Journal Home > Volume 14 , Issue 2

Functional, porous metal-organic frameworks (MOFs) have attracted much attention as a very flexible class of crystalline, porous materials. For more advanced applications that exploit photophysical properties, the fabrication of hierarchical assemblies, including the creation of MOF/MOF heterointerfaces, is important. For the manufacturing of superstructures with length scales well beyond that of the MOF pore size, layer-by-layer (lbl) methods are particularly attractive. These allow the isoreticular approach to be extended to superstructures with micrometer length scales, a range that is not accessible using conventional MOF design. The lbl approach further substantially extends the compositional diversity in MOFs. At the same time, the favorable elastic properties of MOFs allow for heteroepitaxial growth, even in the case of lattice misfits as large as 20%. While the MOF-on-MOF approach to designing multicomponent superstructures with synergistic multifunctionality can also be realized with sophisticated solvothermal synthesis schemes, the lbl (or liquid-phase epitaxy) approach carries substantial advantages, in particular when it comes to the integration of such MOF superstructures into optical or electronic devices. While the structure vertical to the substrate can be adjusted using the lbl method, photolithographic methods can be used for lateral structuring. In this review, we will discuss the lbl liquid-phase epitaxy approach to growing surface-anchored MOF thins films (SURMOFs) as well as other relevant one-pot synthesis methods for constructing such hierarchically designed structures and their emerging applications.


menu
Abstract
Full text
Outline
About this article

Hierarchical assemblies of molecular frameworks—MOF-on-MOF epitaxial heterostructures

Show Author's information Ritesh HaldarChristof Wöll( )
Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz, 176344 Eggenstein-Leopoldshafen, Germany

Abstract

Functional, porous metal-organic frameworks (MOFs) have attracted much attention as a very flexible class of crystalline, porous materials. For more advanced applications that exploit photophysical properties, the fabrication of hierarchical assemblies, including the creation of MOF/MOF heterointerfaces, is important. For the manufacturing of superstructures with length scales well beyond that of the MOF pore size, layer-by-layer (lbl) methods are particularly attractive. These allow the isoreticular approach to be extended to superstructures with micrometer length scales, a range that is not accessible using conventional MOF design. The lbl approach further substantially extends the compositional diversity in MOFs. At the same time, the favorable elastic properties of MOFs allow for heteroepitaxial growth, even in the case of lattice misfits as large as 20%. While the MOF-on-MOF approach to designing multicomponent superstructures with synergistic multifunctionality can also be realized with sophisticated solvothermal synthesis schemes, the lbl (or liquid-phase epitaxy) approach carries substantial advantages, in particular when it comes to the integration of such MOF superstructures into optical or electronic devices. While the structure vertical to the substrate can be adjusted using the lbl method, photolithographic methods can be used for lateral structuring. In this review, we will discuss the lbl liquid-phase epitaxy approach to growing surface-anchored MOF thins films (SURMOFs) as well as other relevant one-pot synthesis methods for constructing such hierarchically designed structures and their emerging applications.

Keywords: epitaxy, metal-organic framework (MOF) heterostructure, hierarchical assembly, layer-by-layer growth, surface-anchored MOFs

References(69)

