Journal Home > Volume 13 , Issue 11

Obesity plays a primary causative role in insulin resistance and hyperglycemia that contributes to type 2 diabetes. Excess lipid storage in the liver renders activation of the resident macrophages and chronic secretion of inflammatory mediators, therefore causing or aggravating insulin resistance. Herein, we develop collaborative assemblies using a "one-pot" synthesis method for macrophage-specific delivery of small interfering RNAs (siRNAs) that target the inflammatory proteins. Ternary nanocomplex (NC) composed of the siRNA molecule, a synthetic thiol-bearing methacrylated hyaluronic acid (sm-HA) and protamine forms through an electrostatic-driven physical assembly, which is chemically crosslinked to acquire the collaboratively assembled nanocapsule (cNC) concurrently. The obtained cNC displays significantly higher stability than NC. Functional moieties as flexible assembly units can be easily equipped on cNC for long circulation, active targeting, or controlled siRNA release. cNC-F decorated with folic acid, a macrophage-targeting ligand promotes the siRNA accumulation in the activated macrophages in the liver of the obese mouse model. cNC-F loaded with siRNA targeting inflammatory indicators efficiently control the macrophage inflammatory response by reducing the expression of the inflammatory proteins (> 40% reduction) and ameliorating the insulin resistance symptoms of the obese mice.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Collaborative assembly-mediated siRNA delivery for relieving inflammation-induced insulin resistance

Show Author's information Shiyang Shen§Li Zhang§Mengru LiZhizi FengHuixia LiXiao XuShiqi LinPing LiCan ZhangXiaojun Xu( )Ran Mo( )
State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China

§ Shiyang Shen and Li Zhang contributed equally to this work.

Abstract

Obesity plays a primary causative role in insulin resistance and hyperglycemia that contributes to type 2 diabetes. Excess lipid storage in the liver renders activation of the resident macrophages and chronic secretion of inflammatory mediators, therefore causing or aggravating insulin resistance. Herein, we develop collaborative assemblies using a "one-pot" synthesis method for macrophage-specific delivery of small interfering RNAs (siRNAs) that target the inflammatory proteins. Ternary nanocomplex (NC) composed of the siRNA molecule, a synthetic thiol-bearing methacrylated hyaluronic acid (sm-HA) and protamine forms through an electrostatic-driven physical assembly, which is chemically crosslinked to acquire the collaboratively assembled nanocapsule (cNC) concurrently. The obtained cNC displays significantly higher stability than NC. Functional moieties as flexible assembly units can be easily equipped on cNC for long circulation, active targeting, or controlled siRNA release. cNC-F decorated with folic acid, a macrophage-targeting ligand promotes the siRNA accumulation in the activated macrophages in the liver of the obese mouse model. cNC-F loaded with siRNA targeting inflammatory indicators efficiently control the macrophage inflammatory response by reducing the expression of the inflammatory proteins (> 40% reduction) and ameliorating the insulin resistance symptoms of the obese mice.

Keywords: nanomedicine, diabetes, small interfering RNA (siRNA) delivery, collaborative assembly, insulin resistance

References(54)

