Journal Home > Volume 13 , Issue 11

Two-dimensional nanosheet membranes with responsive nanochannels are appealing for controlled mass transfer/separation, but limited by everchanging thicknesses arising from unstable interfaces. Herein, an interfacially stable, thermo-responsive nanosheet membrane is assembled from twin-chain stabilized metal-organic framework (MOF) nanosheets, which function via two cyclic amide-bearing polymers, thermo-responsive poly(N-vinyl caprolactam) (PVCL) for adjusting channel size, and non-responsive polyvinylpyrrolidone for supporting constant interlayer distance. Owing to the microporosity of MOF nanosheets and controllable interface wettability, the hybrid membrane demonstrates both superior separation performance and stable thermo-responsiveness. Scattering and correlation spectroscopic analyses further corroborate the respective roles of the two polymers and reveal the microenvironment changes of nanochannels are motivated by the dehydration of PVCL chains.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Interfacially stable MOF nanosheet membrane with tailored nanochannels for ultrafast and thermo-responsive nanofiltration

Show Author's information Wei Jia1,2Baohu Wu3Shengtong Sun1( )Peiyi Wu1,2( )
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
State Key Laboratory of Macromolecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai 200433, China
Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich, Lichtenbergstr. 1, 85748 Garching, Germany

Abstract

Two-dimensional nanosheet membranes with responsive nanochannels are appealing for controlled mass transfer/separation, but limited by everchanging thicknesses arising from unstable interfaces. Herein, an interfacially stable, thermo-responsive nanosheet membrane is assembled from twin-chain stabilized metal-organic framework (MOF) nanosheets, which function via two cyclic amide-bearing polymers, thermo-responsive poly(N-vinyl caprolactam) (PVCL) for adjusting channel size, and non-responsive polyvinylpyrrolidone for supporting constant interlayer distance. Owing to the microporosity of MOF nanosheets and controllable interface wettability, the hybrid membrane demonstrates both superior separation performance and stable thermo-responsiveness. Scattering and correlation spectroscopic analyses further corroborate the respective roles of the two polymers and reveal the microenvironment changes of nanochannels are motivated by the dehydration of PVCL chains.

Keywords: metal-organic framework (MOF) nanosheet membrane, thermo-responsiveness, molecular separation, infrared (IR) spectroscopy

References(42)