[1]
O. M. Yaghi, Reticular chemistry in all dimensions. ACS Cent. Sci. 2019, 5, 1295-1300.
[2]
N. W. Ockwig,; O. Delgado-Friedrichs,; M. O'Keeffe,; O. M. Yaghi, Reticular chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks. Acc. Chem. Res. 2005, 38, 176-182.
[3]
S. Kitagawa,; R. Kitaura,; S. I. Noro, Functional porous coordination polymers. Angew. Chem., Int. Ed. 2004, 43, 2334-2375.
[4]
R. Haldar,; T. K. Maji, Metal-organic frameworks (MOFs) based on mixed linker systems: Structural diversities towards functional materials. CrystEngComm 2013, 15, 9276-9295.
[5]
R. Haldar,; N. Sikdar,; T. K. Maji, Interpenetration in coordination polymers: Structural diversities toward porous functional materials. Mater. Today 2015, 18, 97-116.
[6]
O. K. Farha,; I. Eryazici,; N. C. Jeong,; B. G. Hauser,; C. E. Wilmer,; A. A. Sarjeant,; R. Q. Snurr,; S. T. Nguyen,; A. Ö. Yazaydın,; J. T. Hupp, Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit? J. Am. Chem. Soc. 2012, 134, 15016-15021.
[7]
M. P. Suh,; H. J. Park,; T. K. Prasad,; D. W. Lim, Hydrogen storage in metal-organic frameworks. Chem. Rev. 2012, 112, 782-835.
[8]
B. Li,; H. M. Wen,; W. Zhou,; B. L. Chen, Porous metal-organic frameworks for gas storage and separation: What, how, and why? J. Phys. Chem. Lett. 2014, 5, 3468-3479.
[9]
X. Zhao,; Y. X. Wang,; D. S. Li,; X. H. Bu,; P. Y. Feng, Metal-organic frameworks for separation. Adv. Mater. 2018, 30, 1705189.
[10]
Z. G. Hu,; Y. X. Wang,; B. B. Shah,; D. Zhao, CO2 capture in metal-organic framework adsorbents: An engineering perspective. Adv. Sustain. Syst. 2019, 3, 1800080.
[11]
Y. B. Huang,; J. Liang,; X. S. Wang,; R. Cao, Multifunctional metal-organic framework catalysts: Synergistic catalysis and tandem reactions. Chem. Soc. Rev. 2017, 46, 126-157.
[12]
L. Zhu,; X. Q. Liu,; H. L. Jiang,; L. B. Sun, Metal-organic frameworks for heterogeneous basic catalysis. Chem. Rev. 2017, 117, 8129-8176.
[13]
V. Stavila,; A. A. Talin,; M. D. Allendorf, MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 2014, 43, 5994-6010.
[14]
R. Haldar,; L. Heinke,; C. Wöll, Advanced photoresponsive materials using the metal-organic framework approach. Adv. Mater. 2020, 32, 1905227.
[15]
E. A. Dolgopolova,; A. M. Rice,; C. R. Martin,; N. B. Shustova, Photochemistry and photophysics of MOFs: Steps towards MOF-based sensing enhancements. Chem. Soc. Rev. 2018, 47, 4710-4728.
[16]
W. P. Lustig,; S. Mukherjee,; N. D. Rudd,; A. V. Desai,; J. Li,; S. K. Ghosh, Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242-3285.
[17]
S. Begum,; Z. Hassan,; S. Bräse,; C. Wöll,; M. Tsotsalas, Metal-organic framework-templated biomaterials: Recent progress in synthesis, functionalization, and applications. Acc. Chem. Res. 2019, 52, 1598-1610.
[18]
M. Lismont,; L. Dreesen,; S. Wuttke, Metal-organic framework nanoparticles in photodynamic therapy: Current status and perspectives. Adv. Funct. Mater. 2017, 27, 1606314.
[19]
M. Eddaoudi,; J. Kim,; N. Rosi,; D. Vodak,; J. Wachter,; M. O'Keeffe,; O. M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469-472.
