Journal Home > Volume 13 , Issue 11

Radiotherapy, where ionizing radiation is locally delivered either through an external beam or by surgically implanting radionuclide- based seeds in the tumor, is one of the gold standard treatments for cancer. Due to the non-selective nature of radiation, healthy tissue surrounding the cancerous region is usually affected by the treatment. Hence, new strategies, including targeted alpha therapy, are being studied to improve the selectivity of the treatment and minimize side effects. Several challenges, however, limit the current development of targeted radiotherapy, such as the functionalization of the therapeutic agent with targeting vectors and controlling the release of recoiling daughters. Nanoparticles offer unique opportunities as drug delivery vehicles, since they are biocompatible, enhance the cellular uptake of drugs, and are easily functionalized with targeting molecules. In this review, we examine how nanoparticles can be used for targeted radiotherapy, either as sensitizers of external beams or as delivery vehicles for therapeutic radionuclides. We describe the clinical relevance of different types of nanoparticles, followed by an analysis of how these nanoconstructs can solve some of the main limitations of conventional radiotherapy. Finally, we critically discuss the current situation of nanoparticle-based radiotherapy in clinical settings and challenges that need to be overcome in the future for further development of the field.


menu
Abstract
Full text
Outline
About this article

Nanoparticles for targeted cancer radiotherapy

Show Author's information Roger M. Pallares1Rebecca J. Abergel1,2( )
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Department of Nuclear Engineering, University of California, Berkeley, CA 94720, USA

Abstract

Radiotherapy, where ionizing radiation is locally delivered either through an external beam or by surgically implanting radionuclide- based seeds in the tumor, is one of the gold standard treatments for cancer. Due to the non-selective nature of radiation, healthy tissue surrounding the cancerous region is usually affected by the treatment. Hence, new strategies, including targeted alpha therapy, are being studied to improve the selectivity of the treatment and minimize side effects. Several challenges, however, limit the current development of targeted radiotherapy, such as the functionalization of the therapeutic agent with targeting vectors and controlling the release of recoiling daughters. Nanoparticles offer unique opportunities as drug delivery vehicles, since they are biocompatible, enhance the cellular uptake of drugs, and are easily functionalized with targeting molecules. In this review, we examine how nanoparticles can be used for targeted radiotherapy, either as sensitizers of external beams or as delivery vehicles for therapeutic radionuclides. We describe the clinical relevance of different types of nanoparticles, followed by an analysis of how these nanoconstructs can solve some of the main limitations of conventional radiotherapy. Finally, we critically discuss the current situation of nanoparticle-based radiotherapy in clinical settings and challenges that need to be overcome in the future for further development of the field.

Keywords: nanoparticles, cancer, radiotherapy, targeted cancer radiotherapy, targeted alpha therapy, external beam

References(148)

[1]
Peschel, R. E.; Colberg, J. W. Surgery, brachytherapy, and external- beam radiotherapy for early prostate cancer. Lancet Oncol. 2003, 4, 233-241.
[2]
Trial, S. R. C. Improved survival with preoperative radiotherapy in resectable rectal cancer. N. Engl. J. Med. 1997, 336, 980-987.
[3]
Kapiteijn, E.; Marijnen, C. A. M.; Nagtegaal, I. D.; Putter, H.; Steup, W. H.; Wiggers, T.; Rutten, H. J. T.; Pahlman, L.; Glimelius, B.; van Krieken, J. H. J. M. et al. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. N. Engl. J. Med. 2001, 345, 638-646.
[4]
Bosset, J. F.; Collette, L.; Calais, G.; Mineur, L.; Maingon, P.; Radosevic-Jelic, L.; Daban, A.; Bardet, E.; Beny, A.; Ollier, J. C. Chemotherapy with preoperative radiotherapy in rectal cancer. N. Engl. J. Med. 2006, 355, 1114-1123.
[5]
Bartelink, H.; Roelofsen, F.; Eschwege, F.; Rougier, P.; Bosset, J. F.; Gonzalez, D. G.; Peiffert, D.; van Glabbeke, M.; Pierart, M. Concomitant radiotherapy and chemotherapy is superior to radiotherapy alone in the treatment of locally advanced anal cancer: Results of a phase III randomized trial of the European organization for research and treatment of cancer radiotherapy and gastrointestinal cooperative groups. J. Clin. Oncol. 1997, 15, 2040-2049.
[6]
Ragaz, J.; Jackson, S. M.; Le, N.; Plenderleith, I. H.; Spinelli, J. J.; Basco, V. E.; Wilson, K. S.; Knowling, M. A.; Coppin, C. M. L.; Paradis, M. et al. Adjuvant radiotherapy and chemotherapy in node-positive premenopausal women with breast cancer. N. Engl. J. Med. 1997, 337, 956-962.
[7]
Delaney, G.; Jacob, S.; Featherstone, C.; Barton, M. The role of radiotherapy in cancer treatment. Cancer 2005, 104, 1129-1137.
[8]
Hoskin, P. J.; Motohashi, K.; Bownes, P.; Bryant, L.; Ostler, P. High dose rate brachytherapy in combination with external beam radiotherapy in the radical treatment of prostate cancer: Initial results of a randomised phase three trial. Radiother. Oncol 2007, 84, 114-120.
[9]
Joiner, M. C.; Van der Kogel, A. Basic Clinical Radiobiology; CRC Press: Boca Raton, FL, 2009.
DOI
[10]
Bentzen, S. M. Quantitative clinical radiobiology. Acta Oncol. 1993, 32, 259-275.