[1]
Hannon, G. J. RNA interference. Nature 2002, 418, 244-251.
[2]
Kim, D. H.; Rossi, J. J. Strategies for silencing human disease using RNA interference. Nat. Rev. Genet. 2007, 8, 173-184.
[3]
Ghildiyal, M.; Zamore, P. D. Small silencing RNAs: An expanding universe. Nat. Rev. Genet. 2009, 10, 94-108.
[4]
Bartel, D. P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215-233.
[5]
Garber, K. Alnylam launches era of RNAi drugs. Nat. Biotechnol. 2018, 36, 777-778.
[6]
Pecot, C. V.; Calin, G. A.; Coleman, R. L.; Lopez-Berestein, G.; Sood, A. K. RNA interference in the clinic: Challenges and future directions. Nat. Rev. Cancer 2011, 11, 59-67.
[7]
Wu, S. Y.; Lopez-Berestein, G.; Calin, G. A.; Sood, A. K. RNAi therapies: Drugging the undruggable. Sci. Transl. Med. 2014, 6, 240ps7.
[8]
Thomas, C. E.; Ehrhardt, A.; Kay, M. A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 2003, 4, 346-358.
[9]
Lundstrom, K. Viral vectors in gene therapy. Diseases 2018, 6, 42.
[10]
Kanasty, R.; Dorkin, J. R.; Vegas, A.; Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater. 2013, 12, 967-977.
[11]
Dong, Y. Z.; Siegwart, D. J.; Anderson, D. G. Strategies, design, and chemistry in siRNA delivery systems. Adv. Drug Deliv. Rev. 2016, 144, 133-147.
[12]
Xu, C. F.; Iqbal, S.; Shen, S.; Luo, Y. L.; Yang, X. Z.; Wang, J. Development of “CLAN” nanomedicine for nucleic acid therapeutics. Small 2019, 15, 1900055.
[13]
Yin, H.; Kanasty, R. L.; Eltoukhy, A. A.; Vegas, A. J.; Dorkin, J. R.; Anderson, D. G. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 2014, 15, 541-555.
[14]
Foldvari, M.; Chen, D. W.; Nafissi, N.; Calderon, D.; Narsineni, L.; Rafiee, A. Non-viral gene therapy: Gains and challenges of non- invasive administration methods. J. Control. Release 2016, 240, 165-190.
[15]
Lv, H. T.; Zhang, S. B.; Wang, B.; Cui, S. H.; Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release 2006, 114, 100-109.
[16]
Tousignant, J. D.; Gates, A. L.; Ingram, L. A.; Johnson, C. L.; Nietupski, J. B.; Cheng, S. H.; Eastman, S. J.; Scheule, R. K. Comprehensive analysis of the acute toxicities induced by systemic administration of cationic lipid: Plasmid DNA complexes in mice. Hum. Gene Ther. 2000, 11, 2493-2513.
[17]
Zhong, D. G.; Jiao, Y. P.; Zhang, Y.; Zhang, W.; Li, N.; Zuo, Q. H.; Wang, Q.; Xue, W.; Liu, Z. H. Effects of the gene carrier polyethyleneimines on structure and function of blood components. Biomaterials 2013, 34, 294-305.
[18]
Elbakry, A.; Zaky, A.; Liebl, R.; Rachel, R.; Goepferich, A.; Breunig, M. Layer-by-layer assembled gold nanoparticles for siRNA delivery. Nano Lett. 2009, 9, 2059-2064.
[19]
Wang, Y. X.; Xu, Z. X.; Zhang, R.; Li, W. Y.; Yang, L.; Hu, Q. L. A facile approach to construct hyaluronic acid shielding polyplexes with improved stability and reduced cytotoxicity. Colloids Surf. B 2011, 84, 259-266.
[20]
Lee, M. Y.; Park, S. J.; Park, K.; Kim, K. S.; Lee, H.; Hahn, S. K. Target-specific gene silencing of layer-by-layer assembled gold- cysteamine/siRNA/PEI/HA nanocomplex. ACS Nano 2011, 5, 6138-6147.
[21]
Ge, X. M.; Duan, S. Y.; Wu, F.; Feng, J.; Zhu, H.; Jin, T. Polywraplex, Functionalized polyplexes by post-polyplexing assembly of a rationally designed triblock copolymer membrane. Adv. Funct. Mater. 2015, 25, 4352-4363.
[22]
Al-Qadi, S.; Alatorre-Meda, M.; Zaghloul, E. M.; Taboada, P.; Remunán-López, C. Chitosan-hyaluronic acid nanoparticles for gene silencing: The role of hyaluronic acid on the nanoparticles’ formation and activity. Colloids Surf. B 2013, 103, 615-623.
[23]