[20]
H. X. Deng,; C. J. Doonan,; H. Furukawa,; R. B. Ferreira,; J. Towne,; C. B. Knobler,; B. Wang,; O. M. Yaghi, Multiple functional groups of varying ratios in metal-organic frameworks. Science 2010, 327, 846-850.
[21]
H. X. Deng,; S. Grunder,; K. E. Cordova,; C. Valente,; H. Furukawa,; M. Hmadeh,; F. Gándara,; A. C. Whalley,; Z. Liu,; S. Asahina, et al. Large-pore apertures in a series of metal-organic frameworks. Science 2012, 336, 1018-1023.
[22]
Z. B. Wang,; J. X. Liu,; S. Grosjean,; D. Wagner,; W. Guo,; Z. G. Gu,; L. Heinke,; H. Gliemann,; S. Bräse,; C. Wöll, Monolithic, crystalline MOF coating: An excellent patterning and photoresist material. ChemNanoMat 2015, 1, 338-345.
[23]
H. Gliemann,; C. Wöll, Epitaxially grown metal-organic frameworks. Mater. Today 2012, 15, 110-116.
[24]
O. Shekhah,; H. Wang,; S. Kowarik,; F. Schreiber,; M. Paulus,; M. Tolan,; C. Sternemann,; F. Evers,; D. Zacher,; R. A. Fischer, et al. Step-by-step route for the synthesis of metal-organic frameworks. J. Am. Chem. Soc. 2007, 129, 15118-15119.
[25]
J. X. Liu,; C. Wöll, Surface-supported metal-organic framework thin films: Fabrication methods, applications, and challenges. Chem. Soc. Rev. 2017, 46, 5730-5770.
[26]
O. Shekhah,; J. Liu,; R. A. Fischer,; C. Wöll, MOF thin films: Existing and future applications. Chem. Soc. Rev. 2011, 40, 1081-1106.
[27]
X. Q. Kong,; H. X. Deng,; F. Y. Yan,; J. Kim,; J. A. Swisher,; B. Smit,; O. M. Yaghi,; J. A. Reimer, Mapping of functional groups in metal-organic frameworks. Science 2013, 341, 882-885.
[28]
S. Furukawa,; K. Hirai,; K. Nakagawa,; Y. Takashima,; R. Matsuda,; T. Tsuruoka,; M. Kondo,; R. Haruki,; D. Tanaka,; H. Sakamoto, et al. Heterogeneously hybridized porous coordination polymer crystals: Fabrication of heterometallic core-shell single crystals with an in-plane rotational epitaxial relationship. Angew. Chem., Int. Ed. 2009, 48, 1766-1770.
[29]
J. X. Liu,; B. Lukose,; O. Shekhah,; H. K. Arslan,; P. Weidler,; H. Gliemann,; S. Bräse,; S. Grosjean,; A. Godt,; X. L. Feng, et al. A novel series of isoreticular metal organic frameworks: Realizing metastable structures by liquid phase epitaxy. Sci. Rep. 2012, 2, 921.
[30]
E. P. Valadez Sánchez,; H. Gliemann,; K. Haas-Santo,; C. Wöll,; R. Dittmeyer, ZIF-8 SURMOF membranes synthesized by Au-assisted liquid phase epitaxy for application in gas separation. Chem. Ingen. Tech. 2016, 88, 1798-1805.
[31]
T. Hashem,; E. P. Valadez Sánchez,; P. G. Weidler,; H. Gliemann,; M. H. Alkordi,; C. Wöll, Front cover: Liquid-phase quasi-epitaxial growth of highly stable, monolithic UiO-66-NH2 MOF thin films on solid substrates (ChemistryOpen 5/2020). ChemistryOpen 2020, 9, 521.
[32]
O. Shekhah,; K. Hirai,; H. Wang,; H. Uehara,; M. Kondo,; S. Diring,; D. Zacher,; R. A. Fischer,; O. Sakata,; S. Kitagawa, et al. MOF-on-MOF heteroepitaxy: Perfectly oriented [Zn2(ndc)2(dabco)]n grown on [Cu2(ndc)2(dabco)]n thin films. Dalton Trans. 2011, 40, 4954-4958.
[33]