[11]
Jaffray, D. A. Image-guided radiotherapy: From current concept to future perspectives. Nat. Rev. Clin. Oncol. 2012, 9, 688-699.
[12]
Morris, Z. S.; Harari, P. M. Interaction of radiation therapy with molecular targeted agents. J. Clin. Oncol. 2014, 32, 2886-2893.
[13]
Sun, H. N.; Wang, X. L.; Zhai, S. M. The rational design and biological mechanisms of nanoradiosensitizers. Nanomaterials 2020, 10, 504.
[14]
Boateng, F.; Ngwa, W. Delivery of nanoparticle-based radiosensitizers for radiotherapy applications. Int. J. Mol. Sci. 2020, 21, 273.
[15]
Xie, D.; Wang, M. P.; Qi, W. H. A simplified model to calculate the surface-to-volume atomic ratio dependent cohesive energy of nanocrystals. J. Phys.: Condens. Matter 2004, 16, L401-L405.
[16]
Pallares, R. M.; Choo, P.; Cole, L. E.; Mirkin, C. A.; Lee, A.; Odom, T. W. Manipulating immune activation of macrophages by tuning the oligonucleotide composition of gold nanoparticles. Bioconjugate Chem. 2019, 30, 2032-2037.
[17]
Patel, P. C.; Giljohann, D. A.; Daniel, W. L.; Zheng, D.; Prigodich, A. E.; Mirkin, C. A. Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjugate Chem. 2010, 21, 2250-2256.
[18]
Engels, E.; Westlake, M.; Li, N.; Vogel, S.; Gobert, Q.; Thorpe, N.; Rosenfeld, A.; Lerch, M.; Corde, S.; Tehei, M. Thulium oxide nanoparticles: A new candidate for image-guided radiotherapy. Biomed. Phys. Eng. Exp. 2018, 4, 044001.
[19]
Yue, J.; Pallares, R. M.; Cole, L. E.; Coughlin, E. E.; Mirkin, C. A.; Lee, A.; Odom, T. W. Smaller CpG-conjugated gold nanoconstructs achieve higher targeting specificity of immune activation. ACS Appl. Mater. Interfaces 2018, 10, 21920-21926.
[20]
Pallares, R. M.; Kong, S. L.; Ru, T. H.; Thanh, N. T. K.; Lu, Y.; Su, X. D. A plasmonic nanosensor with inverse sensitivity for circulating cell-free DNA quantification. Chem. Commun. 2015, 51, 14524-14527.
[21]
Lu, A. H.; Salabas, E. L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem., Int. Ed. 2007, 46, 1222-1244.
[22]
Pallares, R. M.; Thanh, N. T. K.; Su, X. D. Tunable plasmonic colorimetric assay with inverse sensitivity for extracellular DNA quantification. Chem. Commun. 2018, 54, 11260-11263.
[23]
Sedlmeier, A.; Gorris, H. H. Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem. Soc. Rev. 2015, 44, 1526-1560.
[24]
Pallares, R. M.; Thanh, N. T. K.; Su, X. D. Quantifying the binding between proteins and open chromatin-like DNA sequences with gold nanorods. Chem. Commun. 2019, 55, 15041-15044.
[25]
Pallares, R. M.; Carter, K. P.; Zeltmann, S. E.; Tratnjek, T.; Minor, A. M.; Abergel, R. J. Selective lanthanide sensing with gold nanoparticles and hydroxypyridinone chelators. Inorg. Chem. 2020, 59, 2030-2036.
[26]
Pallares, R. M.; Bosman, M.; Thanh, N. T. K.; Su, X. D. A plasmonic multi-logic gate platform based on sequence-specific binding of estrogen receptors and gold nanorods. Nanoscale 2016, 8, 19973-19977.
[27]
Wu, P. H.; Onodera, Y.; Ichikawa, Y.; Rankin, E. B.; Giaccia, A. J.; Watanabe, Y.; Qian, W.; Hashimoto, T.; Shirato, H.; Nam, J. M. Targeting integrins with RGD-conjugated gold nanoparticles in radiotherapy decreases the invasive activity of breast cancer cells. Int. J. Nanomedicine 2017, 12, 5069-5085.
[28]
Du, F. Y.; Lou, J. M.; Jiang, R.; Fang, Z. Z.; Zhao, X. F.; Niu, Y. Y.; Zou, S. Q.; Zhang, M. M.; Gong, A. H.; Wu, C. Y. Hyaluronic acid- functionalized bismuth oxide nanoparticles for computed tomography imaging-guided radiotherapy of tumor. Int. J. Nanomedicine 2017, 12, 5973-5992.
[29]
Huynh, N. T.; Roger, E.; Lautram, N.; Benoît, J. P.; Passirani, C. The rise and rise of stealth nanocarriers for cancer therapy: Passive versus active targeting. Nanomedicine 2010, 5, 1415-1433.
[30]
Rabanel, J. M.; Aoun, V.; Elkin, I.; Mokhtar, M.; Hildgen, P. Drug- loaded nanocarriers: Passive targeting and crossing of biological barriers. Curr. Med. Chem. 2012, 19, 3070-3102.
[31]
Pallares, R. M.; Su, X. D.; Lim, S. H.; Thanh, N. T. K. Fine-tuning of gold nanorod dimensions and plasmonic properties using the Hofmeister effects. J. Mater. Chem. C 2016, 4, 53-61.
