Journal Home > Volume 13 , Issue 11

In the present work, we report the growth of all-inorganic perovskite nanorings with dual compositional phases of CsPbBr3 and CsPb2Br5 via a facile hot injection process. The self-coiling of CsPbBr3-CsPb2Br5 nanorings is driven by the axial stress generated on the outside surface of the as-synthesized nanobelts, which results from the lattice mismatch during the transformation of CsPbBr3 to CsPb2Br5. The tailored growth of nanorings could be achieved by adjusting the key experimental parameters such as reaction temperature, reaction time and stirring speed during the cooling process. The photoluminescence intensity and quantum yield of nanorings are higher than those of CsPbBr3 nanobelts, accompanied by a narrower full width at half maximum (FWHM), suggesting their high potential for constructing self-assembled optoelectronic nanodevices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

All-inorganic dual-phase halide perovskite nanorings

Show Author's information Yapeng Zheng1,2Tao Yang1Zhi Fang1,2Minghui Shang2Zuotai Zhang3Jack Yang4,5Jiaxin Fan4Weiyou Yang2( )Xinmei Hou1( )Tom Wu4( )
Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
Institute of Materials, Ningbo University of Technology, Ningbo 315211, China
School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China
School of Material Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
Australian Nuclear Science and Technology Organization, New Illawarra Road, NSW 2234, Australia

Abstract

In the present work, we report the growth of all-inorganic perovskite nanorings with dual compositional phases of CsPbBr3 and CsPb2Br5 via a facile hot injection process. The self-coiling of CsPbBr3-CsPb2Br5 nanorings is driven by the axial stress generated on the outside surface of the as-synthesized nanobelts, which results from the lattice mismatch during the transformation of CsPbBr3 to CsPb2Br5. The tailored growth of nanorings could be achieved by adjusting the key experimental parameters such as reaction temperature, reaction time and stirring speed during the cooling process. The photoluminescence intensity and quantum yield of nanorings are higher than those of CsPbBr3 nanobelts, accompanied by a narrower full width at half maximum (FWHM), suggesting their high potential for constructing self-assembled optoelectronic nanodevices.

Keywords: CsPbBr3, all-inorganic perovskite, CsPb2Pb5, dual-phase, nanorings

References(47)