H. Chun,; D. N. Dybtsev,; H. Kim,; K. Kim, Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: Implications for hydrogen storage in porous materials. Chem.—Eur. J. 2005, 11, 3521-3529.
[34]
K. Seki,; W. Mori, Syntheses and characterization of microporous coordination polymers with open frameworks. J. Phys. Chem. B 2002, 106, 1380-1385.
[35]
S. J. Tang,; C. Y. Lee,; C. C. Huang,; T. R. Chang,; C. M. Cheng,; K. D. Tsuei,; H. T. Jeng,; V. Yeh,; T. C. Chiang, Electronic versus lattice match for metal-semiconductor epitaxial growth: Pb on Ge(111). Phys. Rev. Lett. 2011, 107, 066802.
[36]
H. L. Li,; M. Eddaoudi,; T. L. Groy,; O. M. Yaghi, Establishing microporosity in open metal-organic frameworks: Gas sorption isotherms for Zn(BDC) (BDC = 1,4-benzenedicarboxylate). J. Am. Chem. Soc. 1998, 120, 8571-8572.
[37]
R. Haldar,; K. Batra,; S. M. Marschner,; A. B. Kuc,; S. Zahn,; R. A. Fischer,; S. Bräse,; T. Heine,; C. Wöll, Bridging the green gap: Metal-organic framework heteromultilayers assembled from porphyrinic linkers identified by using computational screening.. Chem.—Eur. J. 2019, 25, 7847-7851.
[38]
R. Haldar,; A. Mazel,; R. Joseph,; M. Adams,; I. A. Howard,; B. S. Richards,; M. Tsotsalas,; E. Redel,; S. Diring,; F. Odobel, et al. Excitonically coupled states in crystalline coordination networks. Chem.—Eur. J. 2017, 23, 14316-14322.
[39]
J. X. Liu,; W. C. Zhou,; J. X. Liu,; I. Howard,; G. Kilibarda,; S. Schlabach,; D. Coupry,; M. Addicoat,; S. Yoneda,; Y. Tsutsui, et al. Photoinduced charge-carrier generation in epitaxial MOF thin films: High efficiency as a result of an indirect electronic band gap? Angew. Chem., Int. Ed. 2015, 54, 7441-7445.
[40]
J. X. Liu,; W. C. Zhou,; J. X. Liu,; Y. Fujimori,; T. Higashino,; H. Imahori,; X. Jiang,; J. J. Zhao,; T. Sakurai,; Y. Hattori, et al. A new class of epitaxial porphyrin metal-organic framework thin films with extremely high photocarrier generation efficiency: Promising materials for all-solid-state solar cells. J. Mater. Chem. A 2016, 4, 12739-12747.
[41]
R. Haldar,; S. Diring,; P. K. Samanta,; M. Muth,; W. Clancy,; A. Mazel,; S. Schlabach,; F. Kirschhöfer,; G. Brenner-Weiß,; S. K. Pati, et al. Enhancing selectivity and kinetics in oxidative photocyclization by supramolecular control. Angew. Chem., Int. Ed. 2018, 57, 13662-13665.
[42]
Z. B. Wang,; J. X. Liu,; B. Lukose,; Z. G. Gu,; P. G. Weidler,; H. Gliemann,; T. Heine,; C. Wöll, Nanoporous designer solids with huge lattice constant gradients: Multiheteroepitaxy of metal-organic frameworks. Nano Lett. 2014, 14, 1526-1529.
[43]
Z. Wang,; S. Wannapaiboon,; K. Rodewald,; M. Tu,; B. Rieger,; R. A. Fischer, Directing the hetero-growth of lattice-mismatched surface-mounted metal-organic frameworks by functionalizing the interface. J. Mater. Chem. A 2018, 6, 21295-21303.
[44]
M. Tu,; R. A. Fischer, Heteroepitaxial growth of surface mounted metal-organic framework thin films with hybrid adsorption functionality. J. Mater. Chem. A 2014, 2, 2018-2022.
[45]