[32]
Pallares, R. M.; Wang, Y. S.; Lim, S. H.; Thanh, N. T. K.; Su, X. D. Growth of anisotropic gold nanoparticles in photoresponsive fluid for UV sensing and erythema prediction. Nanomedicine 2016, 11, 2845-2860.
[33]
Pallares, R. M.; Stilson, T.; Choo, P.; Hu, J. T.; Odom, T. W. Using good’s buffers to control the anisotropic structure and optical properties of spiky gold nanoparticles for refractive index sensing. ACS Appl. Nano Mater. 2019, 2, 5266-5271.
[34]
Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 5808-5829.
[35]
Alkilany, A. M.; Thompson, L. B.; Boulos, S. P.; Sisco, P. N.; Murphy, C. J. Gold nanorods: Their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv. Drug Deliv. Rev. 2012, 64, 190-199.
[36]
Mansoori, G. A.; Mohazzabi, P.; McCormack, P.; Jabbari, S. Nanotechnology in cancer prevention, detection and treatment: Bright future lies ahead. World Rev. Sci., Technol. Sustain. Dev. 2007, 4, 226-257.
[37]
Du, J. F.; Gu, Z. J.; Yan, L.; Yong, Y.; Yi, X.; Zhang, X.; Liu, J.; Wu, R. F.; Ge, C. C.; Chen, C. Y. et al. Poly(vinylpyrollidone)- and selenocysteine-modified Bi2Se3 nanoparticles enhance radiotherapy efficacy in tumors and promote radioprotection in normal tissues. Adv. Mater. 2017, 29, 1701268.
[38]
Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J. X.; Gou, L. F.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 2005, 109, 13857-13870.
[39]
Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coord. Chem. Rev. 2005, 249, 1870-1901.
[40]
Mourdikoudis, S.; Pallares, R. M.; Thanh, N. T. K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale 2018, 10, 12871-12934.
[41]
Pallares, R. M.; Thanh, N. T. K.; Su, X. D. Sensing of circulating cancer biomarkers with metal nanoparticles. Nanoscale 2019, 11, 22152-22171.
[42]
Pallares, R. M.; Abergel, R. J. Transforming lanthanide and actinide chemistry with nanoparticles. Nanoscale 2020, 12, 1339-1348.
[43]
Li, N.; Su, X. D.; Lu, Y. Nanomaterial-based biosensors using dual transducing elements for solution phase detection. Analyst 2015, 140, 2916-2943.
[44]
Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 2003, 36, R167-R181.
[45]
Ren, X. C.; Liu, Y. E.; Li, J.; Lin, Q. Progress in image-guided radiotherapy for the treatment of non-small cell lung cancer. World J. Radiol. 2019, 11, 46-54.
[46]
L'Annunziata, M. F. Chapter 1 - Radioactivity and our well-being. In Radioactivity; 2nd ed. L'Annunziata, M. F., Ed.; Elsevier: Boston, 2016; pp 1-66.
DOI
[47]
Amols, H. I.; Lagueux, B.; Cagna, D. Radiobiological effectiveness (RBE) of megavoltage X-ray and electron beams in radiotherapy. Radiat. Res. 1986, 105, 58-67.
[48]
Smith, R.; Davidson, J. K.; Flatman, G. E. Skeletal effects of orthovoltage and megavoltage therapy following treatment of nephroblastoma. Clin. Radiol. 1982, 33, 601-613.
[49]
Eastman, R. C.; Görden, P.; Glatstein, E.; Roth, J. Radiation therapy of acromegaly. Endocrinol. Metab. Clin. North Am. 1992, 21, 693-712.
[50]
Mohan, R.; Grosshans, D. Proton therapy—Present and future. Adv. Drug Deliv. Rev. 2017, 109, 26-44.
[51]
Laprise-Pelletier, M.; Simão, T.; Fortin, M. A. Gold nanoparticles in radiotherapy and recent progress in nanobrachytherapy. Adv. Healthc. Mater. 2018, 7, 1701460.
[52]
Anholt, R.; Rasmussen, J. O. Theoretical X-ray transition probabilities for high-Z superheavy elements. Phys. Rev. A 1974, 9, 585-592.
[53]
Seibert, J. A.; Boone, J. M. X-ray imaging physics for nuclear medicine technologists. Part 2: X-ray interactions and image formation. J. Nucl. Med. Technol. 2005, 33, 3-18.
[54]
Ebel, H.; Svagera, R.; Ebel, M. F.; Shaltout, A.; Hubbell, J. H. Numerical description of photoelectric absorption coefficients for fundamental parameter programs. X-Ray Spectrom. 2003, 32, 442-451.
[55]
Yokoya, A.; Shikazono, N.; Fujii, K.; Urushibara, A.; Akamatsu, K.; Watanabe, R. DNA damage induced by the direct effect of radiation. Radiat. Phys. Chem. 2008, 77, 1280-1285.
[56]
Karnas, S. J.; Moiseenko, V. V.; Yu, E.; Truong, P.; Battista, J. J. Monte Carlo simulations and measurement of DNA damage from X-ray-triggered Auger cascades in iododeoxyuridine (IUdR). Radiat. Environ. Biophys. 2001, 40, 199-206.
[57]
Hainfeld, J. F.; Ridwan, S. M.; Stanishevskiy, Y.; Panchal, R.; Slatkin, D. N.; Smilowitz, H. M. Iodine nanoparticles enhance radiotherapy of intracerebral human glioma in mice and increase efficacy of chemotherapy. Sci. Rep. 2019, 9, 4505.