[1]
Song, W.; Joshi, H.; Chowdhury, R.; Najem, J. S.; Shen, Y. X.; Lang, C.; Henderson, C. B.; Tu, Y. M.; Farell, M.; Pitz, M. E. et al. Artificial water channels enable fast and selective water permeation through water-wire networks. Nat. Nanotechnol. 2020, 15, 73-79.
[2]
Huang, K.; Szleifer, I. Design of multifunctional nanogate in response to multiple external stimuli using amphiphilic diblock copolymer. J. Am. Chem. Soc. 2017, 139, 6422-6430.
[3]
Hou, X.; Guo, W.; Jiang, L. Biomimetic smart nanopores and nanochannels. Chem. Soc. Rev. 2011, 40, 2385-2401.
[4]
Menne, D.; Pitsch, F.; Wong, J. E.; Pich, A.; Wessling, M. Temperature- modulated water filtration using microgel-functionalized hollow-fiber membranes. Angew. Chem., Int. Ed. 2014, 53, 5706-5710.
[5]
Zhu, Z. P.; Wang, D. Y.; Tian, Y.; Jiang, L. Ion/molecule transportation in nanopores and nanochannels: From critical principles to diverse functions. J. Am. Chem. Soc. 2019, 141, 8658-8669.
[6]
Che, H. L.; Huo, M.; Peng, L.; Fang, T.; Liu, N.; Feng, L.; Wei, Y.; Yuan, J. Y. CO2-responsive nanofibrous membranes with switchable oil/water wettability. Angew. Chem., Int. Ed. 2015, 54, 8934-8938.
[7]
Zhou, K. G.; Vasu, K. S.; Cherian, C. T.; Neek-Amal, M.; Zhang, J. C.; Ghorbanfekr-Kalashami, H.; Huang, K.; Marshall, O. P.; Kravets, V. G.; Abraham, J. et al. Electrically controlled water permeation through graphene oxide membranes. Nature 2018, 559, 236-240.
[8]
Gao, J.; Feng, Y. P.; Guo, W.; Jiang, L. Nanofluidics in two-dimensional layered materials: Inspirations from nature. Chem. Soc. Rev. 2017, 46, 5400-5424.
[9]
Yang, Y. B.; Yang, X. D.; Liang, L.; Gao, Y. Y.; Cheng, H. Y.; Li, X. M.; Zou, M. C.; Ma, R. Z.; Yuan, Q.; Duan. X. F. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 2019, 364, 1057-1062.
[10]
Cai, J. D.; Li, C.; Kong, N.; Lu, Y.; Lin, G. Y.; Wang, X. Y.; Yao, Y.; Manners, I.; Qiu, H. B. Tailored multifunctional micellar brushes via crystallization-driven growth from a surface. Science 2019, 366, 1095-1098.
[11]
Kang, Y.; Xia, Y.; Wang, H. T.; Zhang, X. W. 2D laminar membranes for selective water and ion transport. Adv. Funct. Mater. 2019, 29, 1902014.
[12]
Wu, X. L.; Cui, X. L.; Wu, W. J.; Wang, J. T.; Li, Y. F.; Jiang, Z. Y. Elucidating ultrafast molecular permeation through well-defined 2D nanochannels of lamellar membranes. Angew. Chem., Int. Ed. 2019, 58, 18524-18529.
[13]
Li, Z. K.; Wei, Y. Y.; Gao, X.; Ding, L.; Lu, Z.; Deng, J. J.; Yang, X. F.; Caro, J.; Wang, H. H. Antibiotics separation with MXene membranes based on regularly stacked high-aspect-ratio nanosheets. Angew. Chem., Int. Ed. 2020, 59, 9751-9756.
[14]
Wang, S. F.; Yang, L. X.; He, G. W.; Shi, B. B.; Li, Y. F.; Wu, H.; Zhang, R. N.; Nunes, S.; Jiang, Z. Y. Two-dimensional nanochannel membranes for molecular and ionic separations. Chem. Soc. Rev. 2020, 49, 1071-1089.
[15]
Wang, Y. F.; Chen, S.; Qiu, L.; Wang, K.; Wang, H. T.; Simon, G. P.; Li, D. Graphene-directed supramolecular assembly of multifunctional polymer hydrogel membranes. Adv. Funct. Mater. 2015, 25, 126-133.
[16]
Liu, J. C.; Wang, N.; Yu, L. J.; Karton, A.; Li, W.; Zhang, W. X.; Guo, F. Y.; Hou, L. L.; Cheng, Q. F.; Jiang, L. et al. Bioinspired graphene membrane with temperature tunable channels for water gating and molecular separation. Nat. Commun. 2017, 8, 2011.
[17]
Liu, J. C.; Yu, L. J.; Yue, G. C.; Wang, N.; Cui, Z. M.; Hou, L. L.; Li, J. H.; Li, Q. Z.; Karton, A.; Cheng, Q. F. et al. Thermoresponsive graphene membranes with reversible gating regularity for smart fluid control. Adv. Funct. Mater. 2019, 29, 1808501.
[18]
Liu, H. W.; Zhu, J. J.; Hao, L.; Jiang, Y. L.; van der Bruggen, B.; Sotto, A.; Gao, C. J.; Shen, J. N. Thermo- and pH-responsive graphene oxide membranes with tunable nanochannels for water gating and permeability of small molecules. J. Membr. Sci. 2019, 587, 117163.
[19]
Abraham, J.; Vasu, K. S.; Williams, C. D.; Gopinadhan, K.; Su, Y.; Cherian, C. T.; Dix, J.; Prestat, E.; Haigh, S. J.; Grigorieva, I. V. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 2017, 12, 546-550.
[20]
Hirunpinyopas, W.; Prestat, E.; Worrall, S. D.; Haigh, S. J.; Dryfe, R. A. W.; Bissett, M. A. Desalination and nanofiltration through functionalized laminar MoS2 membranes. ACS Nano 2017, 11, 11082-11090.
[21]