[1]
Wu, S. T.; Shang, Y. Y.; Cao, A. Y. Mechanical force-induced assembly of one-dimensional nanomaterials. Nano Res. 2020, 13, 1191-1204.
[2]
Fanizza, E.; Cascella, F.; Altamura, D.; Giannini, C.; Panniello, A.; Triggiani, L.; Panzarea, F.; Depalo, N.; Grisorio, R.; Suranna, G. P. et al. Post-synthesis phase and shape evolution of CsPbBr3 colloidal nanocrystals: The role of ligands. Nano Res. 2019, 12, 1155-1166.
[3]
Xiao, Y. C.; Tian, Y. Y.; Sun, S. J.; Chen, C. L.; Wang, B. G. Growth modulation of simultaneous epitaxy of ZnO obliquely aligned nanowire arrays and film on r-plane sapphire substrate. Nano Res. 2018, 11, 3864-3876.
[4]
Sum, T. C.; Mathews, N. Advancements in perovskite solar cells: Photophysics behind the photovoltaics. Energy Environ. Sci. 2014, 7, 2518-2534.
[5]
Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 2014, 26, 1584-1589.
[6]
Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692-3696.
[7]
Dong, Q. F.; Fang, Y. J.; Shao, Y. C.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. S. Electron-hole diffusion lengths >175 μm in solution- grown CH3NH3PbI3 single crystals. Science 2015, 347, 967-970.
[8]
Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron- hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341-344.
[9]
Li, F.; Wang, H.; Kufer, D.; Liang, L. L.; Yu, W. L.; Alarousu, E.; Ma, C.; Li, Y. Y.; Liu, Z. X.; Liu, C. X. et al. Ultrahigh carrier mobility achieved in photoresponsive hybrid perovskite films via coupling with single-walled carbon nanotubes. Adv. Mater. 2017, 29, 1602432.
[10]
Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room- temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435-2445.
[11]
Waleed, A.; Tavakoli, M. M.; Gu, L. L.; Hussain, S.; Zhang, D. Q.; Poddar, S.; Wang, Z. Y.; Zhang, R. J.; Fan, Z. Y. All inorganic cesium lead iodide perovskite nanowires with stabilized cubic phase at room temperature and nanowire array-based photodetectors. Nano Lett. 2017, 17, 4951-4957.
[12]
Fu, Y. P.; Zhu, H. M.; Stoumpos, C. C.; Ding, Q.; Wang, J.; Kanatzidis, M. G.; Zhu, X. Y.; Jin, S. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). ACS Nano 2016, 10, 7963-7972.
[13]
Shahiduzzaman, M.; Yonezawa, K.; Yamamoto, K.; Ripolles, T. S.; Karakawa, M.; Kuwabara, T.; Takahashi, K.; Hayase, S.; Taima, T. Improved reproducibility and intercalation control of efficient planar inorganic perovskite solar cells by simple alternate vacuum deposition of PbI2 and CsI. ACS Omega 2017, 2, 4464-4469.
[14]
Du, W. N.; Zhang, S.; Shi, J.; Chen, J.; Wu, Z. Y.; Mi, Y.; Liu, Z. X.; Li, Y. Z.; Sui, X. Y.; Wang, R. et al. Strong exciton-photon coupling and lasing behavior in all-inorganic CsPbBr3 micro/nanowire Fabry- Pérot cavity. ACS Photonics 2018, 5, 2051-2059.
[15]
Zhang, D. D.; Eaton, S. W.; Yu, Y.; Dou, L. T.; Yang, P. D. Solution- phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc. 2015, 137, 9230-9233.
[16]
Akkerman, Q. A.; Motti, S. G.; Srimath Kandada, A. R.; Mosconi, E.; D'Innocenzo, V.; Bertoni, G.; Marras, S.; Kamino, B. A.; Miranda, L.; De Angelis, F. et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 2016, 138, 1010-1016.
[17]
Liu, Z. X.; Mi, Y.; Guan, X. W.; Su, Z. C.; Liu, X. F.; Wu, T. Morphology-tailored halide perovskite platelets and wires: From synthesis, properties to optoelectronic devices. Adv. Opt. Mater. 2018, 6, 1800413.
[18]
Lin, C. H.; Kang, C. Y.; Wu, T. Z.; Tsai, C. L.; Sher, C. W.; Guan, X. W.; Lee, P. T.; Wu, T.; Ho, C. H.; Kuo, H. C. et al. Giant optical anisotropy of perovskite nanowire array films. Adv. Funct. Mater. 2020, 30, 1909275.
[19]
Fu, P. F.; Shan, Q. S.; Shang, Y. Q.; Song, J. Z.; Zeng, H. B.; Ning, Z. J.; Gong, J. K. Perovskite nanocrystals: Synthesis, properties and applications. Sci. Bull. 2017, 62, 369-380.
[20]
Deng, W.; Zhang, X. J.; Huang, L. M.; Xu, X. Z.; Wang, L.; Wang, J. C.; Shang, Q. X.; Lee, S. T.; Jie, J. S. Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability. Adv. Mater. 2016, 28, 2201-2208.
[21]
Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 2015, 27, 7162-7167.
[22]
Song, J. Z.; Xu, L. M.; Li, J. H.; Xue, J.; Dong, Y. H.; Li, X. M.; Zeng, H. B. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv. Mater. 2016, 28, 4861-4869.
[23]
Shamsi, J.; Dang, Z. Y.; Bianchini, P.; Canale, C.; Di Stasio, F.; Brescia, R.; Prato, M.; Manna, L. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. J. Am. Chem. Soc. 2016, 138, 7240-7243.
[24]
Kong, X. Y.; Wang, Z. L. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett. 2003, 3, 1625-1631.
[25]
Xiang, Y. K.; Yong, D.; Yang, R. S.; Zhong, L. W. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science 2004, 303, 1348-1351.
[26]
Wang, H. T.; Wu, T. Formation of complex nanostructures driven by polar surfaces. J. Mater. Chem. 2011, 21, 15095-15099.
[27]
Cai, K.; Shi, J.; Liu, L. N.; Qin, Q. H. Fabrication of an ideal nanoring from a black phosphorus nanoribbon upon movable bundling carbon nanotubes. Nanotechnology 2017, 28, 385603.
[28]