[58]
Moeller, B. J.; Richardson, R. A.; Dewhirst, M. W. Hypoxia and radiotherapy: Opportunities for improved outcomes in cancer treatment. Cancer Metastasis Rev. 2007, 26, 241-248.
[59]
Song, G. S.; Liang, C.; Yi, X.; Zhao, Q.; Cheng, L.; Yang, K.; Liu, Z. Perfluorocarbon-loaded hollow Bi2Se3 nanoparticles for timely supply of oxygen under near-infrared light to enhance the radiotherapy of cancer. Adv. Mater. 2016, 28, 2716-2723.
[60]
Li, Y.; Yun, K. H.; Lee, H.; Goh, S. H.; Suh, Y. G.; Choi, Y. Porous platinum nanoparticles as a high-Z and oxygen generating nanozyme for enhanced radiotherapy in vivo. Biomaterials 2019, 197, 12-19.
[61]
Fan, W. P.; Bu, W. B.; Zhang, Z.; Shen, B.; Zhang, H.; He, Q. J.; Ni, D. L.; Cui, Z. W.; Zhao, K. L.; Bu, J. W. et al. X-ray radiation- controlled NO-release for on-demand depth-independent hypoxic radiosensitization. Angew. Chem., Int. Ed. 2015, 54, 14026-14030.
[62]
Fan, W. P.; Lu, N.; Shen, Z. Y.; Tang, W.; Shen, B.; Cui, Z. W.; Shan, L. L.; Yang, Z.; Wang, Z. T.; Jacobson, O. et al. Generic synthesis of small-sized hollow mesoporous organosilica nanoparticles for oxygen- independent X-ray-activated synergistic therapy. Nat. Commun 2019, 10, 1241.
[63]
Goswami, N.; Luo, Z. T.; Yuan, X.; Leong, D. T.; Xie, J. P. Engineering gold-based radiosensitizers for cancer radiotherapy. Mater. Horiz. 2017, 4, 817-831.
[64]
Zeng, S. W.; Yong, K. T.; Roy, I.; Dinh, X. Q.; Yu, X.; Luan, F. A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 2011, 6, 491.
[65]
Han, G.; Ghosh, P.; Rotello, V. M. Functionalized gold nanoparticles for drug delivery. Nanomedicine 2007, 2, 113-123.
[66]
Luo, D.; Wang, X. N.; Zeng, S.; Ramamurthy, G.; Burda, C.; Basilion, J. P. Prostate-specific membrane antigen targeted gold nanoparticles for prostate cancer radiotherapy: Does size matter for targeted particles? Chem. Sci. 2019, 10, 8119-8128.
[67]
Ma, N. N.; Wu, F. G.; Zhang, X. D.; Jiang, Y. W.; Jia, H. R.; Wang, H. Y.; Li, Y. H.; Liu, P. D.; Gu, N.; Chen, Z. Shape-dependent radiosensitization effect of gold nanostructures in cancer radiotherapy: Comparison of gold nanoparticles, nanospikes, and nanorods. ACS Appl. Mater. Interfaces 2017, 9, 13037-13048.
[68]
Fathy, M. M.; Mohamed, F. S.; Elbialy, N. S.; Elshemey, W. M. Multifunctional chitosan-capped gold nanoparticles for enhanced cancer chemo-radiotherapy: An in vitro study. Phys. Med. 2018, 48, 76-83.
[69]
Yi, X.; Chen, L.; Chen, J.; Maiti, D.; Chai, Z. F.; Liu, Z.; Yang, K. Biomimetic copper sulfide for chemo-radiotherapy: Enhanced uptake and reduced efflux of nanoparticles for tumor cells under ionizing radiation. Adv. Funct. Mater. 2018, 28, 1705161.
[70]
Butterworth, K. T.; Nicol, J. R.; Ghita, M.; Rosa, S.; Chaudhary, P.; McGarry, C. K.; McCarthy, H. O.; Jimenez-Sanchez, G.; Bazzi, R.; Roux, S. et al. Preclinical evaluation of gold-DTDTPA nanoparticles as theranostic agents in prostate cancer radiotherapy. Nanomedicine 2016, 11, 2035-2047.
[71]
Dou, Y.; Guo, Y. Y.; Li, X. D.; Li, X.; Wang, S.; Wang, L.; Lv, G. X.; Zhang, X. N.; Wang, H. J.; Gong, X. Q. et al. Size-tuning ionization to optimize gold nanoparticles for simultaneous enhanced CT imaging and radiotherapy. ACS Nano 2016, 10, 2536-2548.
[72]
Mignot, A.; Truillet, C.; Lux, F.; Sancey, L.; Louis, C.; Denat, F.; Boschetti, F.; Bocher, L.; Gloter, A.; Stéphan, O. et al. A top-down synthesis route to ultrasmall multifunctional Gd-based silica nanoparticles for theranostic applications. Chem.-Eur. J. 2013, 19, 6122-6136.
[73]
Detappe, A.; Kunjachan, S.; Sancey, L.; Motto-Ros, V.; Biancur, D.; Drane, P.; Guieze, R.; Makrigiorgos, G. M.; Tillement, O.; Langer, R. et al. Advanced multimodal nanoparticles delay tumor progression with clinical radiation therapy. J. Control. Release 2016, 238, 103-113.
[74]
Peukert, D.; Kempson, I.; Douglass, M.; Bezak, E. Metallic nanoparticle radiosensitisation of ion radiotherapy: A review. Phys. Med. 2018, 47, 121-128.