Ding, L.; Li, L. B.; Liu, Y. C.; Wu, Y.; Lu, Z.; Deng, J. J.; Wei, Y. Y.; Caro, J.; Wang, H. H. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat. Sustain. 2020, 3, 296-302.
[22]
Ries, L.; Petit, E.; Michel, T.; Diogo, C. C.; Gervais, C.; Salameh, C.; Bechelany, M.; Balme, S.; Miele, P.; Onofrio, N. et al. Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization. Nat. Mater. 2019, 18, 1112-1117.
[23]
Denny, M. S. Jr.; Moreton, J. C.; Benz, L.; Cohen, S. M. Metal- organic frameworks for membrane-based separations. Nat. Rev. Mater. 2016, 1, 16078.
[24]
Peng, Y.; Li, Y. S.; Ban, Y. J.; Yang, W. S. Two-dimensional metal- organic framework nanosheets for membrane-based gas separation. Angew. Chem., Int. Ed. 2017, 56, 9757-9761.
[25]
Wu, S. T.; Xin, Z.; Zhao, S. C.; Sun, S. T. High-throughput droplet microfluidic synthesis of hierarchical metal-organic framework nanosheet microcapsules. Nano Res. 2019, 12, 2736-2742.
[26]
Peng, Y.; Li, Y. S.; Ban, Y. J.; Jin, H.; Jiao, W. M.; Liu, X. L.; Yang, W. S. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 2014, 346, 1356-1359.
[27]
Zhao, M. T.; Wang, Y. X.; Ma, Q. L.; Huang, Y.; Zhang, X.; Ping, J. F.; Zhang, Z. C.; Lu, Q. P.; Yu, Y. F.; Xu, H. et al. Ultrathin 2D metal- organic framework nanosheets. Adv. Mater. 2015, 27, 7372-7378.
[28]
Wang, Y. X.; Zhao, M. T.; Ping, J. F.; Chen, B.; Cao, X. H.; Huang, Y.; Tan, C. L.; Ma, Q. L.; Wu, S. X.; Yu, Y. F. et al. Bioinspired design of ultrathin 2D bimetallic metal-organic-framework nanosheets used as biomimetic enzymes. Adv. Mater. 2016, 28, 4149-4155.
[29]
Zhao, M. T.; Huang, Y.; Peng, Y. W.; Huang, Z. Q.; Ma, Q. L.; Zhang, H. Two-dimensional metal-organic framework nanosheets: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 6267-6295.
[30]
Sun, S. T.; Wu, P. Y. Infrared spectroscopic insight into hydration behavior of poly(N-vinylcaprolactam) in water. J. Phys. Chem. B 2011, 115, 11609-11618.
[31]
Cheng, P.; Chen, Y.; Gu, Y.-H.; Yan, X.; Lang, W.-Z. Hybrid 2D WS2/GO nanofiltration membranes for finely molecular sieving. J. Membr. Sci. 2019, 591, 117308.
[32]
Choi, E. Y.; Wray, C. A.; Hu, C. H.; Choe, W. Highly tunable metal- organic frameworks with open metal centers. CrystEngComm 2009, 11, 553-555.
[33]
Tansel, B. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects. Sep. Purif. Technol. 2012, 86, 119-126.
[34]
Noda, I.; Ozaki, Y. Two-Dimensional Correlation Spectroscopy: Applications in Vibrational and Optical Spectroscopy; John Wiley & Sons, Chichester, 2004.
DOI
[35]
Sun, S. T.; Wu, P. Y. Spectral insights into microdynamics of thermoresponsive polymers from the perspective of two-dimensional correlation spectroscopy. Chin. J. Polym. Sci. 2017, 35, 700-712.
[36]
Blundell, D. J.; Eeckhaut, G.; Fuller, W.; Mahendrasingam, A.; Martin, C. Real time SAXS/stress-strain studies of thermoplastic polyurethanes at large strains. Polymer 2002, 43, 5197-5207.
[37]
Hou, L.; Wu, P. Y. LCST transition of PNIPAM-b-PVCL in water: Cooperative aggregation of two distinct thermally responsive segments. Soft Matter 2014, 10, 3578-3586.
[38]
Sethia, S.; Squillante, E. Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int. J. Pharm. 2004, 272, 1-10.
[39]
Sun, S. T.; Wu, P. Y. Role of water/methanol clustering dynamics on thermosensitivity of poly(N-isopropylacrylamide) from spectral and calorimetric insights. Macromolecules 2010, 43, 9501-9510.
[40]
Sun, S. T.; Wu, P. Y. On the thermally reversible dynamic hydration behavior of oligo(ethylene glycol) methacrylate-based polymers in water. Macromolecules 2013, 46, 236-246.
[41]
Morita, S.; Shinzawa, H.; Noda, I.; Ozaki, Y. Perturbation-correlation moving-window two-dimensional correlation spectroscopy. Appl. Spectrosc. 2006, 60, 398-406.
[42]
Ladet, S.; David, L.; Domard, A. Multi-membrane hydrogels. Nature 2008, 452, 76-79.
File
12274_2020_2959_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 May 2020
Revised: 22 June 2020
Accepted: 25 June 2020
Published: 04 August 2020
Issue date: November 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21991123, 51733003, 21674025, and 51873035), and "Qimingxing" project (No. 19QA1400200) of the Shanghai Committee of Science and Technology. The authors also thank the staff from BL16B Beamline at the Shanghai Synchrotron Radiation Facility for the assistance during data collection.

Return