L. Heinke,; M. Cakici,; M. Dommaschk,; S. Grosjean,; R. Herges,; S. Bräse,; C. Wöll, Photoswitching in two-component surface-mounted metal-organic frameworks: Optically triggered release from a molecular container. ACS Nano 2014, 8, 1463-1467.
[46]
M. Meilikhov,; S. Furukawa,; K. Hirai,; R. A. Fischer,; S. Kitagawa, Binary janus porous coordination polymer coatings for sensor devices with tunable analyte affinity. Angew. Chem., Int. Ed. 2013, 52, 341-345.
[47]
K. Ikigaki,; K. Okada,; Y. Tokudome,; T. Toyao,; P. Falcaro,; C. J. Doonan,; M. Takahashi, MOF-on-MOF: Oriented growth of multiple layered thin films of metal-organic frameworks. Angew. Chem., Int. Ed. 2019, 58, 6886-6890.
[48]
P. Falcaro,; K. Okada,; T. Hara,; K. Ikigaki,; Y. Tokudome,; A. W. Thornton,; A. J. Hill,; T. Williams,; C. Doonan,; M. Takahashi, Centimetre-scale micropore alignment in oriented polycrystalline metal-organic framework films via heteroepitaxial growth. Nat. Mater. 2017, 16, 342-348.
[49]
S. Raišys,; K. Kazlauskas,; S. Juršėnas,; Y. C. Simon, The role of triplet exciton diffusion in light-upconverting polymer glasses. ACS Appl. Mater. Interfaces 2016, 8, 15732-15740.
[50]
M. Oldenburg,; A. Turshatov,; D. Busko,; S. Wollgarten,; M. Adams,; N. Baroni,; A. Welle,; E. Redel,; C. Wöll,; B. S. Richards, et al. Photon upconversion at crystalline organic-organic heterojunctions. Adv. Mater. 2016, 28, 8477-8482.
[51]
R. Haldar,; M. Jakoby,; A. Mazel,; Q. Zhang,; A. Welle,; T. Mohamed,; P. Krolla,; W. Wenzel,; S. Diring,; F. Odobel, et al. Anisotropic energy transfer in crystalline chromophore assemblies. Nat. Commun. 2018, 9, 4332.
[52]
R. Haldar,; K. Batra,; S. M. Marschner,; A. B. Kuc,; S. Zahn,; R. A. Fischer,; S. Bräse,; T. Heine,; C. Wöll, Bridging the green gap: Metal-organic framework heteromultilayers assembled from porphyrinic linkers identified by using computational screening. Chem.—Eur. J. 2019, 25, 7847-7851.
[53]
H. J. Park,; M. C. So,; D. Gosztola,; G. P. Wiederrecht,; J. D. Emery,; A. B. F. Martinson,; S. Er,; C. E. Wilmer,; N. A. Vermeulen,; A. Aspuru-Guzik, et al. Layer-by-layer assembled films of perylene diimide- and Squaraine-containing metal-organic framework-like materials: Solar energy capture and directional energy transfer. ACS Appl. Mater. Interfaces 2016, 8, 24983-24988.
[54]
D. H. Chen,; R. Haldar,; B. L. Neumeier,; Z. H. Fu,; C. Feldmann,; C. Wöll,; E. Redel, Tunable emission in heteroepitaxial Ln-SURMOFs. Adv. Funct. Mater. 2019, 29, 1903086.
[55]
J. Rocha,; L. D. Carlos,; F. A. A. Paz,; D. Ananias, Luminescent multifunctional lanthanides-based metal-organic frameworks. Chem. Soc. Rev. 2011, 40, 926-940.
[56]
S. Mohapatra,; S. Adhikari,; H. Riju,; T. K. Maji, Terbium(III), europium(III), and mixed terbium(III)-europium(III) mucicate frameworks: Hydrophilicity and stoichiometry-dependent color tunability. Inorg. Chem. 2012, 51, 4891-4893.
[57]
J. X. Liu,; E. Redel,; S. Walheim,; Z. B. Wang,; V. Oberst,; J. X. Liu,; S. Heissler,; A. Welle,; M. Moosmann,; T. Scherer, et al. Monolithic high performance surface anchored metal-organic framework Bragg reflector for optical sensing. Chem Mater. 2015, 27, 1991-1996.