[75]
Liu, C. J.; Wang, C. H.; Chen, S. T.; Chen, H. H.; Leng, W. H.; Chien, C. C.; Wang, C. L.; Kempson, I. M.; Hwu, Y.; Lai, T. C. et al. Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Phys. Med. Biol. 2010, 55, 931-945.
[76]
Polf, J. C.; Bronk, L. F.; Driessen, W. H. P.; Arap, W.; Pasqualini, R.; Gillin, M. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles. Appl. Phys. Lett. 2011, 98, 193702.
[77]
Schlathölter, T.; Eustache, P.; Porcel, E.; Salado, D.; Stefancikova, L.; Tillement, O.; Lux, F.; Mowat, P.; Biegun, A. K.; van Goethem, M. J. et al. Improving proton therapy by metal-containing nanoparticles: Nanoscale insights. Int. J. Nanomedicine 2016, 11, 1549-1556.
[78]
Kim, J. K.; Seo, S. J.; Kim, H. T.; Kim, K. H.; Chung, M. H.; Kim, K. R.; Ye, S. J. Enhanced proton treatment in mouse tumors through proton irradiated nanoradiator effects on metallic nanoparticles. Phys. Med. Biol. 2012, 57, 8309-8323.
[79]
Li, S.; Bouchy, S.; Penninckx, S.; Marega, R.; Fichera, O.; Gallez, B.; Feron, O.; Martinive, P.; Heuskin, A. C.; Michiels, C. et al. Antibody-functionalized gold nanoparticles as tumor-targeting radiosensitizers for proton therapy. Nanomedicine 2019, 14, 317-333.
[80]
Heuskin, A. C.; Gallez, B.; Feron, O.; Martinive, P.; Michiels, C.; Lucas, S. Metallic nanoparticles irradiated by low-energy protons for radiation therapy: Are there significant physical effects to enhance the dose delivery? Med. Phys. 2017, 44, 4299-4312.
[81]
Martínez-Rovira, I.; Prezado, Y. Evaluation of the local dose enhancement in the combination of proton therapy and nanoparticles. Med. Phys. 2015, 42, 6703-6710.
[82]
Lin, Y. T.; Paganetti, H.; McMahon, S. J.; Schuemann, J. Gold nanoparticle induced vasculature damage in radiotherapy: Comparing protons, megavoltage photons, and kilovoltage photons. Med. Phys. 2015, 42, 5890-5902.
[83]
Penninckx, S.; Heuskin, A. C.; Michiels, C.; Lucas, S. The role of thioredoxin reductase in gold nanoparticle radiosensitization effects. Nanomedicine 2018, 13, 2917-2937.
[84]
Soloway, A. H.; Tjarks, W.; Barnum, B. A.; Rong, F. G.; Barth, R. F.; Codogni, I. M.; Wilson, J. G. The chemistry of neutron capture therapy. Chem. Rev. 1998, 98, 1515-1562.
[85]
Hawthorne, M. F. The role of chemistry in the development of boron neutron capture therapy of cancer. Angew. Chem., Int. Ed. 1993, 32, 950-984.
[86]
Barth, R. F.; Coderre, J. A.; Vicente, M. G. H.; Blue, T. E. Boron neutron capture therapy of cancer: Current status and future prospects. Clin. Cancer Res. 2005, 11, 3987-4002.
[87]
Frederick Hawthorne, M.; Lee, M. W. A critical assessment of boron target compounds for boron neutron capture therapy. J. Neuro-Oncol. 2003, 62, 33-45.
[88]
Kobayashi, T.; Kanda, K. Analytical calculation of boron-10 dosage in cell nucleus for neutron capture therapy. Radiat. Res. 1982, 91, 77-94.
[89]
Barth, R. F.; Vicente, M. G. H.; Harling, O. K.; Kiger III, W. S.; Riley, K. J.; Binns, P. J.; Wagner, F. M.; Suzuki, M.; Aihara, T.; Kato, I. et al. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat. Oncol. 2012, 7, 146.
[90]
Moss, R. L. Critical review, with an optimistic outlook, on boron neutron capture therapy (BNCT). Appl. Radiat. Isot. 2014, 88, 2-11.
[91]
Takeuchi, I.; Nomura, K.; Makino, K. Hydrophobic boron compound- loaded poly(l-lactide-co-glycolide) nanoparticles for boron neutron capture therapy. Colloids Surf. B: Biointerfaces 2017, 159, 360-365.
[92]
Wu, C. Y.; Lin, J. J.; Chang, W. Y.; Hsieh, C. Y.; Wu, C. C.; Chen, H. S.; Hsu, H. J.; Yang, A. S.; Hsu, M. H.; Kuo, W. Y. Development of theranostic active-targeting boron-containing gold nanoparticles for boron neutron capture therapy (BNCT). Colloids Surf. B: Biointerfaces 2019, 183, 110387.
[93]
Gao, Z. Y.; Horiguchi, Y.; Nakai, K.; Matsumura, A.; Suzuki, M.; Ono, K.; Nagasaki, Y. Use of boron cluster-containing redox nanoparticles with ROS scavenging ability in boron neutron capture therapy to achieve high therapeutic efficiency and low adverse effects. Biomaterials 2016, 104, 201-212.
[94]
Kuthala, N.; Vankayala, R.; Li, Y. N.; Chiang, C. S.; Hwang, K. C. Engineering novel targeted boron-10-enriched theranostic nanomedicine to combat against murine brain tumors via MR imaging-guided boron neutron capture therapy. Adv. Mater. 2017, 29, 1700850.