Sato, Y.; Note, Y.; Maeki, M.; Kaji, N.; Baba, Y.; Tokeshi, M.; Harashima, H. Elucidation of the physicochemical properties and potency of siRNA-loaded small-sized lipid nanoparticles for siRNA delivery. J. Control. Release 2016, 229, 48-57.
[24]
Sun, Q.; Kang, Z. S.; Xue, L. J.; Shang, Y. K.; Su, Z. G.; Sun, H. B.; Ping, Q. N.; Mo, R.; Zhang, C. A collaborative assembly strategy for tumor-targeted siRNA delivery. J. Am. Chem. Soc. 2015, 137, 6000-6010.
[25]
Chono, S.; Li, S. D.; Conwell, C. C.; Huang, L. An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor. J. Control. Release 2008, 131, 64-69.
[26]
Jiang, T. Y.; Mo, R.; Bellotti, A.; Zhou, J. P.; Gu, Z. Gel-liposome- mediated co-delivery of anticancer membrane-associated proteins and small-molecule drugs for enhanced therapeutic efficacy. Adv. Funct. Mater. 2014, 24, 2295-2304.
[27]
Xu, C. F.; Lu, Z. D.; Luo, Y. L.; Liu, Y.; Cao, Z. T.; Shen, S.; Li, H. J.; Liu, J.; Chen, K. G.; Chen, Z. Y. et al. Targeting of NLRP3 inflammasome with gene editing for the amelioration of inflammatory diseases. Nat. Commun. 2018, 9, 4092.
[28]
Luo, Y. L.; Xu, C. F.; Li, H. J.; Cao, Z. T.; Liu, J.; Wang, J. L.; Du, X. J.; Yang, X. Z.; Gu, Z.; Wang, J. Macrophage-specific in vivo gene editing using cationic lipid-assisted polymeric nanoparticles. ACS Nano 2018, 12, 994-1005.
[29]
Holman, R. R.; Thorne, K. I.; Farmer, A. J.; Davies, M. J.; Keenan, J. F.; Paul, S.; Levy, J. C. Addition of biphasic, prandial, or basal insulin to oral therapy in type 2 diabetes. N. Engl. J. Med. 2007, 357, 1716-1730.
[30]
Czech, M. P.; Tencerova, M.; Pedersen, D. J.; Aouadi, M. Insulin signalling mechanisms for triacylglycerol storage. Diabetologia 2013, 56, 949-964.
[31]
Lumeng, C. N.; Saltiel, A. R. Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 2011, 121, 2111-2117.
[32]
Osborn, O.; Olefsky, J. M. The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med. 2012, 18, 363-374.
[33]
Hotamisligil, G. S.; Shargill, N. S.; Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: Direct role in obesity- linked insulin resistance. Science 1993, 259, 87-91.
[34]
Fain, J. N. Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam. Horm. 2006, 74, 443-477.
[35]
Eder, K.; Baffy, N.; Falus, A.; Fulop, A. K. The major inflammatory mediator interleukin-6 and obesity. Inflamm. Res. 2009, 58, 727-736.
[36]
Sartipy, P.; Loskutoff, D. J. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc. Natl. Acad. Sci. USA 2003, 100, 7265-7270.
[37]
Arkan, M. C.; Hevener, A. L.; Greten, F. R.; Maeda, S.; Li, Z. W.; Long, J. M.; Wynshaw-Boris, A.; Poli, G.; Olefsky, J.; Karin, M. IKK-β links inflammation to obesity-induced insulin resistance. Nat. Med. 2005, 11, 191-198.
[38]
Hirosumi, J.; Tuncman, G.; Chang, L. F.; Görgün, C. Z.; Uysal, K. T.; Maeda, K.; Karin, M.; Hotamisligil, G. S. A central role for JNK in obesity and insulin resistance. Nature 2002, 420, 333-336.
[39]
Hotamisligil, G. S.; Peraldi, P.; Budavari, A.; Ellis, R.; White, M. F.; Spiegelman, B. M. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance. Science 1996, 271, 665-670.
[40]
Jager, J.; Grémeaux, T.; Cormont, M.; Le Marchand-Brustel, Y.; Tanti, J. F. Interleukin-1β-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology 2007, 148, 241-251.
[41]
Jais, A.; Einwallner, E.; Sharif, O.; Gossens, K.; Lu, T. T. H.; Soyal, S. M.; Medgyesi, D.; Neureiter, D.; Paier-Pourani, J.; Dalgaard, K. et al. Heme oxygenase-1 drives metaflammation and insulin resistance in mouse and man. Cell 2014, 158, 25-40.
[42]
Han, M. S.; Jung, D. Y.; Morel, C.; Lakhani, S. A.; Kim, J. K.; Flavell, R. A.; Davis, R. J. JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science 2013, 339, 218-222.
[43]