Zhu, X. H.; Evans, P. R.; Byrne, D.; Schilling, A.; Douglas, C.; Pollard, R. J.; Bowman, R. M.; Gregg, J. M.; Morrison, F. D.; Scott, J. F. Perovskite lead zirconium titanate nanorings: Towards nanoscale ferroelectric “solenoids”? Appl. Phys. Lett. 2006, 89, 122913.
[29]
Yang, W. Y.; Cheng, X. M.; Wang, H. T.; Xie, Z. P.; Xing, F.; An, L. N. Bundled silicon nitride nanorings. Cryst. Growth Des. 2008, 8, 3921-3923.
[30]
Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635-5640.
[31]
Acharyya, P.; Pal, P.; Samanta, P. K.; Sarkar, A.; Pati, S. K.; Biswas, K. Single pot synthesis of indirect band gap 2D CsPb2Br5 nanosheets from direct band gap 3D CsPbBr3 nanocrystals and the origin of their luminescence properties. Nanoscale 2019, 11, 4001-4007.
[32]
Chen, F.; Xu, C. X.; Xu, Q. Y.; Zhu, Y. Z.; Qin, F. F.; Zhang, W.; Zhu, Z.; Liu, W.; Shi, Z. L. Self-assembled growth of ultrastable CH3NH3PbBr3 perovskite milliwires for photodetectors. ACS Appl. Mater. Interfaces 2018, 10, 25763-25769.
[33]
Zhang, X. L.; Xu, B.; Zhang, J. B.; Gao, Y.; Zheng, Y. J.; Wang, K.; Sun, X. W. All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: Dual-phase CsPbBr3-CsPb2Br5 composites. Adv. Funct. Mater. 2016, 26, 4595-4600.
[34]
Pymatgen Development Team. Pymatgen (Python Materials Genomics)[Online]. https://pymatgen.org/pymatgen.analysis.substrate_analyzer.html?highlight=substrate#module-pymatgen.analysis.substrate_analyzer (accessed 5 March 2020).
DOI
[35]
Zur, A.; McGill, T. C. Lattice match: An application to heteroepitaxy. J. Appl. Phys. 1984, 55, 378-386.
[36]
Ong, S. P.; Richards, W. D.; Jain, A.; Hautier, G.; Kocher, M.; Cholia, S.; Gunter, D.; Chevrier, V. L.; Persson, K. A.; Ceder, G. Python materials genomics (pymatgen): A robust, open-source python library for materials analysis. Comput. Mater. Sci. 2013, 68, 314-319.
[37]
Kim, S. W.; Lee, M.; Jang, H.; Lee, H. J.; Ko, D. H. Effect of thermal annealing on the strain and microstructures of in-situ phosphorus- doped Si1-xCx films grown on blanket and patterned silicon wafers. J. Alloys Compd. 2019, 790, 799-808.
[38]
Li, X. M.; Cao, F.; Yu, D. J.; Chen, J.; Sun, Z. G.; Shen, Y. L.; Zhu, Y.; Wang, L.; Wei, Y.; Wu, Y. et al. All inorganic halide perovskites nanosystem: Synthesis, structural features, optical properties and optoelectronic applications. Small 2017, 13, 1603996.
[39]
Dursun, I.; De Bastiani, M.; Turedi, B.; Alamer, B.; Shkurenko, A.; Yin, J.; El-Zohry, A. M.; Gereige, I.; AlSaggaf, A.; Mohammed, O. F. et al. CsPb2Br5 single crystals: Synthesis and characterization. ChemSusChem 2017, 10, 3746-3749.
[40]
Coduri, M.; Strobel, T. A.; Szafrański, M.; Katrusiak, A.; Mahata, A.; Cova, F.; Bonomi, S.; Mosconi, E.; De De Angelis, F.; Malavasi, L. Band gap engineering in MASnBr3 and CsSnBr3 perovskites: Mechanistic insights through the application of pressure. J. Phys. Chem. Lett. 2019, 10, 7398-7405.
[41]
Tang, X. S.; Hu, Z. P.; Yuan, W.; Hu, W.; Shao, H. B.; Han, D. J.; Zheng, J. F.; Hao, J. Y.; Zang, Z. G.; Du, J. et al. Perovskite CsPb2Br5 microplate laser with enhanced stability and tunable properties. Adv. Opt. Mater. 2017, 5, 1600788.
[42]
Shen, W.; Ruan, L. F.; Shen, Z. T.; Deng, Z. T. Reversible light- mediated compositional and structural transitions between CsPbBr3 and CsPb2Br5 nanosheets. Chem. Commun. 2018, 54, 2804-2807.
[43]
Li, G. P.; Wang, H.; Zhu, Z. F.; Chang, Y. J.; Zhang, T.; Song, Z. H.; Jiang, Y. Shape and phase evolution from CsPbBr3 perovskite nanocubes to tetragonal CsPb2Br5 nanosheets with an indirect bandgap. Chem. Commun. 2016, 52, 11296-11299.
[44]
Rafipoor, M.; Dupont, D.; Tornatzky, H.; Tessier, M. D.; Maultzsch, J.; Hens, Z.; Lange, H. Strain engineering in InP/(Zn, Cd)Se core/shell quantum dots. Chem. Mater. 2018, 30, 4393-4400.
[45]
Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394-405.
[46]
Tong, Y.; Fu, M.; Bladt, E.; Huang, H.; Richter, A. F.; Wang, K.; Müller-Buschbaum, P.; Bals, S.; Tamarat, P.; Lounis, B. et al. Chemical cutting of perovskite nanowires into single-photon emissive low- aspect-ratio CsPbX3 (X = Cl, Br, I) nanorods. Angew. Chem., Int. Ed. 2018, 57, 16094-16098.
[47]
Tong, Y.; Bohn, B. J.; Bladt, E.; Wang, K.; Müller-Buschbaum, P.; Bals, S.; Urban, A. S.; Polavarapu, L.; Feldmann, J. From precursor powders to CsPbX3 perovskite nanowires: One-pot synthesis, growth mechanism, and oriented self-assembly. Angew. Chem., Int. Ed. 2017, 56, 13887-13892.
File
12274_2020_2963_MOESM1_ESM.pdf (3.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 March 2020
Revised: 30 June 2020
Accepted: 30 June 2020
Published: 20 July 2020
Issue date: November 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

The work was supported by the National Natural Science Foundation for Excellent Young Scholars of China (No. 51522402), the National Natural Science Foundation of China (No. 51972178), the Zhejiang Provincial Nature Science Foundation (No. LQ17E020002). The authors thank Engineer Dongsheng He for the help on double Cs-corrected transmission electron microscopy.

Return