[95]
Deutsch, O. L.; Murray, B. W. Monte Carlo dosimetry calculation for boron neutron-capture therapy in the treatment of brain tumors. Nucl. Technol. 1975, 26, 320-339.
[96]
Kanda, K.; Kobayashi, T.; Ono, K.; Sato, T.; Shibata, T.; Ueno, Y.; Mishima, Y.; Hatanaka, H.; Nishiwaki, Y. Elimination of gamma rays from a thermal neutron field for medical and biological irradiation purposes, biological dosimetry. IAEA-SM-193/168, 1975.
[97]
Leach, J. K.; Van Tuyle, G.; Lin, P. S.; Schmidt-Ullrich, R.; Mikkelsen, R. B. Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res. 2001, 61, 3894-3901.
[98]
Salt, C.; Lennox, A. J.; Takagaki, M.; Maguire, J. A.; Hosmane, N. S. Boron and gadolinium neutron capture therapy. Russ. Chem. Bull. 2004, 53, 1871-1888.
[99]
Dorozhkin, S. V.; Epple, M. Biological and medical significance of calcium phosphates. Angew. Chem., Int. Ed. 2002, 41, 3130-3146.
DOI
[100]
Dewi, N.; Mi, P.; Yanagie, H.; Sakurai, Y.; Morishita, Y.; Yanagawa, M.; Nakagawa, T.; Shinohara, A.; Matsukawa, T.; Yokoyama, K. et al. In vivo evaluation of neutron capture therapy effectivity using calcium phosphate-based nanoparticles as Gd-DTPA delivery agent. J. Cancer Res. Clin. Oncol. 2016, 142, 767-775.
[101]
Ghithan, S.; Roy, G.; Schuh, S. Design study of beam transport lines for BioLEIR facility at CERN. J. Instrum. 2017, 12, P09019.
[102]
Suit, H.; DeLaney, T.; Goldberg, S.; Paganetti, H.; Clasie, B.; Gerweck, L.; Niemierko, A.; Hall, E.; Flanz, J.; Hallman, J. et al. Proton vs. carbon ion beams in the definitive radiation treatment of cancer patients. Radiother. Oncol. 2010, 95, 3-22.
[103]
Kaur, H.; Pujari, G.; Semwal, M. K.; Sarma, A.; Avasthi, D. K. In vitro studies on radiosensitization effect of glucose capped gold nanoparticles in photon and ion irradiation of HeLa cells. Nucl. Instrum. Meth. Phys. Res. Section B: Beam Int. Mater. Atoms 2013, 301, 7-11.
[104]
Liu, Y.; Liu, X.; Jin, X. D.; He, P. B.; Zheng, X. G.; Ye, F.; Chen, W. Q.; Li, Q. The radiation enhancement of 15 nm citrate-capped gold nanoparticles exposed to 70 keV/μm carbon ions. J. Nanosci. Nanotechnol. 2016, 16, 2365-2370.
[105]
Dale, R. G.; Jones, B. The clinical radiobiology of brachytherapy. Br. J. Radiol. 1998, 71, 465-483.
[106]
Tanderup, K.; Ménard, C.; Polgar, C.; Lindegaard, J. C.; Kirisits, C.; Pötter, R. Advancements in brachytherapy. Adv. Drug Deliv. Rev. 2017, 109, 15-25.
[107]
Rivard, M. J.; Coursey, B. M.; DeWerd, L. A.; Hanson, W. F.; Huq, M. S.; Ibbott, G. S.; Mitch, M. G.; Nath, R.; Williamson, J. F. Update of the AAPM task group No. 43 report—A revised AAPM protocol for brachytherapy dose calculations. Int. J. Radiat. Oncol. Biol. Phys. 2003, 57, S430.
[108]
Kee, D. L. C.; Gal, J.; Falk, A. T.; Schiappa, R.; Chand, M. E.; Gautier, M.; Doyen, J.; Hannoun-Levi, J. M. Brachytherapy versus external beam radiotherapy boost for prostate cancer: Systematic review with meta-analysis of randomized trials. Cancer Treat. Rev. 2018, 70, 265-271.
[109]
Dicker, A. P.; Merrick, G. S.; Waterman, F. M.; Valicenti, R. K.; Gomella, L. G. Basic and Advanced Techniques in Prostate Brachytherapy; CRC Press: Boca Raton, FL, 2005.
DOI
[110]
Elgqvist, J.; Frost, S.; Pouget, J. P.; Albertsson, P. The potential and hurdles of targeted alpha therapy—Clinical trials and beyond. Front. Oncol. 2014, 3, 324.
[111]
Olafsen, T.; Elgqvist, J.; Wu, A. M. Protein targeting constructs in Alpha Therapy. Curr. Radiopharm. 2011, 4, 197-213.
[112]
Sharkey, R. M.; Goldenberg, D. M. Cancer radioimmunotherapy. Immunotherapy 2011, 3, 349-370.
[113]
Couturier, O.; Supiot, S.; Degraef-Mougin, M.; Faivre-Chauvet, A.; Carlier, T.; Chatal, J. F.; Davodeau, F.; Cherel, M. Cancer radioimmunotherapy with alpha-emitting nuclides. Eur. J. Nucl. Med. Mol. Imaging 2005, 32, 601-614.
[114]
Dong, C.; Liu, Z.; Wang, F. Peptide-based radiopharmaceuticals for targeted tumor therapy. Curr. Med. Chem. 2014, 21, 139-152.