[58]
Z. J. Zhang,; K. Müller,; S. Heidrich,; M. Koenig,; T. Hashem,; T. Schlöder,; D. Bléger,; W. Wenzel,; L. Heinke, Light-switchable one-dimensional photonic crystals based on MOFs with photomodulatable refractive index. J. Phys. Chem. Lett. 2019, 10, 6626-6633.
[59]
S. Furukawa,; K. Hirai,; Y. Takashima,; K. Nakagawa,; M. Kondo,; T. Tsuruoka,; O. Sakata,; S. Kitagawa, A block PCP crystal: Anisotropic hybridization of porous coordination polymers by face-selective epitaxial growth. Chem. Commun. 2009, 5097-5099.
[60]
T. Li,; J. E. Sullivan,; N. L. Rosi, Design and preparation of a core-shell metal-organic framework for selective CO2 capture. J. Am. Chem. Soc. 2013, 135, 9984-9987.
[61]
D. Mutruc,; A. Goulet-Hanssens,; S. Fairman,; S. Wahl,; A. Zimathies,; C. Knie,; S. Hecht, Modulating guest uptake in core-shell MOFs with visible light. Angew. Chem., Int. Ed. 2019, 58, 12862-12867.
[62]
M. E. Silvestre,; M. Franzreb,; P. G. Weidler,; O. Shekhah,; C. Wöll, Magnetic cores with porous coatings: Growth of metal-organic frameworks on particles using liquid phase epitaxy. Adv. Funct. Mater. 2013, 23, 1210-1213.
[63]
S. Schmitt,; M. Silvestre,; M. Tsotsalas,; A. L. Winkler,; A. Shahnas,; S. Grosjean,; F. Laye,; H. Gliemann,; J. Lahann,; S. Bräse, et al. Hierarchically functionalized magnetic core/multishell particles and their postsynthetic conversion to polymer capsules. ACS Nano 2015, 9, 4219-4226.
[64]
J. Son,; H. J. Lee,; M. Oh, Systematic formation of multilayered core-shell microspheres through the multistep growth of coordination polymers. Chem.—Eur. J. 2013, 19, 6546-6550.
[65]
H. J. Lee,; Y. J. Cho,; W. Cho,; M. Oh, Controlled isotropic or anisotropic nanoscale growth of coordination polymers: Formation of hybrid coordination polymer particles. ACS Nano 2013, 7, 491-499.
[66]
X. Y. Yang,; S. Yuan,; L. F. Zou,; H. Drake,; Y. M. Zhang,; J. S. Qin,; A. Alsalme,; H. C. Zhou, One-step synthesis of hybrid core-shell metal-organic frameworks. Angew. Chem., Int. Ed. 2018, 57, 3927-3932.
[67]
D. Kim,; G. Lee,; S. Oh,; M. Oh, Unbalanced MOF-on-MOF growth for the production of a lopsided core-shell of MIL-88B@MIL-88A with mismatched cell parameters. Chem. Commun. 2019, 55, 43-46.
[68]
K. Hirai,; S. Furukawa,; M. Kondo,; H. Uehara,; O. Sakata,; S. Kitagawa, Sequential functionalization of porous coordination polymer crystals. Angew. Chem., Int. Ed. 2011, 50, 8057-8061.
[69]
O. Kwon,; J. Y. Kim,; S. Park,; J. H. Lee,; J. Ha,; H. Park,; H. R. Moon,; J. Kim, Computer-aided discovery of connected metal-organic frameworks. Nat. Commun. 2019, 10, 3620.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 04 March 2020
Revised: 31 May 2020
Accepted: 26 June 2020
Published: 20 July 2020
Issue date: February 2021

Copyright

© The Author(s) 2020

Acknowledgements

The authors acknowledge support from Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—2082/1—390761711 and SPP 1928 "COORNETS." We thank Xiaojing Liu for comments on the manuscript.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return