Tomsia, A. P.; Li, M. Z.; Saiz, E.; Fang, S. L.; Baughman, R. H.; Jiang, L.; Cheng, Q. F. Super-tough MXene-functionalized graphene sheets. Nat. Commun. 2020, 11, 2077.
[51]
Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137-1140.
[52]
Shao, Y.; Jiang, Z. P.; Zhang, Y. J.; Wang, T. Z.; Zhao, P.; Zhang, Z.; Yuan, J. Y.; Wang, H. All-poly(ionic liquid) membrane-derived porous carbon membranes: Scalable synthesis and application for photothermal conversion in seawater desalination. ACS Nano 2018, 12, 11704-11710.
[53]
Zhu, M. W.; Li, Y. J.; Chen, G.; Jiang, F.; Yang, Z.; Luo, X. G.; Wang, Y. B.; Lacey, S. D.; Dai, J. Q.; Wang, C. W. et al. Tree-inspired design for high-efficiency water extraction. Adv. Mater. 2017, 29, 1704107.
[54]
Li, T.; Liu, H.; Zhao, X. P.; Chen, G.; Dai, J. Q.; Pastel, G.; Jia, C.; Chen, C. J.; Hitz, E.; Siddhartha, D. et al. Scalable and highly efficient mesoporous wood-based solar steam generation device: Localized heat, rapid water transport. Adv. Funct. Mater. 2018, 28, 1707134.
[55]
Zhang, L. B.; Tang, B.; Wu, J. B.; Li, R. Y.; Wang, P. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 2015, 27, 4889-4894.
[56]
Chen, C. J.; Li, Y. J.; Song, J. W.; Yang, Z.; Kuang, Y. D.; Hitz, E.; Jia, C.; Gong, A.; Jiang, F.; Zhu, J. Y. et al. Highly flexible and efficient solar steam generation device. Adv. Mater. 2017, 29, 1701756.
[57]
Cui, L. F.; Zhang, P. P.; Xiao, Y. K.; Liang, Y.; Liang, H. X.; Cheng, Z. H.; Qu, L. T. High rate production of clean water based on the combined photo-electro-thermal effect of graphene architecture. Adv. Mater. 2018, 30, 1706805.
[58]
Zhou, L.; Tan, Y. L.; Ji, D. X.; Zhu, B.; Zhang, P.; Xu, J.; Gan, Q. Q.; Yu, Z. F.; Zhu, J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2016, 2, e1501227.
[59]
Zhao, F.; Zhou, X. Y.; Shi, Y.; Qian, X.; Alexander, M.; Zhao, X. P.; Mendez, S.; Yang, R. G.; Qu, L. T.; Yu, G. H. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 2018, 13, 489-495.
[60]
Wang, Y. C.; Wang, C. Z.; Song, X. J.; Megarajan, S. K.; Jiang, H. Q. A facile nanocomposite strategy to fabricate a rGO-MWCNT photothermal layer for efficient water evaporation. J. Mater. Chem. A 2018, 6, 963-971.
[61]
Hua, Z. T.; Li, B.; Li, L. L.; Yin, X. Y.; Chen, K. Z.; Wang, W. Designing a novel photothermal material of hierarchical microstructured copper phosphate for solar evaporation enhancement. J. Phys. Chem. C 2017, 121, 60-69.
[62]
Kitano, H.; Tada, S.; Mori, T.; Takaha, K.; Gemmei-Ide, M.; Tanaka, M.; Fukuda, M.; Yokoyama, Y. Correlation between the structure of water in the vicinity of carboxybetaine polymers and their blood- compatibility. Langmuir 2005, 21, 11932-11940.
[63]
Terada, T.; Maeda, Y.; Kitano, H. Raman spectroscopic study on water in polymer gels. J. Phys. Chem. 1993, 97, 3619-3622.
[64]
Sekine, Y.; Ikeda-Fukazawa, T. Structural changes of water in a hydrogel during dehydration. J. Chem. Phys. 2009, 130, 034501.
[65]
Okumura, M.; Yeh, L. I.; Myers, J. D.; Lee, Y. T. Infrared spectra of the solvated hydronium ion: Vibrational predissociation spectroscopy of mass-selected H3O+·(H2O)n·(H2)m. J. Phys. Chem. 1990, 94, 3416-3427.
[66]
Miyazaki, M.; Fujii, A.; Ebata, T.; Mikami, N. Infrared spectroscopic evidence for protonated water clusters forming nanoscale cages. Science 2004, 304, 1134-1137.
[67]
Jiang, J. C.; Wang, Y. S.; Chang, H. C.; Lin, S. H.; Lee, Y. T.; Niedner-Schatteburg, G.; Chang, H. C. Infrared spectra of H+(H2O)5-8 clusters: Evidence for symmetric proton hydration. J. Am. Chem. Soc. 2000, 122, 1398-1410.
[68]
An, F.; Li, X. F,; Min, P.; Liu, P. F.; Jiang, Z. G.; Yu, Z. Z. Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities. ACS Appl. Mater. Interfaces 2018, 10, 17383-17392.
[69]
Ghasemi, H.; Ni, G.; Marconnet, A. M.; Loomis, J.; Yerci, S.; Miljkovic, N.; Chen, G. Solar steam generation by heat localization. Nat. Commun. 2014, 5, 4449.
Nano Research
Pages 3048-3056
Cite this article:
Li W, Li X, Chang W, et al. Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Research, 2020, 13(11): 3048-3056. https://doi.org/10.1007/s12274-020-2970-y
Topics:

1035

Views

204

Crossref

N/A

Web of Science

206

Scopus

18

CSCD

Altmetrics

Received: 22 March 2020
Revised: 29 May 2020
Accepted: 03 July 2020
Published: 18 August 2020
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Return