[115]
Pool, S. E.; Krenning, E. P.; Koning, G. A.; van Eijck, C. H. J.; Teunissen, J. J. M.; Kam, B.; Valkema, R.; Kwekkeboom, D. J.; de Jong, M. Preclinical and clinical studies of peptide receptor radionuclide therapy. Semin. Nucl. Med. 2010, 40, 209-218.
[116]
Müller, C.; Schibli, R. Prospects in folate receptor-targeted radionuclide therapy. Front. Oncol. 2013, 3, 249.
[117]
Qhobosheane, M.; Santra, S.; Zhang, P.; Tan, W. H. Biochemically functionalized silica nanoparticles. Analyst 2001, 126, 1274-1278.
[118]
Dreaden, E. C.; Alkilany, A. M.; Huang, X. H.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740-2779.
[119]
Radovic-Moreno, A. F.; Chernyak, N.; Mader, C. C.; Nallagatla, S.; Kang, R. S.; Hao, L. L.; Walker, D. A.; Halo, T. L.; Merkel, T. J.; Rische, C. H. et al. Immunomodulatory spherical nucleic acids. Proc. Natl. Acad. Sci. 2015, 112, 3892-3897.
[120]
Laprise-Pelletier, M.; Lagueux, J.; Côté, M. F.; LaGrange, T.; Fortin, M. A. Low-dose prostate cancer brachytherapy with radioactive palladium-gold nanoparticles. Adv. Healthc. Mater. 2017, 6, 1601120.
[121]
Lacoeuille, F.; Arlicot, N.; Faivre-Chauvet, A. Targeted alpha and beta radiotherapy: An overview of radiopharmaceutical and clinical aspects. Méd. Nucl. 2018, 42, 32-44.
[122]
De Kruijff, M. R.; Wolterbeek, T. H.; Denkova, G. A. A critical review of alpha radionuclide therapy—How to deal with recoiling daughters? Pharmaceuticals 2015, 8, 321-336.
[123]
Kannan, R.; Zambre, A.; Chanda, N.; Kulkarni, R.; Shukla, R.; Katti, K.; Upendran, A.; Cutler, C.; Boote, E.; Katti, K. V. Functionalized radioactive gold nanoparticles in tumor therapy. WIREs Nanomedicine Nanobiotechnol. 2012, 4, 42-51.
[124]
Al-Yasiri, A. Y.; Khoobchandani, M.; Cutler, C. S.; Watkinson, L.; Carmack, T.; Smith, C. J.; Kuchuk, M.; Loyalka, S. K.; Lugão, A. B.; Katti, K. V. Mangiferin functionalized radioactive gold nanoparticles (MGF-198AuNPs) in prostate tumor therapy: Green nanotechnology for production, in vivo tumor retention and evaluation of therapeutic efficacy. Dalton Trans. 2017, 46, 14561-14571.
[125]
Chakravarty, R.; Chakraborty, S.; Guleria, A.; Shukla, R.; Kumar, C.; Vimalnath Nair, K. V.; Sarma, H. D.; Tyagi, A. K.; Dash, A. Facile one-pot synthesis of intrinsically radiolabeled and cyclic RGD conjugated 199Au nanoparticles for potential use in nanoscale brachytherapy. Ind. Eng. Chem. Res. 2018, 57, 14337-14346.
[126]
Al-Yasiri, A. Y.; White, N. E.; Katti, K. V.; Loyalka, S. K. Estimation of tumor and local tissue dose in gold nanoparticles radiotherapy for prostate cancer. Rep. Pract. Oncol. Radiother. 2019, 24, 288-293.
[127]
Fazaeli, Y.; Akhavan, O.; Rahighi, R.; Aboudzadeh, M. R.; Karimi, E.; Afarideh, H. In vivo SPECT imaging of tumors by 198,199Au- labeled graphene oxide nanostructures. Mater. Sci. Eng.: C 2014, 45, 196-204.
[128]
Dash, A.; Pillai, M. R. A.; Knapp, F. F. Production of 177Lu for targeted radionuclide therapy: Available options. Nucl. Med. Mol. Imaging 2015, 49, 85-107.
[129]
Yook, S.; Cai, Z. L.; Lu, Y. J.; Winnik, M. A.; Pignol, J. P.; Reilly, R. M. Intratumorally injected 177Lu-labeled gold nanoparticles: Gold nanoseed brachytherapy with application for neoadjuvant treatment of locally advanced breast cancer. J. Nucl. Med. 2016, 57, 936-942.
[130]
Yu, B.; Wei, H.; He, Q. J.; Ferreira, C. A.; Kutyreff, C. J.; Ni, D. L.; Rosenkrans, Z. T.; Cheng, L.; Yu, F. Q.; Engle, J. W. et al. Efficient uptake of 177Lu-porphyrin-PEG nanocomplexes by tumor mitochondria for multimodal-imaging-guided combination therapy. Angew. Chem., Int. Ed. 2018, 57, 218-222.
[131]
Yu, B.; Ni, D. L.; Rosenkrans, Z. T.; Barnhart, T. E.; Wei, H.; Ferreira, C. A.; Lan, X. L.; Engle, J. W.; He, Q. J.; Yu, F. Q. et al. A “missile-detonation” strategy to precisely supply and efficiently amplify cerenkov radiation energy for cancer theranostics. Adv. Mater. 2019, 31, 1904894.
[132]
Meng, Z. Q.; Chao, Y.; Zhou, X. F.; Liang, C.; Liu, J. J.; Zhang, R.; Cheng, L.; Yang, K.; Pan, W.; Zhu, M. F. et al. Near-infrared-triggered in situ gelation system for repeatedly enhanced photothermal brachytherapy with a single dose. ACS Nano 2018, 12, 9412-9422.