Aouadi, M.; Tesz, G. J.; Nicoloro, S. M.; Wang, M. X.; Chouinard, M.; Soto, E.; Ostroff, G. R.; Czech, M. P. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 2009, 458, 1180-1184.
[44]
He, H.; Zheng, N.; Song, Z. Y.; Kim, K. H.; Yao, C.; Zhang, R. J.; Zhang, C. L.; Huang, Y. H.; Uckun, F. M.; Cheng, J. J. et al. Suppression of hepatic inflammation via systemic siRNA delivery by membrane-disruptive and endosomolytic helical polypeptide hybrid nanoparticles. ACS Nano 2016, 10, 1859-1870.
[45]
Xia, W.; Hilgenbrink, A. R.; Matteson, E. L.; Lockwood, M. B.; Cheng, J. X.; Low, P. S. A functional folate receptor is induced during macrophage activation and can be used to target drugs to activated macrophages. Blood 2009, 113, 438-446.
[46]
Mohammadi, M.; Li, Y.; Abebe, D. G.; Xie, Y. R.; Kandil, R.; Kraus, T.; Gomez-Lopez, N.; Fujiwara, T.; Merkel, O. M. Folate receptor targeted three-layered micelles and hydrogels for gene delivery to activated macrophages. J. Control. Release 2016, 244, 269-279.
[47]
Zhu, Q. W.; Chen, X. J.; Xu, X.; Zhang, Y.; Zhang, C.; Mo, R. Tumor-specific self-degradable nanogels as potential carriers for systemic delivery of anticancer proteins. Adv. Funct. Mater. 2018, 28, 1707371.
[48]
Ganesh, S.; Iyer, A. K.; Morrissey, D. V.; Amiji, M. M. Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials 2013, 34, 3489-3502.
[49]
Liu, M.; Shen, S. Y.; Wen, D.; Li, M. R.; Li, T.; Chen, X. J.; Gu, Z.; Mo, R. Hierarchical nanoassemblies-assisted combinational delivery of cytotoxic protein and antibiotic for cancer treatment. Nano Lett. 2018, 18, 2294-2303.
[50]
Pounder, R. J.; Stanford, M. J.; Brooks, P.; Richards, S. P.; Dove, A. P. Metal free thiol-maleimide ‘Click’ reaction as a mild functionalisation strategy for degradable polymers. Chem. Commun. 2008, 41, 5158-5160.
[51]
Balendiran, G. K.; Dabur, R.; Fraser, D. The role of glutathione in cancer. Cell Biochem. Funct. 2004, 22, 343-352.
[52]
Beutler, B.; Rietschel, E. T. Innate immune sensing and its roots: The story of endotoxin. Nat. Rev. Immunol. 2003, 3, 169-176.
[53]
Mo, R.; Jiang, T. Y.; DiSanto, R.; Tai, W. Y.; Gu, Z. ATP-triggered anticancer drug delivery. Nat. Commun. 2014, 5, 3364.
[54]
Sica, A.; Mantovani, A. Macrophage plasticity and polarization: In vivo veritas. J. Clin. Invest. 2012, 122, 787-795.
File
12274_2020_2954_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 March 2020
Revised: 23 June 2020
Accepted: 25 June 2020
Published: 13 August 2020
Issue date: November 2020

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 81673381, 81971730, and 81773957), the National Science and Technology Major Projects for "Major New Drugs Innovation and Development" (No. 2019ZX09201001-001-001), the Project of State Key Laboratory of Natural Medicines of China Pharmaceutical University (Nos. SKLNMZZCX201820 and SKLNMZZ202024), the "Double First-Class" Project of CPU (Nos. CPU2018GF05 and CPU2018GF04), and the 111 Project (No. B16046). This work was also supported by the National Ten Thousand Talents Program for Young Top-notch Talents, the Program for Jiangsu Province Innovative Research Talents, and Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (171028) to R. M. X. X. and R. M. conceived and supervised the project. S. S., L. Z., X. X., and R. M. designed the experiments, analyzed, and interpreted the data, and wrote the manuscript. S. S., M. L., Z. F., and S. L. prepared and characterized the gene delivery system. S. S. and L. Z. performed in vitro cell studies. S. S., L. Z., H. L., and X. X performed in vivo animal studies. L. Z. and H. L. performed the Western-blot, RT-PCR, and ELISA analyses. P. L. and C. Z. contributed to discussion and provided relevant advice.

Return