[133]
Sheng, J.; Wang, X. Y.; Yan, J. J.; Pan, D. H.; Yang, R. L.; Wang, L. Z.; Xu, Y. P.; Yang, M. Theranostic radioiodine-labelled melanin nanoparticles inspired by clinical brachytherapy seeds. J. Mater. Chem. B 2018, 6, 8163-8169.
[134]
Kim, Y. S.; Brechbiel, M. W. An overview of targeted alpha therapy. Tumor Biol. 2012, 33, 573-590.
[135]
Targeted Alpha Therapy Working Group. Targeted alpha therapy, an emerging class of cancer agents: A review. JAMA Oncol. 2018, 4, 1765-1772.
[136]
Sattiraju, A.; Xiong, X. B.; Pandya, D. N.; Wadas, T. J.; Xuan, A.; Sun, Y.; Jung, Y.; Sai, K. K. S.; Dorsey, J. F.; Li, K. C. et al. Alpha particle enhanced blood brain/tumor barrier permeabilization in glioblastomas using integrin alpha-v beta-3-targeted liposomes. Mol. Cancer Ther. 2017, 16, 2191-2200.
[137]
Shirley, M.; McCormack, P. L. Radium-223 dichloride: A review of its use in patients with castration-resistant prostate cancer with symptomatic bone metastases. Drugs 2014, 74, 579-586.
[138]
McGann, S.; Horton, E. R. Radium-223 dichloride: A novel treatment option for castration-resistant prostate cancer patients with symptomatic bone metastases. Ann. Pharmacother. 2015, 49, 469-476.
[139]
Piotrowska, A.; Męczyńska-Wielgosz, S.; Majkowska-Pilip, A.; Koźmiński, P.; Wójciuk, G.; Cędrowska, E.; Bruchertseifer, F.; Morgenstern, A.; Kruszewski, M.; Bilewicz, A. Nanozeolite bioconjugates labeled with 223Ra for targeted alpha therapy. Nucl. Med. Biol. 2017, 47, 10-18.
[140]
Rojas, J. V.; Woodward, J. D.; Chen, N.; Rondinone, A. J.; Castano, C. H.; Mirzadeh, S. Synthesis and characterization of lanthanum phosphate nanoparticles as carriers for 223Ra and 225Ra for targeted alpha therapy. Nucl. Med. Biol. 2015, 42, 614-620.
[141]
A. Scheinberg, D.; McDevitt, M. R. Actinium-225 in targeted alpha-particle therapeutic applications. Curr. Radiopharm. 2011, 4, 306-320.
[142]
Cędrowska, E.; Pruszynski, M.; Majkowska-Pilip, A.; Męczyńska- Wielgosz, S.; Bruchertseifer, F.; Morgenstern, A.; Bilewicz, A. Functionalized TiO2 nanoparticles labelled with 225Ac for targeted alpha radionuclide therapy. J. Nanopart. Res. 2018, 20, 83.
[143]
Sattiraju, A.; Pandya, D.; Wadas, T.; Xiong, X. B.; Sun, Y.; Jung, Y.; Zhao, D. W.; Solingapuram Sai, K.; Li, K.; Mintz, A. Alpha particle enhanced permeabilization of the blood tumor barrier using alpha-v beta-3 (αvβ3) specific nanoparticles. J. Nucl. Med. 2016, 57, 633.
[144]
Chakraborty, S.; Vimalnath, K. V.; Sharma, K. S.; Rajeswari, A.; Sarma, H. D.; Ningthoujam, R. S.; Vatsa, R.; Dash, A. Synthesis and biological evaluation of holmium-166 Agglomerated iron oxide nanoparticles for treatment of arthritis of knee joints. J. Nucl. Med. 2016, 57, 1105.
[145]
Cui, L.; Her, S.; Borst, G. R.; Bristow, R. G.; Jaffray, D. A.; Allen, C. Radiosensitization by gold nanoparticles: Will they ever make it to the clinic? Radiother. Oncol. 2017, 124, 344-356.
[146]
Raymond, K. N.; Dertz, E. A. Biochemical and physical properties of siderophores. In Iron Transport in Bacteria. Crosa, J. H.; Mey, A. R.; Payne, S. M., Eds.; ASM Press: Washington, DC, 2004; pp 3-17.
[147]
Verry, C.; Sancey, L.; Dufort, S.; Le Duc, G.; Mendoza, C.; Lux, F.; Grand, S.; Arnaud, J.; Quesada, J. L.; Villa, J. et al. Treatment of multiple brain metastases using gadolinium nanoparticles and radiotherapy: NANO-RAD, a phase I study protocol. BMJ Open 2019, 9, e023591.
[148]
Bonvalot, S.; Rutkowski, P. L.; Thariat, J.; Carrère, S.; Ducassou, A.; Sunyach, M. P.; Agoston, P.; Hong, A.; Mervoyer, A.; Rastrelli, M. et al. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act.In.Sarc): A multicentre, phase 2-3, randomised, controlled trial. Lancet Oncol. 2019, 20, 1148-1159.
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 May 2020
Revised: 17 June 2020
Accepted: 26 June 2020
Published: 16 July 2020
Issue date: November 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

The authors acknowledge support from the Nuclear Regulatory Commission under Faculty Development Grant NRC-HQ-84- 14-G-0052 and from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division at LBNL under Contract DE-AC02-05CH11231, during the writing of this review.

Return